#ifndef GFXMAT2_INCLUDED // -*- C++ -*- #define GFXMAT2_INCLUDED #if !defined(__GNUC__) # pragma once #endif /************************************************************************ 2x2 Matrix class $Id: mat2.h 427 2004-09-27 04:45:31Z garland $ ************************************************************************/ #include "vec2.h" namespace gfx { class Mat2 { private: Vec2 row[2]; public: // Standard constructors // Mat2() { *this = 0.0; } Mat2(double a, double b, double c, double d) { row[0][0]=a; row[0][1]=b; row[1][0]=c; row[1][1]=d; } Mat2(const Vec2 &r0,const Vec2 &r1) { row[0]=r0; row[1]=r1; } Mat2(const Mat2 &m) { *this = m; } // Descriptive interface // typedef double value_type; typedef Vec2 vector_type; typedef Mat2 inverse_type; static int dim() { return 2; } // Access methods note: A(i, j) == row i, col j // double& operator()(int i, int j) { return row[i][j]; } double operator()(int i, int j) const { return row[i][j]; } Vec2& operator[](int i) { return row[i]; } const Vec2& operator[](int i) const { return row[i]; } inline Vec2 col(int i) const {return Vec2(row[0][i],row[1][i]);} operator double*() { return row[0]; } operator const double*() { return row[0]; } operator const double*() const { return row[0]; } // Assignment methods // inline Mat2& operator=(const Mat2& m); inline Mat2& operator=(double s); inline Mat2& operator+=(const Mat2& m); inline Mat2& operator-=(const Mat2& m); inline Mat2& operator*=(double s); inline Mat2& operator/=(double s); // Construction of standard matrices // static Mat2 I(); static Mat2 outer_product(const Vec2 &u, const Vec2 &v) { return Mat2(u[0]*v[0], u[0]*v[1], u[1]*v[0], u[1]*v[1]); } static Mat2 outer_product(const Vec2 &u) { return outer_product(u,u); } Mat2 &diag(double d); Mat2 &ident() { return diag(1.0); } }; //////////////////////////////////////////////////////////////////////// // // Method definitions // inline Mat2& Mat2::operator=(const Mat2& m) { row[0]=m[0]; row[1]=m[1]; return *this; } inline Mat2& Mat2::operator=(double s) { row[0]=s; row[1]=s; return *this; } inline Mat2& Mat2::operator+=(const Mat2& m) { row[0] += m.row[0]; row[1] += m.row[1]; return *this;} inline Mat2& Mat2::operator-=(const Mat2& m) { row[0] -= m.row[0]; row[1] -= m.row[1]; return *this; } inline Mat2& Mat2::operator*=(double s) { row[0] *= s; row[1] *= s; return *this; } inline Mat2& Mat2::operator/=(double s) { row[0] /= s; row[1] /= s; return *this; } //////////////////////////////////////////////////////////////////////// // // Operator definitions // inline Mat2 operator+(const Mat2 &n, const Mat2 &m) { return Mat2(n[0]+m[0], n[1]+m[1]); } inline Mat2 operator-(const Mat2 &n, const Mat2 &m) { return Mat2(n[0]-m[0], n[1]-m[1]); } inline Mat2 operator-(const Mat2 &m) { return Mat2(-m[0], -m[1]); } inline Mat2 operator*(double s, const Mat2 &m) { return Mat2(m[0]*s, m[1]*s); } inline Mat2 operator*(const Mat2 &m, double s) { return s*m; } inline Mat2 operator/(const Mat2 &m, double s) { return Mat2(m[0]/s, m[1]/s); } inline Vec2 operator*(const Mat2 &m, const Vec2 &v) { return Vec2(m[0]*v, m[1]*v); } extern Mat2 operator*(const Mat2 &n, const Mat2 &m); inline std::ostream &operator<<(std::ostream &out, const Mat2& M) { return out << M[0] << std::endl << M[1]; } inline std::istream &operator>>(std::istream &in, Mat2& M) { return in >> M[0] >> M[1]; } //////////////////////////////////////////////////////////////////////// // // Misc. function definitions // inline double det(const Mat2 &m) { return m(0,0)*m(1,1) - m(0,1)*m(1,0); } inline double trace(const Mat2 &m) { return m(0,0) + m(1,1); } inline Mat2 transpose(const Mat2 &m) { return Mat2(m.col(0), m.col(1)); } inline Mat2 adjoint(const Mat2 &m) { return Mat2(perp(m[1]), -perp(m[0])); } extern double invert(Mat2 &m_inv, const Mat2 &m); extern bool eigenvalues(const Mat2&, Vec2& evals); extern bool eigenvectors(const Mat2&, const Vec2& evals, Vec2 evecs[2]); extern bool eigen(const Mat2&, Vec2& evals, Vec2 evecs[2]); } // namespace gfx // GFXMAT2_INCLUDED #endif