#ifndef GFXMAT3_INCLUDED // -*- C++ -*- #define GFXMAT3_INCLUDED #if !defined(__GNUC__) # pragma once #endif /************************************************************************ 3x3 Matrix class $Id: mat3.h 427 2004-09-27 04:45:31Z garland $ ************************************************************************/ #include "vec3.h" namespace gfx { class Mat3 { private: Vec3 row[3]; public: // Standard constructors // Mat3() { *this = 0.0; } Mat3(const Vec3& r0,const Vec3& r1,const Vec3& r2) { row[0]=r0; row[1]=r1; row[2]=r2; } Mat3(const Mat3& m) { *this = m; } // Descriptive interface // typedef double value_type; typedef Vec3 vector_type; typedef Mat3 inverse_type; static int dim() { return 3; } // Access methods // double& operator()(int i, int j) { return row[i][j]; } double operator()(int i, int j) const { return row[i][j]; } Vec3& operator[](int i) { return row[i]; } const Vec3& operator[](int i) const { return row[i]; } inline Vec3 col(int i) const {return Vec3(row[0][i],row[1][i],row[2][i]);} operator double*() { return row[0]; } operator const double*() { return row[0]; } operator const double*() const { return row[0]; } // Assignment methods // inline Mat3& operator=(const Mat3& m); inline Mat3& operator=(double s); inline Mat3& operator+=(const Mat3& m); inline Mat3& operator-=(const Mat3& m); inline Mat3& operator*=(double s); inline Mat3& operator/=(double s); // Construction of standard matrices // static Mat3 I(); static Mat3 outer_product(const Vec3& u, const Vec3& v); static Mat3 outer_product(const Vec3& v); Mat3 &diag(double d); Mat3 &ident() { return diag(1.0); } }; //////////////////////////////////////////////////////////////////////// // // Methods definitions // inline Mat3& Mat3::operator=(const Mat3& m) { row[0] = m[0]; row[1] = m[1]; row[2] = m[2]; return *this; } inline Mat3& Mat3::operator=(double s) { row[0]=s; row[1]=s; row[2]=s; return *this; } inline Mat3& Mat3::operator+=(const Mat3& m) { row[0] += m[0]; row[1] += m[1]; row[2] += m[2]; return *this; } inline Mat3& Mat3::operator-=(const Mat3& m) { row[0] -= m[0]; row[1] -= m[1]; row[2] -= m[2]; return *this; } inline Mat3& Mat3::operator*=(double s) { row[0] *= s; row[1] *= s; row[2] *= s; return *this; } inline Mat3& Mat3::operator/=(double s) { row[0] /= s; row[1] /= s; row[2] /= s; return *this; } //////////////////////////////////////////////////////////////////////// // // Operator definitions // inline Mat3 operator+(const Mat3& n, const Mat3& m) { return Mat3(n[0]+m[0], n[1]+m[1], n[2]+m[2]); } inline Mat3 operator-(const Mat3& n, const Mat3& m) { return Mat3(n[0]-m[0], n[1]-m[1], n[2]-m[2]); } inline Mat3 operator-(const Mat3& m) { return Mat3(-m[0], -m[1], -m[2]); } inline Mat3 operator*(double s, const Mat3& m) { return Mat3(m[0]*s, m[1]*s, m[2]*s); } inline Mat3 operator*(const Mat3& m, double s) { return s*m; } inline Mat3 operator/(const Mat3& m, double s) { return Mat3(m[0]/s, m[1]/s, m[2]/s); } inline Vec3 operator*(const Mat3& m, const Vec3& v) { return Vec3(m[0]*v, m[1]*v, m[2]*v); } extern Mat3 operator*(const Mat3& n, const Mat3& m); inline std::ostream &operator<<(std::ostream &out, const Mat3& M) { return out << M[0] << std::endl << M[1] << std::endl << M[2]; } inline std::istream &operator>>(std::istream &in, Mat3& M) { return in >> M[0] >> M[1] >> M[2]; } //////////////////////////////////////////////////////////////////////// // // Misc. function definitions // inline double det(const Mat3& m) { return m[0] * (m[1] ^ m[2]); } inline double trace(const Mat3& m) { return m(0,0) + m(1,1) + m(2,2); } inline Mat3 transpose(const Mat3& m) { return Mat3(m.col(0), m.col(1), m.col(2)); } extern Mat3 adjoint(const Mat3& m); extern double invert(Mat3& m_inv, const Mat3& m); inline Mat3 row_extend(const Vec3& v) { return Mat3(v, v, v); } extern Mat3 diag(const Vec3& v); extern bool eigen(const Mat3& m, Vec3& eig_vals, Vec3 eig_vecs[3]); } // namespace gfx // GFXMAT3_INCLUDED #endif