/** * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legales * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * @license Public Domain / GPL v2+ */ #include "md5.h" #include void MD5::reverse_u32(UINT8 *buf, int n_u32) { UINT8 tmp; if (m_big_endian) { // change { 4, 3, 2, 1 } => { 1, 2, 3, 4 } while (n_u32-- > 0) { tmp = buf[0]; buf[0] = buf[3]; buf[3] = tmp; tmp = buf[1]; buf[1] = buf[2]; buf[2] = tmp; buf += 4; } } else { // change { 4, 3, 2, 1 } => { 3, 4, 1, 2 } while (n_u32-- > 0) { tmp = buf[0]; buf[0] = buf[1]; buf[1] = tmp; tmp = buf[2]; buf[2] = buf[3]; buf[3] = tmp; buf += 4; } } } MD5::MD5() { m_buf[0] = 0x01020304; /* * Little endian = { 4, 3, 2, 1 } * Big endian = { 1, 2, 3, 4 } * PDP endian = { 3, 4, 1, 2 } * * The MD5 stuff is written for little endian. */ m_in8 = (UINT8 *)m_in32; m_need_byteswap = *(UINT8 *)m_buf != 4; m_big_endian = *(UINT8 *)m_buf == 1; } //! Start MD5 accumulation. void MD5::Init() { m_buf[0] = 0x67452301; m_buf[1] = 0xefcdab89; m_buf[2] = 0x98badcfe; m_buf[3] = 0x10325476; m_bits[0] = 0; m_bits[1] = 0; } //! Update context to reflect the concatenation of another buffer full of bytes. void MD5::Update(const void *data, UINT32 len) { const UINT8 *buf = (const UINT8 *)data; UINT32 t = m_bits[0]; // Update bitcount if ((m_bits[0] = t + ((UINT32)len << 3)) < t) { m_bits[1]++; // Carry from low to high } m_bits[1] += len >> 29; t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data // Handle any leading odd-sized chunks if (t) { UINT8 *p = m_in8 + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); if (m_need_byteswap) { reverse_u32(m_in8, 16); } Transform(m_buf, m_in32); buf += t; len -= t; } // Process data in 64-byte chunks while (len >= 64) { memcpy(m_in32, buf, 64); if (m_need_byteswap) { reverse_u32(m_in8, 16); } Transform(m_buf, m_in32); buf += 64; // TODO: possible creation of out-of-bounds pointer 64 beyond end of data len -= 64; } // Save off any remaining bytes of data memcpy(m_in32, buf, len); // TODO: possible access beyond array } // MD5::Update void MD5::Final(UINT8 digest[16]) { // Compute number of bytes modulo 64 UINT32 count = (m_bits[0] >> 3) & 0x3F; /* * Set the first char of padding to 0x80. This is safe since there is always * at least one byte free */ UINT8 *p = m_in8 + count; *p++ = 0x80; // Bytes of padding needed to make 64 bytes count = 64 - 1 - count; // Pad out to 56 modulo 64 if (count < 8) { // Two lots of padding: Pad the first block to 64 bytes memset(p, 0, count); if (m_need_byteswap) { reverse_u32(m_in8, 16); } Transform(m_buf, m_in32); // Now fill the next block with 56 bytes memset(m_in32, 0, 56); } else { // Pad block to 56 bytes memset(p, 0, count - 8); } if (m_need_byteswap) { reverse_u32(m_in8, 14); } // Append length in bits and transform memcpy(m_in8 + 56, &m_bits[0], 4); memcpy(m_in8 + 60, &m_bits[1], 4); Transform(m_buf, m_in32); if (m_need_byteswap) { reverse_u32((UINT8 *)m_buf, 4); } memcpy(digest, m_buf, 16); } // MD5::Final // The four core functions - F1 is optimized somewhat // #define F1(x, y, z) (x & y | ~x & z) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) // This is the central step in the MD5 algorithm. #define MD5STEP(f, w, x, y, z, data, s) \ ((w) += f((x), (y), (z)) + (data), (w) = (w) << (s) | (w) >> (32 - (s)), (w) += (x)) void MD5::Transform(UINT32 buf[4], UINT32 in_data[16]) { UINT32 a = buf[0]; UINT32 b = buf[1]; UINT32 c = buf[2]; UINT32 d = buf[3]; MD5STEP(F1, a, b, c, d, in_data[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in_data[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in_data[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in_data[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in_data[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in_data[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in_data[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in_data[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in_data[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in_data[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in_data[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in_data[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in_data[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in_data[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in_data[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in_data[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in_data[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in_data[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in_data[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in_data[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in_data[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in_data[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in_data[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in_data[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in_data[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in_data[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in_data[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in_data[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in_data[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in_data[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in_data[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in_data[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in_data[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in_data[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in_data[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in_data[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in_data[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in_data[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in_data[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in_data[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in_data[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in_data[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in_data[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in_data[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in_data[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in_data[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in_data[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in_data[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in_data[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in_data[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in_data[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in_data[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in_data[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in_data[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in_data[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in_data[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in_data[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in_data[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in_data[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in_data[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in_data[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in_data[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in_data[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in_data[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } // MD5::Transform void MD5::Calc(const void *data, UINT32 length, UINT8 digest[16]) { MD5 md5; md5.Init(); md5.Update(data, length); md5.Final(digest); }