/* * Copyright (c) 2005 Boudewijn Rempt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include LCMS_HEADER #include #include #include #include "kis_abstract_colorspace.h" #include "kis_u16_base_colorspace.h" #include "kis_xyz_colorspace.h" #include "kis_integer_maths.h" #define downscale(quantum) (quantum) //((unsigned char) ((quantum)/257UL)) #define upscale(value) (value) // ((TQ_UINT8) (257UL*(value))) // XXX: Maybe use TYPE_XYZ_DBL for an extra stimulating performance hit? People shouldn't depend // on this fallback... KisXyzColorSpace::KisXyzColorSpace(KisColorSpaceFactoryRegistry * parent, KisProfile *p) : KisU16BaseColorSpace(KisID("XYZA", i18n("XYZ/Alpha")), (COLORSPACE_SH(PT_XYZ)|CHANNELS_SH(3)|BYTES_SH(2)|EXTRA_SH(1)), icSigCmykData, parent, p) { m_channels.push_back(new KisChannelInfo(i18n("X"), i18n("X"), 0, KisChannelInfo::COLOR, KisChannelInfo::UINT8)); m_channels.push_back(new KisChannelInfo(i18n("Y"), i18n("Y"), 1, KisChannelInfo::COLOR, KisChannelInfo::UINT8)); m_channels.push_back(new KisChannelInfo(i18n("Z"), i18n("Z"), 2, KisChannelInfo::COLOR, KisChannelInfo::UINT8)); m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), 4, KisChannelInfo::ALPHA, KisChannelInfo::UINT8)); m_alphaPos = PIXEL_ALPHA * sizeof(TQ_UINT16); init(); } KisXyzColorSpace::~KisXyzColorSpace() { } TQValueVector KisXyzColorSpace::channels() const { return m_channels; } TQ_UINT32 KisXyzColorSpace::nChannels() const { return xyz::MAX_CHANNEL_XYZA; } TQ_UINT32 KisXyzColorSpace::nColorChannels() const { return xyz::MAX_CHANNEL_XYZ; } TQ_UINT32 KisXyzColorSpace::pixelSize() const { return xyz::MAX_CHANNEL_XYZA * sizeof(TQ_UINT16); } KisColorAdjustment * KisXyzColorSpace::createBrightnessContrastAdjustment(TQ_UINT16 *transferValues) { return 0; } void KisXyzColorSpace::applyAdjustment(const TQ_UINT8 *src, TQ_UINT8 *dst, KisColorAdjustment *, TQ_INT32 nPixels) { } void KisXyzColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels) { TQ_INT32 pSize = pixelSize(); while (nPixels--) { TQ_UINT16 * p = reinterpret_cast(src); p[PIXEL_X] = UINT16_MAX - p[PIXEL_X]; p[PIXEL_Y] = UINT16_MAX - p[PIXEL_Y]; p[PIXEL_Z] = UINT16_MAX - p[PIXEL_Z]; src += pSize; } } void KisXyzColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const { } void KisXyzColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst, TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nPixels) const { } void KisXyzColorSpace::darken(const TQ_UINT8 * src, TQ_UINT8 * dst, TQ_INT32 shade, bool compensate, double compensation, TQ_INT32 nPixels) const { } TQ_UINT8 KisXyzColorSpace::intensity8(const TQ_UINT8 * src) const { return 0; } void KisXyzColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { while (rows > 0) { const TQ_UINT16 *src = reinterpret_cast(srcRowStart); TQ_UINT16 *dst = reinterpret_cast(dstRowStart); const TQ_UINT8 *mask = maskRowStart; TQ_INT32 columns = numColumns; while (columns > 0) { TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; // apply the alphamask if (mask != 0) { TQ_UINT8 U8_mask = *mask; if (U8_mask != OPACITY_OPAQUE) { srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); } mask++; } if (srcAlpha != U16_OPACITY_TRANSPARENT) { if (opacity != U16_OPACITY_OPAQUE) { srcAlpha = UINT16_MULT(srcAlpha, opacity); } if (srcAlpha == U16_OPACITY_OPAQUE) { memcpy(dst, src, xyz::MAX_CHANNEL_XYZA * sizeof(TQ_UINT16)); } else { TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; TQ_UINT16 srcBlend; if (dstAlpha == U16_OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } if (srcBlend == U16_OPACITY_OPAQUE) { memcpy(dst, src, xyz::MAX_CHANNEL_XYZ * sizeof(TQ_UINT16)); } else { dst[PIXEL_X] = UINT16_BLEND(src[PIXEL_X], dst[PIXEL_X], srcBlend); dst[PIXEL_Y] = UINT16_BLEND(src[PIXEL_Y], dst[PIXEL_Y], srcBlend); dst[PIXEL_Z] = UINT16_BLEND(src[PIXEL_Z], dst[PIXEL_Z], srcBlend); } } } columns--; src += xyz::MAX_CHANNEL_XYZA; dst += xyz::MAX_CHANNEL_XYZA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) { maskRowStart += maskRowStride; } } } #define COMMON_COMPOSITE_OP_PROLOG() \ while (rows > 0) { \ \ const TQ_UINT16 *src = reinterpret_cast(srcRowStart); \ TQ_UINT16 *dst = reinterpret_cast(dstRowStart); \ TQ_INT32 columns = numColumns; \ const TQ_UINT8 *mask = maskRowStart; \ \ while (columns > 0) { \ \ TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; \ TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; \ \ srcAlpha = TQMIN(srcAlpha, dstAlpha); \ \ if (mask != 0) { \ TQ_UINT8 U8_mask = *mask; \ \ if (U8_mask != OPACITY_OPAQUE) { \ srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); \ } \ mask++; \ } \ \ if (srcAlpha != U16_OPACITY_TRANSPARENT) { \ \ if (opacity != U16_OPACITY_OPAQUE) { \ srcAlpha = UINT16_MULT(srcAlpha, opacity); \ } \ \ TQ_UINT16 srcBlend; \ \ if (dstAlpha == U16_OPACITY_OPAQUE) { \ srcBlend = srcAlpha; \ } else { \ TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); \ dst[PIXEL_ALPHA] = newAlpha; \ \ if (newAlpha != 0) { \ srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); \ } else { \ srcBlend = srcAlpha; \ } \ } #define COMMON_COMPOSITE_OP_EPILOG() \ } \ \ columns--; \ src += xyz::MAX_CHANNEL_XYZA; \ dst += xyz::MAX_CHANNEL_XYZA; \ } \ \ rows--; \ srcRowStart += srcRowStride; \ dstRowStart += dstRowStride; \ if(maskRowStart) { \ maskRowStart += maskRowStride; \ } \ } void KisXyzColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MULT(srcColor, dstColor); dst[channel] = UINT16_BLEND(srcColor, dstColor, srcBlend); } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT16_MAX + 1u) + (srcColor / 2u)) / (1u + srcColor), UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MAX - UINT16_MULT(UINT16_MAX - dstColor, UINT16_MAX - srcColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MULT(dstColor, dstColor + 2u * UINT16_MULT(srcColor, UINT16_MAX - dstColor)); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT16_MAX + 1u)) / (UINT16_MAX + 1u - srcColor), UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN(((UINT16_MAX - dstColor) * (UINT16_MAX + 1u)) / (srcColor + 1u), UINT16_MAX); srcColor = CLAMP(UINT16_MAX - srcColor, 0u, UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN(srcColor, dstColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMAX(srcColor, dstColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisXyzColorSpace::compositeErase(TQ_UINT8 *dst, TQ_INT32 dstRowSize, const TQ_UINT8 *src, TQ_INT32 srcRowSize, const TQ_UINT8 *srcAlphaMask, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 cols, TQ_UINT16 /*opacity*/) { while (rows-- > 0) { const Pixel *s = reinterpret_cast(src); Pixel *d = reinterpret_cast(dst); const TQ_UINT8 *mask = srcAlphaMask; for (TQ_INT32 i = cols; i > 0; i--, s++, d++) { TQ_UINT16 srcAlpha = s -> alpha; // apply the alphamask if (mask != 0) { TQ_UINT8 U8_mask = *mask; if (U8_mask != OPACITY_OPAQUE) { srcAlpha = UINT16_BLEND(srcAlpha, U16_OPACITY_OPAQUE, UINT8_TO_UINT16(U8_mask)); } mask++; } d -> alpha = UINT16_MULT(srcAlpha, d -> alpha); } dst += dstRowSize; src += srcRowSize; if(srcAlphaMask) { srcAlphaMask += maskRowStride; } } } void KisXyzColorSpace::bitBlt(TQ_UINT8 *dst, TQ_INT32 dstRowStride, const TQ_UINT8 *src, TQ_INT32 srcRowStride, const TQ_UINT8 *mask, TQ_INT32 maskRowStride, TQ_UINT8 U8_opacity, TQ_INT32 rows, TQ_INT32 cols, const KisCompositeOp& op) { TQ_UINT16 opacity = UINT8_TO_UINT16(U8_opacity); switch (op.op()) { case COMPOSITE_UNDEF: // Undefined == no composition break; case COMPOSITE_OVER: compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_IN: //compositeIn(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); case COMPOSITE_OUT: //compositeOut(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_ATOP: //compositeAtop(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_XOR: //compositeXor(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_PLUS: //compositePlus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_MINUS: //compositeMinus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_ADD: //compositeAdd(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_SUBTRACT: //compositeSubtract(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DIFF: //compositeDiff(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_MULT: compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DIVIDE: compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_BUMPMAP: //compositeBumpmap(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY: compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, U8_opacity); break; case COMPOSITE_COPY_RED: //compositeCopyRed(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_GREEN: //compositeCopyGreen(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_BLUE: //compositeCopyBlue(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_OPACITY: //compositeCopyOpacity(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_CLEAR: //compositeClear(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DISSOLVE: //compositeDissolve(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DISPLACE: //compositeDisplace(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; #if 0 case COMPOSITE_MODULATE: compositeModulate(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_THRESHOLD: compositeThreshold(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; #endif case COMPOSITE_NO: // No composition. break; case COMPOSITE_DARKEN: compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_LIGHTEN: compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_HUE: //compositeHue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_SATURATION: //compositeSaturation(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_VALUE: //compositeValue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_COLOR: //compositeColor(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_COLORIZE: //compositeColorize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_LUMINIZE: //compositeLuminize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_SCREEN: compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_OVERLAY: compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_ERASE: compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DODGE: compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_BURN: compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_ALPHA_DARKEN: abstractCompositeAlphaDarken( dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity, U16Mult(), Uint8ToU16(), U16OpacityTest()); break; default: break; } } KisCompositeOpList KisXyzColorSpace::userVisiblecompositeOps() const { KisCompositeOpList list; list.append(KisCompositeOp(COMPOSITE_OVER)); list.append(KisCompositeOp(COMPOSITE_ALPHA_DARKEN)); list.append(KisCompositeOp(COMPOSITE_MULT)); list.append(KisCompositeOp(COMPOSITE_BURN)); list.append(KisCompositeOp(COMPOSITE_DODGE)); list.append(KisCompositeOp(COMPOSITE_DIVIDE)); list.append(KisCompositeOp(COMPOSITE_SCREEN)); list.append(KisCompositeOp(COMPOSITE_OVERLAY)); list.append(KisCompositeOp(COMPOSITE_DARKEN)); list.append(KisCompositeOp(COMPOSITE_LIGHTEN)); return list; }