/* This file is part of the KDE project Copyright (C) 2001, 2002, 2003 The Karbon Developers This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* An Algorithm for Automatically Fitting Digitized Curves by Philip J. Schneider from "Graphics Gems", Academic Press, 1990 http://www.acm.org/pubs/tog/GraphicsGems/gems/FitCurves.c http://www.acm.org/pubs/tog/GraphicsGems/gems/README */ #include "vcurvefit.h" #define MAXPOINTS 1000 /* The most points you can have */ class FitVector { public: FitVector(KoPoint &p){ m_X=p.x(); m_Y=p.y(); } FitVector(){ m_X=0; m_Y=0; } FitVector(KoPoint &a,KoPoint &b){ m_X=a.x()-b.x(); m_Y=a.y()-b.y(); } void normalize(){ double len=length(); if(len==0.0f) return; m_X/=len; m_Y/=len; } void negate(){ m_X = -m_X; m_Y = -m_Y; } void scale(double s){ double len = length(); if(len==0.0f) return; m_X *= s/len; m_Y *= s/len; } double dot(FitVector &v){ return ((m_X*v.m_X)+(m_Y*v.m_Y)); } double length(){ return (double) sqrt(m_X*m_X+m_Y*m_Y); } KoPoint operator+(KoPoint &p){ KoPoint b(p.x()+m_X,p.y()+m_Y); return b; } public: double m_X,m_Y; }; double distance(KoPoint *p1,KoPoint *p2){ double dx = (p1->x()-p2->x()); double dy = (p1->y()-p2->y()); return sqrt( dx*dx + dy*dy ); } FitVector ComputeLeftTangent(QPtrList &points,int end){ FitVector tHat1(*points.at(end+1),*points.at(end)); tHat1.normalize(); return tHat1; } FitVector ComputeRightTangent(QPtrList &points,int end){ FitVector tHat1(*points.at(end-1),*points.at(end)); tHat1.normalize(); return tHat1; } /* * ChordLengthParameterize : * Assign parameter values to digitized points * using relative distances between points. */ static double *ChordLengthParameterize(QPtrList points,int first,int last) { int i; double *u; /* Parameterization */ u = new double[(last-first+1)]; u[0] = 0.0; for (i = first+1; i <= last; i++) { u[i-first] = u[i-first-1] + distance(points.at(i), points.at(i-1)); } for (i = first + 1; i <= last; i++) { u[i-first] = u[i-first] / u[last-first]; } return(u); } static FitVector VectorAdd(FitVector a,FitVector b) { FitVector c; c.m_X = a.m_X + b.m_X; c.m_Y = a.m_Y + b.m_Y; return (c); } static FitVector VectorScale(FitVector v,double s) { FitVector result; result.m_X = v.m_X * s; result.m_Y = v.m_Y * s; return (result); } static FitVector VectorSub(FitVector a,FitVector b) { FitVector c; c.m_X = a.m_X - b.m_X; c.m_Y = a.m_Y - b.m_Y; return (c); } static FitVector ComputeCenterTangent(QPtrList points,int center) { FitVector V1, V2, tHatCenter; FitVector cpointb = *points.at(center-1); FitVector cpoint = *points.at(center); FitVector cpointa = *points.at(center+1); V1 = VectorSub(cpointb,cpoint); V2 = VectorSub(cpoint,cpointa); tHatCenter.m_X= ((V1.m_X + V2.m_X)/2.0); tHatCenter.m_Y= ((V1.m_Y + V2.m_Y)/2.0); tHatCenter.normalize(); return tHatCenter; } /* * B0, B1, B2, B3 : * Bezier multipliers */ static double B0(double u) { double tmp = 1.0 - u; return (tmp * tmp * tmp); } static double B1(double u) { double tmp = 1.0 - u; return (3 * u * (tmp * tmp)); } static double B2(double u) { double tmp = 1.0 - u; return (3 * u * u * tmp); } static double B3(double u) { return (u * u * u); } /* * GenerateBezier : * Use least-squares method to find Bezier control points for region. * */ KoPoint* GenerateBezier(QPtrList &points, int first, int last, double *uPrime,FitVector tHat1,FitVector tHat2) { int i; FitVector A[MAXPOINTS][2]; /* Precomputed rhs for eqn */ int nPts; /* Number of pts in sub-curve */ double C[2][2]; /* Matrix C */ double X[2]; /* Matrix X */ double det_C0_C1, /* Determinants of matrices */ det_C0_X, det_X_C1; double alpha_l, /* Alpha values, left