You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/chalk/chalkcolor/colorspaces/kis_xyz_colorspace.cpp

625 lines
22 KiB

/*
* Copyright (c) 2005 Boudewijn Rempt <boud@valdyas.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <limits.h>
#include <stdlib.h>
#include <config.h>
#include LCMS_HEADER
#include <tqimage.h>
#include <tdelocale.h>
#include <kdebug.h>
#include "kis_abstract_colorspace.h"
#include "kis_u16_base_colorspace.h"
#include "kis_xyz_colorspace.h"
#include "kis_integer_maths.h"
#define downscale(quantum) (quantum) //((unsigned char) ((quantum)/257UL))
#define upscale(value) (value) // ((TQ_UINT8) (257UL*(value)))
// XXX: Maybe use TYPE_XYZ_DBL for an extra stimulating performance hit? People shouldn't depend
// on this fallback...
KisXyzColorSpace::KisXyzColorSpace(KisColorSpaceFactoryRegistry * parent,
KisProfile *p) :
KisU16BaseColorSpace(KisID("XYZA", i18n("XYZ/Alpha")), (COLORSPACE_SH(PT_XYZ)|CHANNELS_SH(3)|BYTES_SH(2)|EXTRA_SH(1)), icSigCmykData, parent, p)
{
m_channels.push_back(new KisChannelInfo(i18n("X"), i18n("X"), 0, KisChannelInfo::COLOR, KisChannelInfo::UINT8));
m_channels.push_back(new KisChannelInfo(i18n("Y"), i18n("Y"), 1, KisChannelInfo::COLOR, KisChannelInfo::UINT8));
m_channels.push_back(new KisChannelInfo(i18n("Z"), i18n("Z"), 2, KisChannelInfo::COLOR, KisChannelInfo::UINT8));
m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), 4, KisChannelInfo::ALPHA, KisChannelInfo::UINT8));
m_alphaPos = PIXEL_ALPHA * sizeof(TQ_UINT16);
init();
}
KisXyzColorSpace::~KisXyzColorSpace()
{
}
TQValueVector<KisChannelInfo *> KisXyzColorSpace::channels() const
{
return m_channels;
}
TQ_UINT32 KisXyzColorSpace::nChannels() const
{
return xyz::MAX_CHANNEL_XYZA;
}
TQ_UINT32 KisXyzColorSpace::nColorChannels() const
{
return xyz::MAX_CHANNEL_XYZ;
}
TQ_UINT32 KisXyzColorSpace::pixelSize() const
{
return xyz::MAX_CHANNEL_XYZA * sizeof(TQ_UINT16);
}
KisColorAdjustment * KisXyzColorSpace::createBrightnessContrastAdjustment(TQ_UINT16 *transferValues)
{
return 0;
}
void KisXyzColorSpace::applyAdjustment(const TQ_UINT8 *src, TQ_UINT8 *dst, KisColorAdjustment *, TQ_INT32 nPixels)
{
}
void KisXyzColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels)
{
TQ_INT32 pSize = pixelSize();
while (nPixels--)
{
TQ_UINT16 * p = reinterpret_cast<TQ_UINT16 *>(src);
p[PIXEL_X] = UINT16_MAX - p[PIXEL_X];
p[PIXEL_Y] = UINT16_MAX - p[PIXEL_Y];
p[PIXEL_Z] = UINT16_MAX - p[PIXEL_Z];
src += pSize;
}
}
void KisXyzColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const
{
}
void KisXyzColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst, TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nPixels) const
{
}
void KisXyzColorSpace::darken(const TQ_UINT8 * src, TQ_UINT8 * dst, TQ_INT32 shade, bool compensate, double compensation, TQ_INT32 nPixels) const
{
}
TQ_UINT8 KisXyzColorSpace::intensity8(const TQ_UINT8 * src) const
{
return 0;
}
void KisXyzColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
while (rows > 0) {
const TQ_UINT16 *src = reinterpret_cast<const TQ_UINT16 *>(srcRowStart);
TQ_UINT16 *dst = reinterpret_cast<TQ_UINT16 *>(dstRowStart);
const TQ_UINT8 *mask = maskRowStart;
TQ_INT32 columns = numColumns;
while (columns > 0) {
TQ_UINT16 srcAlpha = src[PIXEL_ALPHA];
// apply the alphamask
if (mask != 0) {
TQ_UINT8 U8_mask = *mask;
if (U8_mask != OPACITY_OPAQUE) {
srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask));
}
mask++;
}
if (srcAlpha != U16_OPACITY_TRANSPARENT) {
if (opacity != U16_OPACITY_OPAQUE) {
srcAlpha = UINT16_MULT(srcAlpha, opacity);
}
if (srcAlpha == U16_OPACITY_OPAQUE) {
memcpy(dst, src, xyz::MAX_CHANNEL_XYZA * sizeof(TQ_UINT16));
} else {
TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA];
TQ_UINT16 srcBlend;
if (dstAlpha == U16_OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
if (srcBlend == U16_OPACITY_OPAQUE) {
