# Process this file with autoconf to produce a configure script.
AC_INIT(LibVNCServer, 0.9.10, https://github.com/LibVNC/libvncserver)
AM_INIT_AUTOMAKE(LibVNCServer, 0.9.10)
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
AM_CONFIG_HEADER(rfbconfig.h)
AX_PREFIX_CONFIG_H([rfb/rfbconfig.h])
# set detailed version info
AC_DEFINE(VERSION_MAJOR, 0, LibVNCServer major version)
AC_DEFINE(VERSION_MINOR, 9, LibVNCServer minor version)
AC_DEFINE(VERSION_PATCHLEVEL, 10, LibVNCServer patchlevel)
# Checks for programs.
AC_PROG_CC
AM_PROG_CC_C_O
if test -z "$CC"; then
CCLD="\$(CC)"
else
CCLD="$CC"
fi
test "x$GCC" = "xyes" && CFLAGS="$CFLAGS -Wall"
AC_PROG_MAKE_SET
AC_LIBTOOL_WIN32_DLL
AC_PROG_LIBTOOL
AC_PATH_PROG([AR], [ar], [/usr/bin/ar],
[$PATH:/usr/ccs/bin])
# Options
AH_TEMPLATE(WITH_TIGHTVNC_FILETRANSFER, [Disable TightVNCFileTransfer protocol])
AC_ARG_WITH(tightvnc-filetransfer,
[ --without-filetransfer disable TightVNC file transfer protocol],
, [ with_tightvnc_filetransfer=yes ])
# AC_DEFINE moved to after libpthread check.
# WebSockets support
AC_CHECK_FUNC(__b64_ntop, HAVE_B64_IN_LIBC="true", HAVE_B64_IN_LIBC="false")
if test "x$HAVE_B64_IN_LIBC" != "xtrue"; then
AC_CHECK_LIB(resolv, __b64_ntop, HAVE_B64_IN_LIBRESOLV="true", HAVE_B64_IN_LIBRESOLV="false")
if test "x$HAVE_B64_IN_LIBRESOLV" = "xtrue"; then
RESOLV_LIB="-lresolv"
HAVE_B64="true"
fi
else
HAVE_B64="true"
fi
AH_TEMPLATE(WITH_WEBSOCKETS, [Disable WebSockets support])
AC_ARG_WITH(websockets,
[ --without-websockets disable WebSockets support],
, [ with_websockets=yes ])
# AC_DEFINE moved to after libresolve check.
AH_TEMPLATE(ALLOW24BPP, [Enable 24 bit per pixel in native framebuffer])
AC_ARG_WITH(24bpp,
[ --without-24bpp disable 24 bpp framebuffers],
, [ with_24bpp=yes ])
if test "x$with_24bpp" = "xyes"; then
AC_DEFINE(ALLOW24BPP)
fi
AH_TEMPLATE(FFMPEG, [Use ffmpeg (for vnc2mpg)])
AC_ARG_WITH(ffmpeg,
[ --with-ffmpeg=dir set ffmpeg home directory],,)
AC_SUBST(with_ffmpeg)
AM_CONDITIONAL(WITH_FFMPEG, test ! -z "$with_ffmpeg")
if test ! -z "$with_ffmpeg"; then
AC_CHECK_LIB(mp3lame, lame_init, HAVE_MP3LAME="true", HAVE_MP3LAME="false" )
fi
AM_CONDITIONAL(HAVE_MP3LAME, test "$HAVE_MP3LAME" = "true")
# Seem to need this dummy here to induce the 'checking for egrep... grep -E', etc.
# before it seemed to be inside the with_jpeg conditional.
AC_CHECK_HEADER(thenonexistentheader.h, HAVE_THENONEXISTENTHEADER_H="true")
# set some ld -R nonsense
#
uname_s=`(uname -s) 2>/dev/null`
ld_minus_R="yes"
if test "x$uname_s" = "xHP-UX"; then
ld_minus_R="no"
elif test "x$uname_s" = "xOSF1"; then
ld_minus_R="no"
elif test "x$uname_s" = "xDarwin"; then
ld_minus_R="no"
fi
# Check for OpenSSL
AH_TEMPLATE(HAVE_LIBCRYPT, [libcrypt library present])
AC_ARG_WITH(crypt,
[ --without-crypt disable support for libcrypt],,)
if test "x$with_crypt" != "xno"; then
AC_CHECK_FUNCS([crypt], HAVE_LIBC_CRYPT="true")
if test -z "$HAVE_LIBC_CRYPT"; then
AC_CHECK_LIB(crypt, crypt,
CRYPT_LIBS="-lcrypt"
[AC_DEFINE(HAVE_LIBCRYPT)], ,)
fi
fi
AC_SUBST(CRYPT_LIBS)
# some OS's need both -lssl and -lcrypto on link line:
AH_TEMPLATE(HAVE_LIBCRYPTO, [openssl libcrypto library present])
AC_ARG_WITH(crypto,
[ --without-crypto disable support for openssl libcrypto],,)
AH_TEMPLATE(HAVE_LIBSSL, [openssl libssl library present])
AC_ARG_WITH(ssl,
[ --without-ssl disable support for openssl libssl]
[ --with-ssl=DIR use openssl include/library files in DIR],,)
if test "x$with_crypto" != "xno" -a "x$with_ssl" != "xno"; then
if test ! -z "$with_ssl" -a "x$with_ssl" != "xyes"; then
saved_CPPFLAGS="$CPPFLAGS"
saved_LDFLAGS="$LDFLAGS"
CPPFLAGS="$CPPFLAGS -I$with_ssl/include"
LDFLAGS="$LDFLAGS -L$with_ssl/lib"
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
LDFLAGS="$LDFLAGS -Xlinker -R$with_ssl/lib"
else
LDFLAGS="$LDFLAGS -R$with_ssl/lib"
fi
fi
AC_CHECK_LIB(crypto, RAND_file_name,
[AC_DEFINE(HAVE_LIBCRYPTO) HAVE_LIBCRYPTO="true"], ,)
if test ! -z "$with_ssl" -a "x$with_ssl" != "xyes"; then
if test "x$HAVE_LIBCRYPTO" != "xtrue"; then
CPPFLAGS="$saved_CPPFLAGS"
LDFLAGS="$saved_LDFLAGS"
fi
fi
fi
AH_TEMPLATE(HAVE_X509_PRINT_EX_FP, [open ssl X509_print_ex_fp available])
if test "x$with_ssl" != "xno"; then
if test "x$HAVE_LIBCRYPTO" = "xtrue"; then
AC_CHECK_LIB(ssl, SSL_library_init,
SSL_LIBS="-lssl -lcrypto"
[AC_DEFINE(HAVE_LIBSSL) HAVE_LIBSSL="true"], ,
-lcrypto)
else
AC_CHECK_LIB(ssl, SSL_library_init,
SSL_LIBS="-lssl"
[AC_DEFINE(HAVE_LIBSSL) HAVE_LIBSSL="true"], ,)
fi
fi
AC_SUBST(SSL_LIBS)
AM_CONDITIONAL(HAVE_LIBSSL, test ! -z "$SSL_LIBS")
# Checks for X libraries
HAVE_X11="false"
AC_PATH_XTRA
AH_TEMPLATE(HAVE_X11, [X11 build environment present])
# See if we want libva support
# TODO: check if library actually exists
AH_TEMPLATE(CONFIG_LIBVA, [Build libva support])
AC_ARG_WITH(libva,
[ --with-libva build libva support],,)
if test "x$with_libva" != "xno"; then
AC_CHECK_LIB(va, vaInitialize,
VA_LIBS="-lva -lva-x11"
[AC_DEFINE(CONFIG_LIBVA) CONFIG_LIBVA="true"], ,)
fi
AC_SUBST(VA_LIBS)
AM_CONDITIONAL(CONFIG_LIBVA, test ! -z "$VA_LIBS")
# See if we are to build x11vnc:
AH_TEMPLATE(HAVE_SYSTEM_LIBVNCSERVER, [Use the system libvncserver build environment for x11vnc.])