and right */ alpha_r; FitVector tmp; /* Utility variable */ KoPoint *curve; curve = new KoPoint[4]; nPts = last - first + 1; /* Compute the A's */ for (i = 0; i < nPts; i++) { FitVector v1, v2; v1 = tHat1; v2 = tHat2; v1.scale(B1(uPrime[i])); v2.scale(B2(uPrime[i])); A[i][0] = v1; A[i][1] = v2; } /* Create the C and X matrices */ C[0][0] = 0.0; C[0][1] = 0.0; C[1][0] = 0.0; C[1][1] = 0.0; X[0] = 0.0; X[1] = 0.0; for (i = 0; i < nPts; i++) { C[0][0] += (A[i][0]).dot(A[i][0]); C[0][1] += A[i][0].dot(A[i][1]); /* C[1][0] += V2Dot(&A[i][0], &A[i][1]);*/ C[1][0] = C[0][1]; C[1][1] += A[i][1].dot(A[i][1]); FitVector vfirstp1(*points.at(first+i)); FitVector vfirst(*points.at(first)); FitVector vlast(*points.at(last)); tmp = VectorSub(vfirstp1, VectorAdd( VectorScale(vfirst, B0(uPrime[i])), VectorAdd( VectorScale(vfirst, B1(uPrime[i])), VectorAdd( VectorScale(vlast, B2(uPrime[i])), VectorScale(vlast, B3(uPrime[i])) )))); X[0] += A[i][0].dot(tmp); X[1] += A[i][1].dot(tmp); } /* Compute the determinants of C and X */ det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1]; det_C0_X = C[0][0] * X[1] - C[0][1] * X[0]; det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]; /* Finally, derive alpha values */ if (det_C0_C1 == 0.0) { det_C0_C1 = (C[0][0] * C[1][1]) * 10e-12; } alpha_l = det_X_C1 / det_C0_C1; alpha_r = det_C0_X / det_C0_C1; /* If alpha negative, use the Wu/Barsky heuristic (see text) */ /* (if alpha is 0, you get coincident control points that lead to * divide by zero in any subsequent NewtonRaphsonRootFind() call. */ if (alpha_l < 1.0e-6 || alpha_r < 1.0e-6) { double dist = distance(points.at(last),points.at(first)) / 3.0; curve[0] = *points.at(first); curve[3] = *points.at(last); tHat1.scale(dist); tHat2.scale(dist); curve[1] = tHat1 + curve[0]; curve[2] = tHat2 + curve[3]; return curve; } /* First and last control points of the Bezier curve are */ /* positioned exactly at the first and last data points */ /* Control points 1 and 2 are positioned an alpha distance out */ /* on the tangent vectors, left and right, respectively */ curve[0] = *points.at(first); curve[3] = *points.at(last); tHat1.scale(alpha_l); tHat2.scale(alpha_r); curve[1] = tHat1 + curve[0]; curve[2] = tHat2 + curve[3]; return (curve); } /* * Bezier : * Evaluate a Bezier curve at a particular parameter value * */ static KoPoint BezierII(int degree,KoPoint *V, double t) { int i, j; KoPoint Q; /* Point on curve at parameter t */ KoPoint *Vtemp; /* Local copy of control points */ Vtemp = new KoPoint[degree+1]; for (i = 0; i <= degree; i++) { Vtemp[i] = V[i]; } /* Triangle computation */ for (i = 1; i <= degree; i++) { for (j = 0; j <= degree-i; j++) { Vtemp[j].setX((1.0 - t) * Vtemp[j].x() + t * Vtemp[j+1].x()); Vtemp[j].setY((1.0 - t) * Vtemp[j].y() + t * Vtemp[j+1].y()); } } Q = Vtemp[0]; delete[] Vtemp; return Q; } /* * ComputeMaxError : * Find the maximum squared distance of digitized points * to fitted curve. */ static double ComputeMaxError(QPtrList points,int first,int last,KoPoint *curve,double *u,int *splitPoint) { int i; double maxDist; /* Maximum error */ double dist; /* Current error */ KoPoint P; /* Point on curve */ FitVector v; /* Vector from point to curve */ *splitPoint = (last - first + 1)/2; maxDist = 0.0; for (i = first + 1; i < last; i++) { P = BezierII(3, curve, u[i-first]); v = VectorSub(P, *points.at(i)); dist = v.length(); if (dist >= maxDist) { maxDist = dist; *splitPoint = i; } } return (maxDist); } /* * NewtonRaphsonRootFind : * Use Newton-Raphson iteration to find better root. */ static double NewtonRaphsonRootFind(KoPoint *Q,KoPoint P,double u) { double