memcpy(dst, src, xyz::MAX_CHANNEL_XYZ * sizeof(TQ_UINT16));
} else {
dst[PIXEL_X] = UINT16_BLEND(src[PIXEL_X], dst[PIXEL_X], srcBlend);
dst[PIXEL_Y] = UINT16_BLEND(src[PIXEL_Y], dst[PIXEL_Y], srcBlend);
dst[PIXEL_Z] = UINT16_BLEND(src[PIXEL_Z], dst[PIXEL_Z], srcBlend);
}
}
}
columns--;
src += xyz::MAX_CHANNEL_XYZA;
dst += xyz::MAX_CHANNEL_XYZA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart) {
maskRowStart += maskRowStride;
}
}
}
#define COMMON_COMPOSITE_OP_PROLOG() \
while (rows > 0) { \
\
const TQ_UINT16 *src = reinterpret_cast<const TQ_UINT16 *>(srcRowStart); \
TQ_UINT16 *dst = reinterpret_cast<TQ_UINT16 *>(dstRowStart); \
TQ_INT32 columns = numColumns; \
const TQ_UINT8 *mask = maskRowStart; \
\
while (columns > 0) { \
\
TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; \
TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; \
\
srcAlpha = TQMIN(srcAlpha, dstAlpha); \
\
if (mask != 0) { \
TQ_UINT8 U8_mask = *mask; \
\
if (U8_mask != OPACITY_OPAQUE) { \
srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); \
} \
mask++; \
} \
\
if (srcAlpha != U16_OPACITY_TRANSPARENT) { \
\
if (opacity != U16_OPACITY_OPAQUE) { \
srcAlpha = UINT16_MULT(srcAlpha, opacity); \
} \
\
TQ_UINT16 srcBlend; \
\
if (dstAlpha == U16_OPACITY_OPAQUE) { \
srcBlend = srcAlpha; \
} else { \
TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); \
dst[PIXEL_ALPHA] = newAlpha; \
\
if (newAlpha != 0) { \
srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); \
} else { \
srcBlend = srcAlpha; \
} \
}
#define COMMON_COMPOSITE_OP_EPILOG() \
} \
\
columns--; \
src += xyz::MAX_CHANNEL_XYZA; \
dst += xyz::MAX_CHANNEL_XYZA; \
} \
\
rows--; \
srcRowStart += srcRowStride; \
dstRowStart += dstRowStride; \
if(maskRowStart) { \
maskRowStart += maskRowStride; \
} \
}
void KisXyzColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MULT(srcColor, dstColor);
dst[channel] = UINT16_BLEND(srcColor, dstColor, srcBlend);
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT16_MAX + 1u) + (srcColor / 2u)) / (1u + srcColor), UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MAX - UINT16_MULT(UINT16_MAX - dstColor, UINT16_MAX - srcColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MULT(dstColor, dstColor + 2u * UINT16_MULT(srcColor, UINT16_MAX - dstColor));
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT16_MAX + 1u)) / (UINT16_MAX + 1u - srcColor), UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN(((UINT16_MAX - dstColor) * (UINT16_MAX + 1u)) / (srcColor + 1u), UINT16_MAX);
srcColor = CLAMP(UINT16_MAX - srcColor, 0u, UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN(srcColor, dstColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < xyz::MAX_CHANNEL_XYZ; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMAX(srcColor, dstColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisXyzColorSpace::compositeErase(TQ_UINT8 *dst,
TQ_INT32 dstRowSize,
const TQ_UINT8 *src,
TQ_INT32 srcRowSize,
const TQ_UINT8 *srcAlphaMask,
TQ_INT32 maskRowStride,
TQ_INT32 rows,
TQ_INT32 cols,
TQ_UINT16 /*opacity*/)
{
while (rows-- > 0)
{
const Pixel *s = reinterpret_cast<const Pixel *>(src);
Pixel *d = reinterpret_cast<Pixel *>(dst);
const TQ_UINT8 *mask = srcAlphaMask;
for (TQ_INT32 i = cols; i > 0; i--, s++, d++)
{
TQ_UINT16 srcAlpha = s -> alpha;
// apply the alphamask
if (mask != 0) {
TQ_UINT8 U8_mask = *mask;
if (U8_mask != OPACITY_OPAQUE) {
srcAlpha = UINT16_BLEND(srcAlpha, U16_OPACITY_OPAQUE, UINT8_TO_UINT16(U8_mask));
}
mask++;
}
d -> alpha = UINT16_MULT(srcAlpha, d -> alpha);
}
dst += dstRowSize;
src += srcRowSize;
if(srcAlphaMask) {
srcAlphaMask += maskRowStride;
}
}
}
void KisXyzColorSpace::bitBlt(TQ_UINT8 *dst,
TQ_INT32 dstRowStride,
const TQ_UINT8 *src,
TQ_INT32 srcRowStride,
const TQ_UINT8 *mask,
TQ_INT32 maskRowStride,
TQ_UINT8 U8_opacity,
TQ_INT32 rows,
TQ_INT32 cols,
const KisCompositeOp& op)
{