AC_ARG_WITH(system-libvncserver,
[ --with-system-libvncserver use installed libvncserver for x11vnc]
[ --with-system-libvncserver=DIR use libvncserver installed in DIR for x11vnc],,)
AC_ARG_WITH(x11vnc,
[ --with-x11vnc configure for building the x11vnc subdir (if present)]
[ you will need to cd to x11vnc and run 'make' etc.],,)
if test ! -z "$with_x11vnc" -a "$with_x11vnc" = "yes"; then
build_x11vnc="yes"
elif test "$PACKAGE_NAME" = "x11vnc"; then
build_x11vnc="yes"
else
build_x11vnc="no"
fi
# x11vnc only:
if test "$build_x11vnc" = "yes"; then
AH_TEMPLATE(HAVE_XSHM, [MIT-SHM extension build environment present])
AH_TEMPLATE(HAVE_XTEST, [XTEST extension build environment present])
AH_TEMPLATE(HAVE_XTESTGRABCONTROL, [XTEST extension has XTestGrabControl])
AH_TEMPLATE(HAVE_XKEYBOARD, [XKEYBOARD extension build environment present])
AH_TEMPLATE(HAVE_LIBXINERAMA, [XINERAMA extension build environment present])
AH_TEMPLATE(HAVE_LIBXRANDR, [XRANDR extension build environment present])
AH_TEMPLATE(HAVE_LIBXFIXES, [XFIXES extension build environment present])
AH_TEMPLATE(HAVE_LIBXDAMAGE, [XDAMAGE extension build environment present])
AH_TEMPLATE(HAVE_LIBXTRAP, [DEC-XTRAP extension build environment present])
AH_TEMPLATE(HAVE_RECORD, [RECORD extension build environment present])
AH_TEMPLATE(HAVE_SOLARIS_XREADSCREEN, [Solaris XReadScreen available])
AH_TEMPLATE(HAVE_IRIX_XREADDISPLAY, [IRIX XReadDisplay available])
AH_TEMPLATE(HAVE_FBPM, [FBPM extension build environment present])
AH_TEMPLATE(HAVE_DPMS, [DPMS extension build environment present])
AH_TEMPLATE(HAVE_LINUX_VIDEODEV_H, [video4linux build environment present])
AH_TEMPLATE(HAVE_LINUX_FB_H, [linux fb device build environment present])
AH_TEMPLATE(HAVE_LINUX_INPUT_H, [linux/input.h present])
AH_TEMPLATE(HAVE_LINUX_UINPUT_H, [linux uinput device build environment present])
AH_TEMPLATE(HAVE_MACOSX_NATIVE_DISPLAY, [build MacOS X native display support])
AH_TEMPLATE(HAVE_MACOSX_OPENGL_H, [MacOS X OpenGL present])
AC_ARG_WITH(xkeyboard,
[ --without-xkeyboard disable xkeyboard extension support],,)
AC_ARG_WITH(xinerama,
[ --without-xinerama disable xinerama extension support],,)
AC_ARG_WITH(xrandr,
[ --without-xrandr disable xrandr extension support],,)
AC_ARG_WITH(xfixes,
[ --without-xfixes disable xfixes extension support],,)
AC_ARG_WITH(xdamage,
[ --without-xdamage disable xdamage extension support],,)
AC_ARG_WITH(xtrap,
[ --without-xtrap disable xtrap extension support],,)
AC_ARG_WITH(xrecord,
[ --without-xrecord disable xrecord extension support],,)
AC_ARG_WITH(fbpm,
[ --without-fbpm disable fbpm extension support],,)
AC_ARG_WITH(dpms,
[ --without-dpms disable dpms extension support],,)
AC_ARG_WITH(v4l,
[ --without-v4l disable video4linux support],,)
AC_ARG_WITH(fbdev,
[ --without-fbdev disable linux fb device support],,)
AC_ARG_WITH(uinput,
[ --without-uinput disable linux uinput device support],,)
AC_ARG_WITH(macosx-native,
[ --without-macosx-native disable MacOS X native display support],,)
fi
# end x11vnc only.
if test "x$with_x" = "xno"; then
HAVE_X11="false"
elif test "$X_CFLAGS" != "-DX_DISPLAY_MISSING"; then
AC_CHECK_LIB(X11, XGetImage, [AC_DEFINE(HAVE_X11) HAVE_X11="true"],
HAVE_X11="false",
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
# x11vnc only:
if test $HAVE_X11 = "true" -a "$build_x11vnc" = "yes"; then
X_PRELIBS="$X_PRELIBS -lXext"
AC_CHECK_LIB(Xext, XShmGetImage,
[AC_DEFINE(HAVE_XSHM)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
AC_CHECK_LIB(Xext, XReadScreen,
[AC_DEFINE(HAVE_SOLARIS_XREADSCREEN)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
AC_CHECK_HEADER(X11/extensions/readdisplay.h,
[AC_DEFINE(HAVE_IRIX_XREADDISPLAY)], ,
[#include <X11/Xlib.h>])
if test "x$with_fbpm" != "xno"; then
AC_CHECK_LIB(Xext, FBPMForceLevel,
[AC_DEFINE(HAVE_FBPM)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
if test "x$with_dpms" != "xno"; then
AC_CHECK_LIB(Xext, DPMSForceLevel,
[AC_DEFINE(HAVE_DPMS)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
AC_CHECK_LIB(Xtst, XTestGrabControl,
X_PRELIBS="-lXtst $X_PRELIBS"
[AC_DEFINE(HAVE_XTESTGRABCONTROL) HAVE_XTESTGRABCONTROL="true"], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
AC_CHECK_LIB(Xtst, XTestFakeKeyEvent,
X_PRELIBS="-lXtst $X_PRELIBS"
[AC_DEFINE(HAVE_XTEST) HAVE_XTEST="true"], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
if test "x$with_xrecord" != "xno"; then
AC_CHECK_LIB(Xtst, XRecordEnableContextAsync,
X_PRELIBS="-lXtst $X_PRELIBS"
[AC_DEFINE(HAVE_RECORD)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
# we use XTRAP on X11R5, or user can set X11VNC_USE_XTRAP
if test "x$with_xtrap" != "xno"; then
if test ! -z "$X11VNC_USE_XTRAP" -o -z "$HAVE_XTESTGRABCONTROL"; then
AC_CHECK_LIB(XTrap, XETrapSetGrabServer,
X_PRELIBS="$X_PRELIBS -lXTrap"
[AC_DEFINE(HAVE_LIBXTRAP)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
# tru64 uses libXETrap.so
AC_CHECK_LIB(XETrap, XETrapSetGrabServer,
X_PRELIBS="$X_PRELIBS -lXETrap"
[AC_DEFINE(HAVE_LIBXTRAP)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
fi
if test "x$with_xkeyboard" != "xno"; then
saved_CPPFLAGS="$CPPFLAGS"
CPPFLAGS="$CPPFLAGS $X_CFLAGS"
AC_CHECK_HEADER(X11/XKBlib.h, HAVE_XKBLIB_H="true",
HAVE_XKBLIB_H="false", [#include <X11/Xlib.h>])
CPPFLAGS="$saved_CPPFLAGS"
if test $HAVE_XKBLIB_H = "true"; then
AC_CHECK_LIB(X11, XkbSelectEvents,
[AC_DEFINE(HAVE_XKEYBOARD)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
fi
if test "x$with_xinerama" != "xno"; then
AC_CHECK_LIB(Xinerama, XineramaQueryScreens,
X_PRELIBS="$X_PRELIBS -lXinerama"
[AC_DEFINE(HAVE_LIBXINERAMA)], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
if test "x$with_xrandr" != "xno"; then
AC_CHECK_LIB(Xrandr, XRRSelectInput,
X_PRELIBS="$X_PRELIBS -lXrandr"
[AC_DEFINE(HAVE_LIBXRANDR) HAVE_LIBXRANDR="true"], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
if test "x$with_xfixes" != "xno"; then
AC_CHECK_LIB(Xfixes, XFixesGetCursorImage,
X_PRELIBS="$X_PRELIBS -lXfixes"
[AC_DEFINE(HAVE_LIBXFIXES) HAVE_LIBXFIXES="true"], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
if test "x$with_xdamage" != "xno"; then
AC_CHECK_LIB(Xdamage, XDamageQueryExtension,
X_PRELIBS="$X_PRELIBS -lXdamage"
[AC_DEFINE(HAVE_LIBXDAMAGE) HAVE_LIBXDAMAGE="true"], ,
$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS)
fi
if test ! -z "$HAVE_LIBXFIXES" -o ! -z "$HAVE_LIBXDAMAGE"; then
# need /usr/sfw/lib in RPATH for Solaris 10 and later
case `(uname -sr) 2>/dev/null` in
"SunOS 5"*) X_EXTRA_LIBS="$X_EXTRA_LIBS -R/usr/sfw/lib" ;;
esac
fi
if test ! -z "$HAVE_LIBXRANDR"; then
# also need /usr/X11/include for Solaris 10 10/08 and later
case `(uname -sr) 2>/dev/null` in
"SunOS 5"*) CPPFLAGS="$CPPFLAGS -I/usr/X11/include" ;;
esac
fi
X_LIBS="$X_LIBS $X_PRELIBS -lX11 $X_EXTRA_LIBS"