numerator, denominator; KoPoint Q1[3], Q2[2]; /* Q' and Q'' */ KoPoint Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q'' */ double uPrime; /* Improved u */ int i; /* Compute Q(u) */ Q_u = BezierII(3,Q, u); /* Generate control vertices for Q' */ for (i = 0; i <= 2; i++) { Q1[i].setX((Q[i+1].x() - Q[i].x()) * 3.0); Q1[i].setY((Q[i+1].y() - Q[i].y()) * 3.0); } /* Generate control vertices for Q'' */ for (i = 0; i <= 1; i++) { Q2[i].setX((Q1[i+1].x() - Q1[i].x()) * 2.0); Q2[i].setY((Q1[i+1].y() - Q1[i].y()) * 2.0); } /* Compute Q'(u) and Q''(u) */ Q1_u = BezierII(2, Q1, u); Q2_u = BezierII(1, Q2, u); /* Compute f(u)/f'(u) */ numerator = (Q_u.x() - P.x()) * (Q1_u.x()) + (Q_u.y() - P.y()) * (Q1_u.y()); denominator = (Q1_u.x()) * (Q1_u.x()) + (Q1_u.y()) * (Q1_u.y()) + (Q_u.x() - P.x()) * (Q2_u.x()) + (Q_u.y() - P.y()) * (Q2_u.y()); /* u = u - f(u)/f'(u) */ uPrime = u - (numerator/denominator); return (uPrime); } /* * Reparameterize: * Given set of points and their parameterization, try to find * a better parameterization. * */ static double *Reparameterize(QPtrList points,int first,int last,double *u,KoPoint *curve) { int nPts = last-first+1; int i; double *uPrime; /* New parameter values */ uPrime = new double[nPts]; for (i = first; i <= last; i++) { uPrime[i-first] = NewtonRaphsonRootFind(curve, *points.at(i), u[i- first]); } return (uPrime); } KoPoint *FitCubic(QPtrList &points,int first,int last,FitVector tHat1,FitVector tHat2,float error,int &width){ double *u; double *uPrime; double maxError; int splitPoint; int nPts; double iterationError; int maxIterations=4; FitVector tHatCenter; KoPoint *curve; int i; width=0; iterationError=error*error; nPts = last-first+1; if(nPts == 2){ double dist = distance(points.at(last), points.at(first)) / 3.0; curve = new KoPoint[4]; curve[0] = *points.at(first); curve[3] = *points.at(last); tHat1.scale(dist); tHat2.scale(dist); curve[1] = tHat1 + curve[0]; curve[2] = tHat2 + curve[3]; width=4; return curve; } /* Parameterize points, and attempt to fit curve */ u = ChordLengthParameterize(points, first, last); curve = GenerateBezier(points, first, last, u, tHat1, tHat2); /* Find max deviation of points to fitted curve */ maxError = ComputeMaxError(points, first, last, curve, u, &splitPoint); if (maxError < error) { delete[] u; width=4; return curve; } /* If error not too large, try some reparameterization */ /* and iteration */ if (maxError < iterationError) { for (i = 0; i < maxIterations; i++) { uPrime = Reparameterize(points, first, last, u, curve); curve = GenerateBezier(points, first, last, uPrime, tHat1, tHat2); maxError = ComputeMaxError(points, first, last, curve, uPrime, &splitPoint); if (maxError < error) { delete[] u; width=4; return curve; } delete[] u; u = uPrime; } } /* Fitting failed -- split at max error point and fit recursively */ delete[] u; delete[] curve; tHatCenter = ComputeCenterTangent(points, splitPoint); int w1,w2; KoPoint *cu1=NULL, *cu2=NULL; cu1 = FitCubic(points, first, splitPoint, tHat1, tHatCenter, error,w1); tHatCenter.negate(); cu2 = FitCubic(points, splitPoint, last, tHatCenter, tHat2, error,w2); KoPoint *newcurve = new KoPoint[w1+w2]; for(int i=0;i &points,float error){ FitVector tHat1, tHat2; tHat1 = ComputeLeftTangent(points,0); tHat2 = ComputeRightTangent(points,points.count()-1); int width=0; KoPoint *curve; curve = FitCubic(points,0,points.count()-1,tHat1,tHat2,error,width); VPath *path = new VPath(NULL); if(width>3){ path->moveTo(curve[0]); path->curveTo(curve[1],curve[2],curve[3]); for(int i=4;icurveTo(curve[i+1],curve[i+2],curve[i+3]); } } delete[] curve; return path; }