#ifndef GFXMAT4_INCLUDED // -*- C++ -*- #define GFXMAT4_INCLUDED #if !defined(__GNUC__) # pragma once #endif /************************************************************************ 4x4 Matrix class $Id: mat4.h 427 2004-09-27 04:45:31Z garland $ ************************************************************************/ #include "vec4.h" namespace gfx { class Mat4 { private: Vec4 row[4]; public: // Standard constructors // Mat4() { *this = 0.0; } Mat4(const Vec4& r0,const Vec4& r1,const Vec4& r2,const Vec4& r3) { row[0]=r0; row[1]=r1; row[2]=r2; row[3]=r3; } Mat4(const Mat4& m) { *this = m; } // Descriptive interface // typedef double value_type; typedef Vec4 vector_type; typedef Mat4 inverse_type; static int dim() { return 4; } // Access methods // double& operator()(int i, int j) { return row[i][j]; } double operator()(int i, int j) const { return row[i][j]; } Vec4& operator[](int i) { return row[i]; } const Vec4& operator[](int i) const { return row[i]; } inline Vec4 col(int i) const { return Vec4(row[0][i],row[1][i],row[2][i],row[3][i]); } operator double*() { return row[0]; } operator const double*() { return row[0]; } operator const double*() const { return row[0]; } // Assignment methods // inline Mat4& operator=(const Mat4& m); inline Mat4& operator=(double s); inline Mat4& operator+=(const Mat4& m); inline Mat4& operator-=(const Mat4& m); inline Mat4& operator*=(double s); inline Mat4& operator/=(double s); static Mat4 I(); }; //////////////////////////////////////////////////////////////////////// // // Method definitions // inline Mat4& Mat4::operator=(const Mat4& m) { row[0] = m[0]; row[1] = m[1]; row[2] = m[2]; row[3] = m[3]; return *this; } inline Mat4& Mat4::operator=(double s) { row[0]=s; row[1]=s; row[2]=s; row[3]=s; return *this; } inline Mat4& Mat4::operator+=(const Mat4& m) { row[0] += m[0]; row[1] += m[1]; row[2] += m[2]; row[3] += m[3]; return *this; } inline Mat4& Mat4::operator-=(const Mat4& m) { row[0] -= m[0]; row[1] -= m[1]; row[2] -= m[2]; row[3] -= m[3]; return *this; } inline Mat4& Mat4::operator*=(double s) { row[0] *= s; row[1] *= s; row[2] *= s; row[3] *= s; return *this; } inline Mat4& Mat4::operator/=(double s) { row[0] /= s; row[1] /= s; row[2] /= s; row[3] /= s; return *this; } //////////////////////////////////////////////////////////////////////// // // Operator definitions // inline Mat4 operator+(const Mat4& n, const Mat4& m) { return Mat4(n[0]+m[0], n[1]+m[1], n[2]+m[2], n[3]+m[3]); } inline Mat4 operator-(const Mat4& n, const Mat4& m) { return Mat4(n[0]-m[0], n[1]-m[1], n[2]-m[2], n[3]-m[3]); } inline Mat4 operator-(const Mat4& n) { return Mat4(-n[0], -n[1], -n[2], -n[3]); } inline Mat4 operator*(double s, const Mat4& m) { return Mat4(m[0]*s, m[1]*s, m[2]*s, m[3]*s); } inline Mat4 operator*(const Mat4& m, double s) { return s*m; } inline Mat4 operator/(const Mat4& m, double s) { return Mat4(m[0]/s, m[1]/s, m[2]/s, m[3]/s); } inline Vec4 operator*(const Mat4& m, const Vec4& v) { return Vec4(m[0]*v, m[1]*v, m[2]*v, m[3]*v); } extern Mat4 operator*(const Mat4& n, const Mat4& m); // // Transform a homogeneous 3-vector and reproject into normal 3-space // inline Vec3 operator*(const Mat4& m, const Vec3& v) { Vec4 u=Vec4(v,1); double w=m[3]*u; if(w==0.0) return Vec3(m[0]*u, m[1]*u, m[2]*u); else return Vec3(m[0]*u/w, m[1]*u/w, m[2]*u/w); } inline std::ostream &operator<<(std::ostream &out, const Mat4& M) { return out<>(std::istream &in, Mat4& M) { return in >> M[0] >> M[1] >> M[2] >> M[3]; } //////////////////////////////////////////////////////////////////////// // // Transformations // extern Mat4 translation_matrix(const Vec3& delta); extern Mat4 scaling_matrix(const Vec3& scale); extern Mat4 rotation_matrix_rad(double theta, const Vec3& axis); inline Mat4 rotation_matrix_deg(double theta, const Vec3& axis) { return rotation_matrix_rad(theta*M_PI/180.0, axis); } extern Mat4 perspective_matrix(double fovy, double aspect, double zmin=0.0, double zmax=0.0); extern Mat4 lookat_matrix(const Vec3& from, const Vec3& at, const Vec3& up); extern Mat4 viewport_matrix(double w, double h); //////////////////////////////////////////////////////////////////////// // // Misc. function definitions // inline double det(const Mat4& m) { return m[0] * cross(m[1], m[2], m[3]); } inline double trace(const Mat4& m) { return m(0,0)+m(1,1)+m(2,2)+m(3,3); } inline Mat4 transpose(const Mat4& m) { return Mat4(m.col(0), m.col(1), m.col(2), m.col(3)); } extern Mat4 adjoint(const Mat4& m); extern double invert(Mat4& m_inv, const Mat4& m); extern double invert_cramer(Mat4& m_inv, const Mat4& m); extern bool eigen(const Mat4& m, Vec4& eig_vals, Vec4 eig_vecs[4]); } // namespace gfx // GFXMAT4_INCLUDED #endif