fi
# end x11vnc only.
fi
AC_SUBST(X_LIBS)
AM_CONDITIONAL(HAVE_X11, test $HAVE_X11 != "false")
# x11vnc only:
if test "$build_x11vnc" = "yes"; then
if test "x$HAVE_X11" = "xfalse" -a "x$with_x" != "xno"; then
AC_MSG_ERROR([
==========================================================================
*** A working X window system build environment is required to build ***
x11vnc. Make sure any required X development packages are installed.
If they are installed in non-standard locations, one can use the
--x-includes=DIR and --x-libraries=DIR configure options or set the
CPPFLAGS and LDFLAGS environment variables to indicate where the X
window system header files and libraries may be found. On 64+32 bit
machines you may need to point to lib64 or lib32 directories to pick up
the correct word size.
If you want to build x11vnc without X support (e.g. for -rawfb use only
or for native Mac OS X), specify the --without-x configure option.
==========================================================================
])
fi
if test "x$HAVE_X11" = "xtrue" -a "x$HAVE_XTEST" != "xtrue"; then
AC_MSG_WARN([
==========================================================================
*** A working build environment for the XTEST extension was not found ***
(libXtst). An x11vnc built this way will be *ONLY BARELY USABLE*.
You will be able to move the mouse but not click or type. There can
also be deadlocks if an application grabs the X server.
It is recommended that you install the necessary development packages
for XTEST (perhaps it is named something like libxtst-dev) and run
configure again.
==========================================================================
])
sleep 5
fi
if test "x$with_v4l" != "xno"; then
AC_CHECK_HEADER(linux/videodev.h,
[AC_DEFINE(HAVE_LINUX_VIDEODEV_H)],,)
fi
if test "x$with_fbdev" != "xno"; then
AC_CHECK_HEADER(linux/fb.h,
[AC_DEFINE(HAVE_LINUX_FB_H)],,)
fi
if test "x$with_uinput" != "xno"; then
AC_CHECK_HEADER(linux/input.h,
[AC_DEFINE(HAVE_LINUX_INPUT_H) HAVE_LINUX_INPUT_H="true"],,)
if test "x$HAVE_LINUX_INPUT_H" = "xtrue"; then
AC_CHECK_HEADER(linux/uinput.h,
[AC_DEFINE(HAVE_LINUX_UINPUT_H)],, [#include <linux/input.h>])
fi
fi
if test "x$with_macosx_native" != "xno"; then
AC_DEFINE(HAVE_MACOSX_NATIVE_DISPLAY)
fi
# Check for OS X opengl header
AC_CHECK_HEADER(OpenGL/OpenGL.h,
[AC_DEFINE(HAVE_MACOSX_OPENGL_H) HAVE_MACOSX_OPENGL_H="true"],,)
AH_TEMPLATE(HAVE_AVAHI, [Avahi/mDNS client build environment present])
AC_ARG_WITH(avahi,
[ --without-avahi disable support for Avahi/mDNS]
[ --with-avahi=DIR use avahi include/library files in DIR],,)
if test "x$with_avahi" != "xno"; then
printf "checking for avahi... "
if test ! -z "$with_avahi" -a "x$with_avahi" != "xyes"; then
AVAHI_CFLAGS="-I$with_avahi/include"
AVAHI_LIBS="-L$with_avahi/lib -lavahi-common -lavahi-client"
echo "using $with_avahi"
with_avahi=yes
elif pkg-config --atleast-version=0.6.4 avahi-client >/dev/null 2>&1; then
AVAHI_CFLAGS=`pkg-config --cflags avahi-client`
AVAHI_LIBS=`pkg-config --libs avahi-client`
with_avahi=yes
echo yes
else
with_avahi=no
echo no
fi
fi
if test "x$with_avahi" = "xyes"; then
AC_DEFINE(HAVE_AVAHI)
AC_SUBST(AVAHI_CFLAGS)
AC_SUBST(AVAHI_LIBS)
fi
fi
# end x11vnc only.
# only used in x11vnc/Makefile.am but needs to always be defined:
AM_CONDITIONAL(OSX_OPENGL, test "$HAVE_MACOSX_OPENGL_H" = "true")
# Checks for libraries.
if test ! -z "$with_system_libvncserver" -a "x$with_system_libvncserver" != "xno"; then
printf "checking for system libvncserver... "
vneed="0.9.1"
if test "X$VNEED" != "X"; then
vneed=$VNEED
fi
if test "x$with_system_libvncserver" != "xyes"; then
rflag=""
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
rflag="-Xlinker -R$with_system_libvncserver/lib"
else
rflag="-R$with_system_libvncserver/lib"
fi
cmd="$with_system_libvncserver/bin/libvncserver-config"
if $cmd --version 1>/dev/null 2>&1; then
cvers=`$cmd --version 2>/dev/null`
cscore=`echo "$cvers" | tr '.' ' ' | awk '{print 10000 * $1 + 100 * $2 + $3}'`
nscore=`echo "$vneed" | tr '.' ' ' | awk '{print 10000 * $1 + 100 * $2 + $3}'`
if test $cscore -lt $nscore; then
echo "no"
with_system_libvncserver=no
AC_MSG_ERROR([
==========================================================================
*** Need libvncserver version $vneed, have version $cvers ***
You are building with a system installed libvncserver and it is not
new enough.
==========================================================================
])
else
SYSTEM_LIBVNCSERVER_CFLAGS="-I$with_system_libvncserver/include"
SYSTEM_LIBVNCSERVER_LIBS="-L$with_system_libvncserver/lib $rflag -lvncserver -lvncclient"
echo "using $with_system_libvncserver"
with_system_libvncserver=yes
fi
else
echo " *** cannot run $cmd *** " 1>&2
with_system_libvncserver=no
echo no
fi
elif libvncserver-config --version 1>/dev/null 2>&1; then
rflag=""
rprefix=`libvncserver-config --prefix`
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
rflag=" -Xlinker -R$rprefix/lib "
else
rflag=" -R$rprefix/lib "
fi
cvers=`libvncserver-config --version 2>/dev/null`
cscore=`echo "$cvers" | tr '.' ' ' | awk '{print 10000 * $1 + 100 * $2 + $3}'`
nscore=`echo "$vneed" | tr '.' ' ' | awk '{print 10000 * $1 + 100 * $2 + $3}'`
if test $cscore -lt $nscore; then
echo "no"
AC_MSG_ERROR([
==========================================================================
*** Need libvncserver version $vneed, have version $cvers ***
You are building with a system installed libvncserver and it is not
new enough.