TQ_UINT16 opacity = UINT8_TO_UINT16(U8_opacity);
switch (op.op()) {
case COMPOSITE_UNDEF:
// Undefined == no composition
break;
case COMPOSITE_OVER:
compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_IN:
//compositeIn(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
case COMPOSITE_OUT:
//compositeOut(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_ATOP:
//compositeAtop(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_XOR:
//compositeXor(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_PLUS:
//compositePlus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_MINUS:
//compositeMinus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_ADD:
//compositeAdd(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_SUBTRACT:
//compositeSubtract(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DIFF:
//compositeDiff(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_MULT:
compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DIVIDE:
compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_BUMPMAP:
//compositeBumpmap(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY:
compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, U8_opacity);
break;
case COMPOSITE_COPY_RED:
//compositeCopyRed(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_GREEN:
//compositeCopyGreen(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_BLUE:
//compositeCopyBlue(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_OPACITY:
//compositeCopyOpacity(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_CLEAR:
//compositeClear(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DISSOLVE:
//compositeDissolve(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DISPLACE:
//compositeDisplace(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
#if 0
case COMPOSITE_MODULATE:
compositeModulate(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_THRESHOLD:
compositeThreshold(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
#endif
case COMPOSITE_NO:
// No composition.
break;
case COMPOSITE_DARKEN:
compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_LIGHTEN:
compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_HUE:
//compositeHue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_SATURATION:
//compositeSaturation(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_VALUE:
//compositeValue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_COLOR:
//compositeColor(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_COLORIZE:
//compositeColorize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_LUMINIZE:
//compositeLuminize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_SCREEN:
compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_OVERLAY:
compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_ERASE:
compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DODGE:
compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_BURN:
compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_ALPHA_DARKEN:
abstractCompositeAlphaDarken<TQ_UINT16, U16Mult, Uint8ToU16, U16OpacityTest,
PIXEL_ALPHA, xyz::MAX_CHANNEL_XYZ, xyz::MAX_CHANNEL_XYZA>(
dst, dstRowStride, src, srcRowStride, mask, maskRowStride,
rows, cols, opacity, U16Mult(), Uint8ToU16(), U16OpacityTest());
break;
default:
break;
}
}
KisCompositeOpList KisXyzColorSpace::userVisiblecompositeOps() const
{
KisCompositeOpList list;
list.append(KisCompositeOp(COMPOSITE_OVER));
list.append(KisCompositeOp(COMPOSITE_ALPHA_DARKEN));
list.append(KisCompositeOp(COMPOSITE_MULT));
list.append(KisCompositeOp(COMPOSITE_BURN));
list.append(KisCompositeOp(COMPOSITE_DODGE));
list.append(KisCompositeOp(COMPOSITE_DIVIDE));
list.append(KisCompositeOp(COMPOSITE_SCREEN));
list.append(KisCompositeOp(COMPOSITE_OVERLAY));
list.append(KisCompositeOp(COMPOSITE_DARKEN));
list.append(KisCompositeOp(COMPOSITE_LIGHTEN));
return list;
}