/* Libart_LGPL - library of basic graphic primitives * Copyright (C) 1998 Raph Levien * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* Basic constructors and operations for bezier paths */ #include "config.h" #include "art_vpath_bpath.h" #include #include "art_misc.h" #include "art_bpath.h" #include "art_vpath.h" /* p must be allocated 2^level points. */ /* level must be >= 1 */ ArtPoint * art_bezier_to_vec (double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3, ArtPoint *p, int level) { double x_m, y_m; #ifdef VERBOSE printf ("bezier_to_vec: %g,%g %g,%g %g,%g %g,%g %d\n", x0, y0, x1, y1, x2, y2, x3, y3, level); #endif if (level == 1) { x_m = (x0 + 3 * (x1 + x2) + x3) * 0.125; y_m = (y0 + 3 * (y1 + y2) + y3) * 0.125; p->x = x_m; p->y = y_m; p++; p->x = x3; p->y = y3; p++; #ifdef VERBOSE printf ("-> (%g, %g) -> (%g, %g)\n", x_m, y_m, x3, y3); #endif } else { double xa1, ya1; double xa2, ya2; double xb1, yb1; double xb2, yb2; xa1 = (x0 + x1) * 0.5; ya1 = (y0 + y1) * 0.5; xa2 = (x0 + 2 * x1 + x2) * 0.25; ya2 = (y0 + 2 * y1 + y2) * 0.25; xb1 = (x1 + 2 * x2 + x3) * 0.25; yb1 = (y1 + 2 * y2 + y3) * 0.25; xb2 = (x2 + x3) * 0.5; yb2 = (y2 + y3) * 0.5; x_m = (xa2 + xb1) * 0.5; y_m = (ya2 + yb1) * 0.5; #ifdef VERBOSE printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2, xb1, yb1, xb2, yb2); #endif p = art_bezier_to_vec (x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, p, level - 1); p = art_bezier_to_vec (x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, p, level - 1); } return p; } #define RENDER_LEVEL 4 #define RENDER_SIZE (1 << (RENDER_LEVEL)) /** * art_vpath_render_bez: Render a bezier segment into the vpath. * @p_vpath: Where the pointer to the #ArtVpath structure is stored. * @pn_points: Pointer to the number of points in *@p_vpath. * @pn_points_max: Pointer to the number of points allocated. * @x0: X coordinate of starting bezier point. * @y0: Y coordinate of starting bezier point. * @x1: X coordinate of first bezier control point. * @y1: Y coordinate of first bezier control point. * @x2: X coordinate of second bezier control point. * @y2: Y coordinate of second bezier control point. * @x3: X coordinate of ending bezier point. * @y3: Y coordinate of ending bezier point. * @flatness: Flatness control. * * Renders a bezier segment into the vector path, reallocating and * updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is * incremented by the number of vector points added. * * This step includes (@x0, @y0) but not (@x3, @y3). * * The @flatness argument guides the amount of subdivision. The Adobe * PostScript reference manual defines flatness as the maximum * deviation between the any point on the vpath approximation and the * corresponding point on the "true" curve, and we follow this * definition here. A value of 0.25 should ensure high quality for aa * rendering. **/ static void art_vpath_render_bez (ArtVpath **p_vpath, int *pn, int *pn_max, double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3, double flatness) { /* It's possible to optimize this routine a fair amount. First, once the _dot conditions are met, they will also be met in all further subdivisions. So we might recurse to a different routine that only checks the _perp conditions. Second, the distance _should_ decrease according to fairly predictable rules (a factor of 4 with each subdivision). So it might be possible to note that the distance is within a factor of 4 of acceptable, and subdivide once. But proving this might be hard. Third, at the last subdivision, x_m and y_m can be computed more expeditiously (as in the routine above). Finally, if we were able to subdivide by, say 2 or 3, this would allow considerably finer-grain control, i.e. fewer points for the same flatness tolerance. This would speed things up downstream. In any case, this routine is unlikely to be the bottleneck. It's just that I have this undying quest for more speed... */ do { /* don't subdivide inside this */ double x3_0, y3_0; double z3_0_dot; double z1_dot, z2_dot; double z1_perp, z2_perp; double max_perp_sq; x3_0 = x3 - x0; y3_0 = y3 - y0; /* z3_0_dot is dist z0-z3 squared */ z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0; if (z3_0_dot > 0.001) { /* we can avoid subdivision if: z1 has distance no more than flatness from the z0-z3 line z1 is no more z0'ward than flatness past z0-z3 z1 is more z0'ward than z3'ward on the line traversing z0-z3 and correspondingly for z2 */ /* perp is distance from line, multiplied by dist z0-z3 */ max_perp_sq = flatness * flatness * z3_0_dot; z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0; if (z1_perp * z1_perp > max_perp_sq) break; z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0; if (z2_perp * z2_perp > max_perp_sq) break; z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0; if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq) break; if (z1_dot + z1_dot > z3_0_dot) break; z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0; if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq) break; if (z2_dot + z2_dot > z3_0_dot) break; } else { /* if start and end point are almost identical, the flatness tests * don't work properly, so fall back on testing whether both of * the other two control points are the same as the start point, * too. */ if (hypot(x1 - x0, y1 - y0) > 0.001 || hypot(x2 - x0, y2 - y0) > 0.001) break; } art_vpath_add_point (p_vpath, pn, pn_max, ART_LINETO, x3, y3); return; } while (0); double x_m, y_m; double xa1, ya1; double xa2, ya2; double xb1, yb1; double xb2, yb2; xa1 = (x0 + x1) * 0.5; ya1 = (y0 + y1) * 0.5; xa2 = (x0 + 2 * x1 + x2) * 0.25; ya2 = (y0 + 2 * y1 + y2) * 0.25; xb1 = (x1 + 2 * x2 + x3) * 0.25; yb1 = (y1 + 2 * y2 + y3) * 0.25; xb2 = (x2 + x3) * 0.5; yb2 = (y2 + y3) * 0.5; x_m = (xa2 + xb1) * 0.5; y_m = (ya2 + yb1) * 0.5; #ifdef VERBOSE printf ("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2, xb1, yb1, xb2, yb2); #endif art_vpath_render_bez (p_vpath, pn, pn_max, x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness); art_vpath_render_bez (p_vpath, pn, pn_max, x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness); } /** * art_bez_path_to_vec: Create vpath from bezier path. * @bez: Bezier path. * @flatness: Flatness control. * * Creates a vector path closely approximating the bezier path defined by * @bez. The @flatness argument controls the amount of subdivision. In * general, the resulting vpath deviates by at most @flatness pixels * from the "ideal" path described by @bez. * * Return value: Newly allocated vpath. **/ ArtVpath * art_bez_path_to_vec (const ArtBpath *bez, double flatness) { ArtVpath *vec; int vec_n, vec_n_max; int bez_index; double x, y; vec_n = 0; vec_n_max = RENDER_SIZE; vec = art_new (ArtVpath, vec_n_max); /* Initialization is unnecessary because of the precondition that the bezier path does not begin with LINETO or CURVETO, but is here to make the code warning-free. */ x = 0; y = 0; bez_index = 0; do { #ifdef VERBOSE printf ("%s %g %g\n", bez[bez_index].code == ART_CURVETO ? "curveto" : bez[bez_index].code == ART_LINETO ? "lineto" : bez[bez_index].code == ART_MOVETO ? "moveto" : bez[bez_index].code == ART_MOVETO_OPEN ? "moveto-open" : "end", bez[bez_index].x3, bez[bez_index].y3); #endif /* make sure space for at least one more code */ if (vec_n >= vec_n_max) art_expand (vec, ArtVpath, vec_n_max); switch (bez[bez_index].code) { case ART_MOVETO_OPEN: case ART_MOVETO: case ART_LINETO: x = bez[bez_index].x3; y = bez[bez_index].y3; vec[vec_n].code = bez[bez_index].code; vec[vec_n].x = x; vec[vec_n].y = y; vec_n++; break; case ART_END: vec[vec_n].code = bez[bez_index].code; vec[vec_n].x = 0; vec[vec_n].y = 0; vec_n++; break; case ART_CURVETO: #ifdef VERBOSE printf ("%g,%g %g,%g %g,%g %g,%g\n", x, y, bez[bez_index].x1, bez[bez_index].y1, bez[bez_index].x2, bez[bez_index].y2, bez[bez_index].x3, bez[bez_index].y3); #endif art_vpath_render_bez (&vec, &vec_n, &vec_n_max, x, y, bez[bez_index].x1, bez[bez_index].y1, bez[bez_index].x2, bez[bez_index].y2, bez[bez_index].x3, bez[bez_index].y3, flatness); x = bez[bez_index].x3; y = bez[bez_index].y3; break; } } while (bez[bez_index++].code != ART_END); return vec; }