==========================================================================
])
else
SYSTEM_LIBVNCSERVER_CFLAGS=`libvncserver-config --cflags`
SYSTEM_LIBVNCSERVER_LIBS="$rflag"`libvncserver-config --libs`
with_system_libvncserver=yes
echo yes
fi
else
with_system_libvncserver=no
echo no
fi
fi
if test "x$with_system_libvncserver" = "xyes"; then
AC_DEFINE(HAVE_SYSTEM_LIBVNCSERVER)
AC_SUBST(SYSTEM_LIBVNCSERVER_CFLAGS)
AC_SUBST(SYSTEM_LIBVNCSERVER_LIBS)
fi
AM_CONDITIONAL(HAVE_SYSTEM_LIBVNCSERVER, test "x$with_system_libvncserver" = "xyes")
AC_ARG_WITH(jpeg,
[ --without-jpeg disable support for jpeg]
[ --with-jpeg=DIR use jpeg include/library files in DIR],,)
# At this point:
# no jpeg on command line with_jpeg=""
# -with-jpeg with_jpeg="yes"
# -without-jpeg with_jpeg="no"
# -with-jpeg=/foo/dir with_jpeg="/foo/dir"
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
HAVE_LIBJPEG_TURBO="false"
if test "x$with_jpeg" != "xno"; then
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
AC_ARG_VAR(JPEG_LDFLAGS,
[Linker flags to use when linking with libjpeg, e.g. -L/foo/dir/lib -Wl,-static -ljpeg -Wl,-shared. This overrides the linker flags set by --with-jpeg.])
saved_CPPFLAGS="$CPPFLAGS"
saved_LDFLAGS="$LDFLAGS"
saved_LIBS="$LIBS"
if test ! -z "$with_jpeg" -a "x$with_jpeg" != "xyes"; then
# add user supplied directory to flags:
CPPFLAGS="$CPPFLAGS -I$with_jpeg/include"
LDFLAGS="$LDFLAGS -L$with_jpeg/lib"
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
# this is not complete... in general a rat's nest.
LDFLAGS="$LDFLAGS -Xlinker -R$with_jpeg/lib"
else
LDFLAGS="$LDFLAGS -R$with_jpeg/lib"
fi
fi
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
if test "x$JPEG_LDFLAGS" != "x"; then
LDFLAGS="$saved_LDFLAGS"
LIBS="$LIBS $JPEG_LDFLAGS"
else
LIBS="-ljpeg"
fi
AC_CHECK_HEADER(jpeglib.h, HAVE_JPEGLIB_H="true")
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
AC_MSG_CHECKING(for jpeg_CreateCompress in libjpeg)
if test "x$HAVE_JPEGLIB_H" = "xtrue"; then
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
AC_LINK_IFELSE([AC_LANG_CALL([], [jpeg_CreateCompress])],
[AC_MSG_RESULT(yes);
AC_DEFINE(HAVE_LIBJPEG, 1, libjpeg support enabled)],
[AC_MSG_RESULT(no); HAVE_JPEGLIB_H=""])
fi
if test "x$HAVE_JPEGLIB_H" != "xtrue"; then
# restore old flags on failure:
CPPFLAGS="$saved_CPPFLAGS"
LDFLAGS="$saved_LDFLAGS"
LIBS="$saved_LIBS"
AC_MSG_WARN([
==========================================================================
*** The libjpeg compression library was not found. ***
This may lead to reduced performance, especially over slow links.
If libjpeg is in a non-standard location use --with-jpeg=DIR to
indicate the header file is in DIR/include/jpeglib.h and the library
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
in DIR/lib/libjpeg.a. You can also set the JPEG_LDFLAGS variable to
specify more detailed linker flags. A copy of libjpeg-turbo may be
obtained from: https://sourceforge.net/projects/libjpeg-turbo/files/
A copy of libjpeg may be obtained from: http://ijg.org/files/
==========================================================================
])
sleep 5
fi
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
if test "x$HAVE_JPEGLIB_H" = "xtrue"; then
AC_MSG_CHECKING(whether JPEG library is libjpeg-turbo)
m4_define([LJT_TEST],
[AC_LANG_PROGRAM([#include <stdio.h>
#include <jpeglib.h>],
[struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
cinfo.err=jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);
cinfo.input_components = 3;
jpeg_set_defaults(&cinfo);
cinfo.in_color_space = JCS_EXT_RGB;
jpeg_default_colorspace(&cinfo);
return 0;])]
)
if test "x$cross_compiling" != "xyes"; then
AC_RUN_IFELSE([LJT_TEST],
[HAVE_LIBJPEG_TURBO="true"; AC_MSG_RESULT(yes)],
[AC_MSG_RESULT(no)])
else
AC_LINK_IFELSE([LJT_TEST],
[HAVE_LIBJPEG_TURBO="true"; AC_MSG_RESULT(yes)],
[AC_MSG_RESULT(no)])
fi
fi
if test "x$HAVE_JPEGLIB_H" = "xtrue" -a "x$HAVE_LIBJPEG_TURBO" != "xtrue"; then
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following:
-- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since
TightPng is a separate encoding type, not supported by TurboVNC-compatible
viewers, then the rfbTightNoZlib extension can be used solely whenever the
encoding type is Tight and disabled with the encoding type is TightPng.
-- In the TightVNC encoder, compression levels above 5 are basically useless.
On the set of 20 low-level datasets that were used to design the TurboVNC
encoder (these include the eight 2D application captures that were also used
when designing the TightVNC encoder, as well as 12 3D application captures
provided by the VirtualGL Project--
see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving
from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not
increase the compression ratio of any datasets more than 10%, and the
compression ratio only increased by more than 5% on four of them. The
compression ratio actually decreased a few percent on five of them. In
exchange for this paltry increase in compression ratio, the CPU usage, on
average, went up by a factor of 5. Thus, for all intents and purposes,
TightVNC CL 5 provides the "best useful compression" for that encoder.
-- TurboVNC's best compression level (CL 2) compresses 3D and video workloads
significantly more "tightly" than TightVNC CL 5 (~70% better, in the
aggregate) but does not quite achieve the same level of compression with 2D
workloads (~20% worse, in the aggregate.) This decrease in compression ratio
may or may not be noticeable, since many of the datasets it affects are not
performance-critical (such as the console output of a compilation, etc.)
However, for peace of mind, it was still desirable to have a mode that
compressed with equal "tightness" to TightVNC CL 5, since we proposed to
replace that encoder entirely.
-- A new mode was discovered in the TurboVNC encoder that produces, in the
aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That
new mode involves using Zlib level 7 (the same level used by TightVNC CL 5)
but setting the "palette threshold" to 256, so that indexed color encoding
is used whenever possible. This mode reduces bandwidth only marginally
(typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in
exchange for nearly doubling CPU usage, and it does not benefit high-color
workloads at all (since those are usually encoded with JPEG.) However, it
provides a means of reproducing the same "tightness" as the TightVNC
encoder on 2D workloads without sacrificing any compression for 3D/video
workloads, and without using any more CPU time than necessary.
-- The TurboVNC encoder still performs as well or better than the TightVNC
encoder when plain libjpeg is used instead of libjpeg-turbo.
Specific notes follow:
common/turbojpeg.c common/turbojpeg.h:
Added code to emulate the libjpeg-turbo colorspace extensions, so that the
TurboJPEG wrapper can be used with plain libjpeg as well. This required
updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0,
mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner
way, which made the conversion code easier to write. It also eases the
maintenance to have the wrapper synced as much as possible with the upstream
code base (so I can merge any relevant bug fixes that are discovered upstream.)
The libvncserver version of the TurboJPEG wrapper is a "lite" version,
containing only the JPEG compression/decompression code and not the lossless
transform, YUV encoding/decoding, and dynamic buffer allocation features from
TurboJPEG 1.2.
configure.ac:
Removed the --with-turbovnc option. configure still checks for the presence of
libjpeg-turbo, but only for the purposes of printing a performance warning if
it isn't available.
rfb/rfb.h:
Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use
tightQualityLevel for the TurboVNC 1-100 quality level, because
tightQualityLevel is also used by ZRLE. Thus, a new parameter
(turboQualityLevel) was created.
rfb/rfbproto.h:
Remove TurboVNC-specific #ifdefs and language
libvncserver/rfbserver.c:
Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug.
libvncserver/tight.c:
Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the
initial TurboVNC encoder patch, this patch also:
-- Adds TightPng support to the TurboVNC encoder
-- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to
Compression Level 9
test/*:
Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as
TJBench (a benchmark for same.) These are useful for ensuring that the wrapper
still functions correctly and performantly if it needs to be modified for
whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0.
As with the TurboJPEG wrapper, they do not contain the more advanced features
of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
AC_MSG_WARN([
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
==========================================================================
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following:
-- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since
TightPng is a separate encoding type, not supported by TurboVNC-compatible
viewers, then the rfbTightNoZlib extension can be used solely whenever the
encoding type is Tight and disabled with the encoding type is TightPng.
-- In the TightVNC encoder, compression levels above 5 are basically useless.
On the set of 20 low-level datasets that were used to design the TurboVNC
encoder (these include the eight 2D application captures that were also used
when designing the TightVNC encoder, as well as 12 3D application captures
provided by the VirtualGL Project--
see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving
from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not
increase the compression ratio of any datasets more than 10%, and the
compression ratio only increased by more than 5% on four of them. The
compression ratio actually decreased a few percent on five of them. In
exchange for this paltry increase in compression ratio, the CPU usage, on
average, went up by a factor of 5. Thus, for all intents and purposes,
TightVNC CL 5 provides the "best useful compression" for that encoder.
-- TurboVNC's best compression level (CL 2) compresses 3D and video workloads
significantly more "tightly" than TightVNC CL 5 (~70% better, in the
aggregate) but does not quite achieve the same level of compression with 2D
workloads (~20% worse, in the aggregate.) This decrease in compression ratio
may or may not be noticeable, since many of the datasets it affects are not
performance-critical (such as the console output of a compilation, etc.)
However, for peace of mind, it was still desirable to have a mode that
compressed with equal "tightness" to TightVNC CL 5, since we proposed to
replace that encoder entirely.
-- A new mode was discovered in the TurboVNC encoder that produces, in the
aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That
new mode involves using Zlib level 7 (the same level used by TightVNC CL 5)
but setting the "palette threshold" to 256, so that indexed color encoding
is used whenever possible. This mode reduces bandwidth only marginally
(typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in
exchange for nearly doubling CPU usage, and it does not benefit high-color
workloads at all (since those are usually encoded with JPEG.) However, it
provides a means of reproducing the same "tightness" as the TightVNC
encoder on 2D workloads without sacrificing any compression for 3D/video
workloads, and without using any more CPU time than necessary.
-- The TurboVNC encoder still performs as well or better than the TightVNC
encoder when plain libjpeg is used instead of libjpeg-turbo.
Specific notes follow:
common/turbojpeg.c common/turbojpeg.h:
Added code to emulate the libjpeg-turbo colorspace extensions, so that the
TurboJPEG wrapper can be used with plain libjpeg as well. This required
updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0,
mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner
way, which made the conversion code easier to write. It also eases the
maintenance to have the wrapper synced as much as possible with the upstream
code base (so I can merge any relevant bug fixes that are discovered upstream.)
The libvncserver version of the TurboJPEG wrapper is a "lite" version,
containing only the JPEG compression/decompression code and not the lossless
transform, YUV encoding/decoding, and dynamic buffer allocation features from
TurboJPEG 1.2.
configure.ac:
Removed the --with-turbovnc option. configure still checks for the presence of
libjpeg-turbo, but only for the purposes of printing a performance warning if
it isn't available.
rfb/rfb.h:
Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use
tightQualityLevel for the TurboVNC 1-100 quality level, because
tightQualityLevel is also used by ZRLE. Thus, a new parameter
(turboQualityLevel) was created.
rfb/rfbproto.h:
Remove TurboVNC-specific #ifdefs and language
libvncserver/rfbserver.c:
Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug.
libvncserver/tight.c:
Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the
initial TurboVNC encoder patch, this patch also:
-- Adds TightPng support to the TurboVNC encoder
-- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to
Compression Level 9
test/*:
Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as
TJBench (a benchmark for same.) These are useful for ensuring that the wrapper
still functions correctly and performantly if it needs to be modified for
whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0.
As with the TurboJPEG wrapper, they do not contain the more advanced features
of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
*** The libjpeg library you are building against is not libjpeg-turbo.
Performance will be reduced. You can obtain libjpeg-turbo from:
https://sourceforge.net/projects/libjpeg-turbo/files/ ***
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
==========================================================================
])
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following:
-- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since
TightPng is a separate encoding type, not supported by TurboVNC-compatible
viewers, then the rfbTightNoZlib extension can be used solely whenever the
encoding type is Tight and disabled with the encoding type is TightPng.
-- In the TightVNC encoder, compression levels above 5 are basically useless.
On the set of 20 low-level datasets that were used to design the TurboVNC
encoder (these include the eight 2D application captures that were also used
when designing the TightVNC encoder, as well as 12 3D application captures
provided by the VirtualGL Project--
see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving
from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not
increase the compression ratio of any datasets more than 10%, and the
compression ratio only increased by more than 5% on four of them. The
compression ratio actually decreased a few percent on five of them. In
exchange for this paltry increase in compression ratio, the CPU usage, on
average, went up by a factor of 5. Thus, for all intents and purposes,
TightVNC CL 5 provides the "best useful compression" for that encoder.
-- TurboVNC's best compression level (CL 2) compresses 3D and video workloads
significantly more "tightly" than TightVNC CL 5 (~70% better, in the
aggregate) but does not quite achieve the same level of compression with 2D
workloads (~20% worse, in the aggregate.) This decrease in compression ratio
may or may not be noticeable, since many of the datasets it affects are not
performance-critical (such as the console output of a compilation, etc.)
However, for peace of mind, it was still desirable to have a mode that
compressed with equal "tightness" to TightVNC CL 5, since we proposed to
replace that encoder entirely.
-- A new mode was discovered in the TurboVNC encoder that produces, in the
aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That
new mode involves using Zlib level 7 (the same level used by TightVNC CL 5)
but setting the "palette threshold" to 256, so that indexed color encoding
is used whenever possible. This mode reduces bandwidth only marginally
(typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in
exchange for nearly doubling CPU usage, and it does not benefit high-color
workloads at all (since those are usually encoded with JPEG.) However, it
provides a means of reproducing the same "tightness" as the TightVNC
encoder on 2D workloads without sacrificing any compression for 3D/video
workloads, and without using any more CPU time than necessary.
-- The TurboVNC encoder still performs as well or better than the TightVNC
encoder when plain libjpeg is used instead of libjpeg-turbo.
Specific notes follow:
common/turbojpeg.c common/turbojpeg.h:
Added code to emulate the libjpeg-turbo colorspace extensions, so that the
TurboJPEG wrapper can be used with plain libjpeg as well. This required
updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0,
mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner
way, which made the conversion code easier to write. It also eases the
maintenance to have the wrapper synced as much as possible with the upstream
code base (so I can merge any relevant bug fixes that are discovered upstream.)
The libvncserver version of the TurboJPEG wrapper is a "lite" version,
containing only the JPEG compression/decompression code and not the lossless
transform, YUV encoding/decoding, and dynamic buffer allocation features from
TurboJPEG 1.2.
configure.ac:
Removed the --with-turbovnc option. configure still checks for the presence of
libjpeg-turbo, but only for the purposes of printing a performance warning if
it isn't available.
rfb/rfb.h:
Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use
tightQualityLevel for the TurboVNC 1-100 quality level, because
tightQualityLevel is also used by ZRLE. Thus, a new parameter
(turboQualityLevel) was created.
rfb/rfbproto.h:
Remove TurboVNC-specific #ifdefs and language
libvncserver/rfbserver.c:
Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug.
libvncserver/tight.c:
Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the
initial TurboVNC encoder patch, this patch also:
-- Adds TightPng support to the TurboVNC encoder
-- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to
Compression Level 9
test/*:
Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as
TJBench (a benchmark for same.) These are useful for ensuring that the wrapper
still functions correctly and performantly if it needs to be modified for
whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0.
As with the TurboJPEG wrapper, they do not contain the more advanced features
of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
fi
Add TurboVNC encoding support.
TurboVNC is a variant of TightVNC that uses the same client/server protocol (RFB version 3.8t),
and thus it is fully cross-compatible with TightVNC and TigerVNC (with one exception, which is noted below.)
Both the TightVNC and TurboVNC encoders analyze each rectangle, pick out regions of solid color to send
separately, and send the remaining subrectangles using mono, indexed color, JPEG, or raw encoding, depending
on the number of colors in the subrectangle. However, TurboVNC uses a fundamentally different selection
algorithm to determine the appropriate subencoding to use for each subrectangle. Thus, while it sends a
protocol stream that can be decoded by any TightVNC-compatible viewer, the mix of subencoding types in this
protocol stream will be different from those generated by a TightVNC server.
The research that led to TurboVNC is described in the following report:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf.
In summary: 20 RFB captures, representing "common" 2D and 3D application workloads (the 3D workloads were
run using VirtualGL), were studied using the TightVNC encoder in isolation. Some of the analysis features
in the TightVNC encoder, such as smoothness detection, were found to generate a lot of CPU usage with little
or no benefit in compression, so those features were disabled. JPEG encoding was accelerated using
libjpeg-turbo (which achieves a 2-4x speedup over plain libjpeg on modern x86 or ARM processors.) Finally,
the "palette threshold" (minimum number of colors that the subrectangle must have before it is compressed
using JPEG or raw) was adjusted to account for the fact that JPEG encoding is now quite a bit faster
(meaning that we can now use it more without a CPU penalty.) TurboVNC has additional optimizations,
such as the ability to count colors and encode JPEG images directly from the framebuffer without first
translating the pixels into RGB. The TurboVNC encoder compares quite favorably in terms of compression
ratio with TightVNC and generally encodes a great deal faster (often an order of magnitude or more.)
The version of the TurboVNC encoder included in this patch is roughly equivalent to the one found in version
0.6 of the Unix TurboVNC Server, with a few minor patches integrated from TurboVNC 1.1. TurboVNC 1.0
added multi-threading capabilities, which can be added in later if desired (at the expense of making
libvncserver depend on libpthread.)
Because TurboVNC uses a fundamentally different mix of subencodings than TightVNC, because it uses
the identical protocol (and thus a viewer really has no idea whether it's talking to a TightVNC or
TurboVNC server), and because it doesn't support rfbTightPng (and in fact conflicts with it-- see below),
the TurboVNC and TightVNC encoders cannot be enabled simultaneously.
Compatibility:
In *most* cases, a TurboVNC-enabled viewer is fully compatible with a TightVNC server, and vice versa.
TurboVNC supports pseudo-encodings for specifying a fine-grained (1-100) quality scale and specifying
chrominance subsampling. If a TurboVNC viewer sends those to a TightVNC server, then the TightVNC server
ignores them, so the TurboVNC viewer also sends the quality on a 0-9 scale that the TightVNC server can
understand. Similarly, the TurboVNC server checks first for fine-grained quality and subsampling
pseudo-encodings from the viewer, and failing to receive those, it then checks for the TightVNC 0-9
quality pseudo-encoding.
There is one case in which the two systems are not compatible, and that is when a TightVNC or TigerVNC
viewer requests compression level 0 without JPEG from a TurboVNC server. For performance reasons,
this causes the TurboVNC server to send images directly to the viewer, bypassing Zlib. When the
TurboVNC server does this, it also sets bits 7-4 in the compression control byte to rfbTightNoZlib (0x0A),
which is unfortunately the same value as rfbTightPng. Older TightVNC viewers that don't handle PNG
will assume that the stream is uncompressed but still encapsulated in a Zlib structure, whereas newer
PNG-supporting TightVNC viewers will assume that the stream is PNG. In either case, the viewer will
probably crash. Since most VNC viewers don't expose compression level 0 in the GUI, this is a
relatively rare situation.
Description of changes:
configure.ac
-- Added support for libjpeg-turbo. If passed an argument of --with-turbovnc, configure will now run
(or, if cross-compiling, just link) a test program that determines whether the libjpeg library being
used is libjpeg-turbo. libjpeg-turbo must be used when building the TurboVNC encoder, because the
TurboVNC encoder relies on the libjpeg-turbo colorspace extensions in order to compress images directly
out of the framebuffer (which may be, for instance, BGRA rather than RGB.) libjpeg-turbo can optionally
be used with the TightVNC encoder as well, but the speedup will only be marginal (the report linked
above explains why in more detail, but basically it's because of Amdahl's Law. The TightVNC encoder
was designed with the assumption that JPEG had a very high CPU cost, and thus JPEG is used only sparingly.)
-- Added a new configure variable, JPEG_LDFLAGS. This is necessitated by the fact that libjpeg-turbo
often distributes libjpeg.a and libjpeg.so in /opt/libjpeg-turbo/lib32 or /opt/libjpeg-turbo/lib64,
and many people prefer to statically link with it. Thus, more flexibility is needed than is provided
by --with-jpeg. If JPEG_LDFLAGS is specified, then it overrides the changes to LDFLAGS enacted by
--with-jpeg (but --with-jpeg is still used to set the include path.) The addition of JPEG_LDFLAGS
necessitated replacing AC_CHECK_LIB with AC_LINK_IFELSE (because AC_CHECK_LIB automatically sets
LIBS to -ljpeg, which is not what we want if we're, for instance, linking statically with libjpeg-turbo.)
-- configure does not check for PNG support if TurboVNC encoding is enabled. This prevents the
rfbSendRectEncodingTightPng() function from being compiled in, since the TurboVNC encoder doesn't
(and can't) support it.
common/turbojpeg.c, common/turbojpeg.h
-- TurboJPEG is a simple API used to compress and decompress JPEG images in memory. It was originally
implemented because it was desirable to use different types of underlying technologies to compress
JPEG on different platforms (mediaLib on SPARC, Quicktime on PPC Macs, Intel Performance Primitives, etc.)
These days, however, libjpeg-turbo is the only underlying technology used by TurboVNC, so TurboJPEG's
purpose is largely just code simplicity and flexibility. Thus, since there is no real need for
libvncserver to use any technology other than libjpeg-turbo for compressing JPEG, the TurboJPEG wrapper
for libjpeg-turbo has been included in-tree so that libvncserver can be directly linked with libjpeg-turbo.
This is convenient because many modern Linux distros (Fedora, Ubuntu, etc.) now ship libjpeg-turbo as
their default libjpeg library.
libvncserver/rfbserver.c
-- Added logic to check for the TurboVNC fine-grained quality level and subsampling encodings and to
map Tight (0-9) quality levels to appropriate fine-grained quality level and subsampling values if
communicating with a TightVNC/TigerVNC viewer.
libvncserver/turbo.c
-- TurboVNC encoder (compiled instead of libvncserver/tight.c)
rfb/rfb.h
-- Added support for the TurboVNC subsampling level
rfb/rfbproto.h
-- Added constants for the TurboVNC fine quality level and subsampling encodings as well as the rfbTightNoZlib
constant and notes on its usage.
13 years ago
fi
AC_ARG_WITH(png,
[ --without-png disable support for png]
[ --with-png=DIR use png include/library files in DIR],,)
# At this point:
# no png on command line with_png=""
# -with-png with_png="yes"
# -without-png with_png="no"
# -with-png=/foo/dir with_png="/foo/dir"
if test "x$with_png" != "xno"; then
if test ! -z "$with_png" -a "x$with_png" != "xyes"; then
# add user supplied directory to flags:
saved_CPPFLAGS="$CPPFLAGS"
saved_LDFLAGS="$LDFLAGS"
CPPFLAGS="$CPPFLAGS -I$with_png/include"
LDFLAGS="$LDFLAGS -L$with_png/lib"
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
# this is not complete... in general a rat's nest.
LDFLAGS="$LDFLAGS -Xlinker -R$with_png/lib"
else
LDFLAGS="$LDFLAGS -R$with_png/lib"
fi
fi
AC_CHECK_HEADER(png.h, HAVE_PNGLIB_H="true")
if test "x$HAVE_PNGLIB_H" = "xtrue"; then
AC_CHECK_LIB(png, png_create_write_struct, , HAVE_PNGLIB_H="")
fi
if test ! -z "$with_png" -a "x$with_png" != "xyes"; then
if test "x$HAVE_PNGLIB_H" != "xtrue"; then
# restore old flags on failure:
CPPFLAGS="$saved_CPPFLAGS"
LDFLAGS="$saved_LDFLAGS"
fi
fi
if test "$build_x11vnc" = "yes"; then
if test "x$HAVE_PNGLIB_H" != "xtrue"; then
AC_MSG_WARN([
==========================================================================
*** The libpng compression library was not found. ***
This may lead to reduced performance, especially over slow links.
If libpng is in a non-standard location use --with-png=DIR to
indicate the header file is in DIR/include/png.h and the library
in DIR/lib/libpng.a. A copy of libpng may be obtained from:
http://www.libpng.org/pub/png/libpng.html
==========================================================================
])
sleep 5
fi
fi
fi
AC_ARG_WITH(libz,
[ --without-libz disable support for deflate],,)
AC_ARG_WITH(zlib,
[ --without-zlib disable support for deflate]
[ --with-zlib=DIR use zlib include/library files in DIR],,)
if test "x$with_zlib" != "xno" -a "x$with_libz" != "xno"; then
if test ! -z "$with_zlib" -a "x$with_zlib" != "xyes"; then
saved_CPPFLAGS="$CPPFLAGS"
saved_LDFLAGS="$LDFLAGS"
CPPFLAGS="$CPPFLAGS -I$with_zlib/include"
LDFLAGS="$LDFLAGS -L$with_zlib/lib"
if test "x$ld_minus_R" = "xno"; then
:
elif test "x$GCC" = "xyes"; then
LDFLAGS="$LDFLAGS -Xlinker -R$with_zlib/lib"
else
LDFLAGS="$LDFLAGS -R$with_zlib/lib"
fi
fi
AC_CHECK_HEADER(zlib.h, HAVE_ZLIB_H="true")
if test "x$HAVE_ZLIB_H" = "xtrue"; then
AC_CHECK_LIB(z, deflate, , HAVE_ZLIB_H="")
fi
if test ! -z "$with_zlib" -a "x$with_zlib" != "xyes"; then
if test "x$HAVE_ZLIB_H" != "xtrue"; then
CPPFLAGS="$saved_CPPFLAGS"
LDFLAGS="$saved_LDFLAGS"
fi
fi
if test "$build_x11vnc" = "yes"; then
if test "x$HAVE_ZLIB_H" != "xtrue"; then
AC_MSG_WARN([
==========================================================================
*** The libz compression library was not found. ***
This may lead to reduced performance, especially over slow links.
If libz is in a non-standard location use --with-zlib=DIR to indicate the
header file is in DIR/include/zlib.h and the library in DIR/lib/libz.a.
A copy of libz may be obtained from: http://www.gzip.org/zlib/
==========================================================================
])
sleep 5
fi
fi
fi
AC_ARG_WITH(pthread,
[ --without-pthread disable support for libpthread],,)
if test "x$with_pthread" != "xno"; then
AC_CHECK_HEADER(pthread.h, HAVE_PTHREAD_H="true")
if test ! -z "$HAVE_PTHREAD_H"; then
AC_CHECK_LIB(pthread, pthread_mutex_lock)
AC_CHECK_LIB(pthread, pthread_mutex_lock, HAVE_LIBPTHREAD="true")
fi
fi
AM_CONDITIONAL(HAVE_LIBPTHREAD, test ! -z "$HAVE_LIBPTHREAD")
AC_MSG_CHECKING([for __thread])
AC_LINK_IFELSE([AC_LANG_PROGRAM(, [static __thread int p = 0])],
[AC_DEFINE(HAVE_TLS, 1,
Define to 1 if compiler supports __thread)
AC_MSG_RESULT([yes])],
[AC_MSG_RESULT([no])])
# tightvnc-filetransfer implemented using threads:
if test -z "$HAVE_LIBPTHREAD"; then
with_tightvnc_filetransfer=""
fi
if test "x$with_tightvnc_filetransfer" = "xyes"; then
AC_DEFINE(WITH_TIGHTVNC_FILETRANSFER)
fi
AM_CONDITIONAL(WITH_TIGHTVNC_FILETRANSFER, test "$with_tightvnc_filetransfer" = "yes")
# websockets implemented using base64 from resolve
if test "x$HAVE_B64" != "xtrue"; then
with_websockets=""
fi
if test "x$with_websockets" = "xyes"; then
LIBS="$LIBS $RESOLV_LIB $SSL_LIBS"
AC_DEFINE(WITH_WEBSOCKETS)
fi
AM_CONDITIONAL(WITH_WEBSOCKETS, test "$with_websockets" = "yes")
AM_CONDITIONAL(HAVE_LIBZ, test ! -z "$HAVE_ZLIB_H")
AM_CONDITIONAL(HAVE_LIBJPEG, test ! -z "$HAVE_JPEGLIB_H")
AM_CONDITIONAL(HAVE_LIBPNG, test ! -z "$HAVE_PNGLIB_H")
SDLCONFIG="sdl-config"
AC_ARG_WITH(sdl-config,
[[ --with-sdl-config=FILE
Use the given path to sdl-config when determining
SDL configuration; defaults to "sdl-config"]],
[
if test "$withval" != "yes" -a "$withval" != ""; then
SDLCONFIG=$withval
fi
])
if test -z "$with_sdl"; then
if $SDLCONFIG --version >/dev/null 2>&1; then
with_sdl=yes
SDL_CFLAGS=`$SDLCONFIG --cflags`
SDL_LIBS=`$SDLCONFIG --libs`
else
with_sdl=no
fi
fi
AM_CONDITIONAL(HAVE_LIBSDL, test "x$with_sdl" = "xyes")
AC_SUBST(SDL_CFLAGS)
AC_SUBST(SDL_LIBS)
# Check for GTK+. if present, build the GTK+ vnc viewer example
PKG_CHECK_MODULES([GTK], [gtk+-2.0],,:)
AM_CONDITIONAL(HAVE_LIBGTK, test ! -z "$GTK_LIBS")
AC_CANONICAL_HOST
MINGW=`echo $host_os | grep mingw32 2>/dev/null`
AM_CONDITIONAL(MINGW, test ! -z "$MINGW" )
if test ! -z "$MINGW"; then
WSOCKLIB="-lws2_32"
LDFLAGS="$LDFLAGS -no-undefined"
fi
AC_SUBST(WSOCKLIB)
# Check for libgcrypt
AH_TEMPLATE(WITH_CLIENT_GCRYPT, [Enable support for libgcrypt in libvncclient])
AC_ARG_WITH(gcrypt,
[ --without-gcrypt disable support for gcrypt],,)
AC_ARG_WITH(client-gcrypt,
[ --without-client-gcrypt disable support for gcrypt in libvncclient],,)
if test "x$with_gcrypt" != "xno"; then
AM_PATH_LIBGCRYPT(1.4.0, , with_client_gcrypt=no)
CFLAGS="$CFLAGS $LIBGCRYPT_CFLAGS"
LIBS="$LIBS $LIBGCRYPT_LIBS"
if test "x$with_client_gcrypt" != "xno"; then
AC_DEFINE(WITH_CLIENT_GCRYPT)
fi
fi
# Checks for GnuTLS
AH_TEMPLATE(HAVE_GNUTLS, [GnuTLS library present])
AC_ARG_WITH(gnutls,
[ --without-gnutls disable support for gnutls]
[ --with-gnutls=DIR use gnutls include/library files in DIR],,)
if test "x$with_gnutls" != "xno"; then
PKG_CHECK_MODULES(GNUTLS, gnutls >= 2.4.0,,:)
CFLAGS="$CFLAGS $GNUTLS_CFLAGS"
LIBS="$LIBS $GNUTLS_LIBS"
fi
AM_CONDITIONAL(HAVE_GNUTLS, test ! -z "$GNUTLS_LIBS")
if test ! -z "$GNUTLS_LIBS" ; then
AC_DEFINE(HAVE_GNUTLS)
fi
# warn if neither GnuTLS nor OpenSSL are available
if test -z "$SSL_LIBS" -a -z "$GNUTLS_LIBS"; then
AC_MSG_WARN([
==========================================================================
*** No encryption library could be found. ***
A libvncserver/libvncclient built this way will not support SSL encryption.
To enable SSL install the necessary development packages (perhaps it is named
something like libssl-dev or gnutls-dev) and run configure again.
==========================================================================
])
sleep 5
fi
# IPv6
AH_TEMPLATE(IPv6, [Enable IPv6 support])
AC_ARG_WITH(ipv6,
[ --without-ipv6 disable IPv6 support],,)
if test "x$with_ipv6" != "xno"; then
AC_CHECK_FUNC(getaddrinfo, AC_DEFINE(IPv6,1),
AC_CHECK_LIB(socket, getaddrinfo, AC_DEFINE(IPv6,1), [
AC_MSG_CHECKING([for getaddrinfo in -lws2_32])
LIBS="$LIBS -lws2_32"
AC_TRY_LINK([#include <ws2tcpip.h>], [getaddrinfo(0, 0, 0, 0);], [
AC_DEFINE(IPv6,1)
AC_MSG_RESULT([yes])
],
AC_MSG_RESULT([no]))
]))
fi
# Checks for header files.
AC_HEADER_STDC
AC_CHECK_HEADERS([arpa/inet.h endian.h fcntl.h netdb.h netinet/in.h stdlib.h string.h sys/endian.h sys/socket.h sys/time.h sys/timeb.h syslog.h unistd.h ws2tcpip.h])
# x11vnc only:
if test "$build_x11vnc" = "yes"; then
AC_CHECK_HEADERS([pwd.h sys/wait.h utmpx.h termios.h sys/ioctl.h sys/stropts.h])
fi
# Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_C_INLINE
AC_C_BIGENDIAN
AC_TYPE_SIZE_T
AC_HEADER_TIME
AC_HEADER_SYS_WAIT
AC_TYPE_SOCKLEN_T
if test ! -d ./rfb; then
echo "creating subdir ./rfb for rfbint.h"
mkdir ./rfb
fi
AC_CREATE_STDINT_H(rfb/rfbint.h)
AC_CACHE_CHECK([for in_addr_t],
vnc_cv_inaddrt, [
AC_TRY_COMPILE([#include <sys/types.h>
#include <netinet/in.h>],
[in_addr_t foo; return 0;],
[inaddrt=yes],
[inaddrt=no]),
])
AH_TEMPLATE(NEED_INADDR_T, [Need a typedef for in_addr_t])
if test $inaddrt = no ; then
AC_DEFINE(NEED_INADDR_T)
fi
# Checks for library functions.
AC_FUNC_MEMCMP
AC_FUNC_STAT
AC_FUNC_STRFTIME
AC_FUNC_VPRINTF
AC_FUNC_FORK
AC_CHECK_LIB(nsl,gethostbyname)
AC_CHECK_LIB(socket,socket)
uname_s=`(uname -s) 2>/dev/null`
if test "x$uname_s" = "xHP-UX"; then
# need -lsec for getspnam()
LDFLAGS="$LDFLAGS -lsec"
fi
AC_CHECK_FUNCS([ftime gethostbyname gethostname gettimeofday inet_ntoa memmove memset mmap mkfifo select socket strchr strcspn strdup strerror strstr])
# x11vnc only:
if test "$build_x11vnc" = "yes"; then
AC_CHECK_FUNCS([setsid setpgrp getpwuid getpwnam getspnam getuid geteuid setuid setgid seteuid setegid initgroups waitpid setutxent grantpt shmat])
fi
# check, if shmget is in cygipc.a
AC_CHECK_LIB(cygipc,shmget)
AM_CONDITIONAL(CYGIPC, test "$HAVE_CYGIPC" = "true")
# Check if /usr/include/linux exists, if so, define LINUX
AM_CONDITIONAL(LINUX, test -d /usr/include/linux)
# Check for OS X specific header
AC_CHECK_HEADER(ApplicationServices/ApplicationServices.h, HAVE_OSX="true")
AM_CONDITIONAL(OSX, test "$HAVE_OSX" = "true")
# Check for Android specific header
AC_CHECK_HEADER(android/api-level.h, HAVE_ANDROID="true")
AM_CONDITIONAL(ANDROID, test "$HAVE_ANDROID" = "true")
if test "$HAVE_ANDROID" = "true"; then
AC_DEFINE(HAVE_ANDROID, 1, [Android host system detected])
fi
# On Solaris 2.7, write() returns ENOENT when it really means EAGAIN
AH_TEMPLATE(ENOENT_WORKAROUND, [work around when write() returns ENOENT but does not mean it])
case `(uname -sr) 2>/dev/null` in
"SunOS 5.7")
AC_DEFINE(ENOENT_WORKAROUND)
;;
esac
# Check for rpm SOURCES path
printf "checking for rpm sources path... "
RPMSOURCEDIR="NOT-FOUND"
for directory in packages OpenLinux redhat RedHat rpm RPM "" ; do
if test -d /usr/src/${directory}/SOURCES; then
RPMSOURCEDIR="/usr/src/${directory}/SOURCES/"
fi
done
echo "$RPMSOURCEDIR"
AM_CONDITIONAL(HAVE_RPM, test "$RPMSOURCEDIR" != "NOT-FOUND")
AM_CONDITIONAL(WITH_X11VNC, test "$build_x11vnc" = "yes")
AC_SUBST(RPMSOURCEDIR)
AC_CONFIG_FILES([Makefile
libvncserver.pc
libvncclient.pc
libvncserver/Makefile
examples/Makefile
examples/android/Makefile
vncterm/Makefile
webclients/Makefile
webclients/java-applet/Makefile
webclients/java-applet/ssl/Makefile
libvncclient/Makefile
client_examples/Makefile
test/Makefile
libvncserver-config
LibVNCServer.spec])
#
# x11vnc only:
#
if test "$build_x11vnc" = "yes"; then
#
# NOTE: if you are using the LibVNCServer-X.Y.Z.tar.gz source
# tarball and nevertheless want to run autoconf (i.e. aclocal,
# autoheader, automake, autoconf) AGAIN (perhaps you have a
# special target system, e.g. embedded) then you will need to
# comment out the following 'AC_CONFIG_FILES' line to avoid
# automake error messages like:
#
# configure.ac:690: required file `x11vnc/Makefile.in' not found
#
AC_CONFIG_FILES([x11vnc/Makefile x11vnc/misc/Makefile x11vnc/misc/turbovnc/Makefile])
if test ! -z "$with_system_libvncserver" -a "x$with_system_libvncserver" != "xno"; then
# need to move local tarball rfb headers aside:
hdrs="rfb.h rfbclient.h rfbproto.h rfbregion.h rfbint.h"
echo "with-system-libvncserver: moving aside headers $hdrs"
for hdr in $hdrs
do
if test -f "rfb/$hdr"; then
echo "with-system-libvncserver: moving rfb/$hdr to rfb/$hdr.ORIG"
mv rfb/$hdr rfb/$hdr.ORIG
fi
done
echo "with-system-libvncserver: *NOTE* move them back manually to start over."
fi
fi
AC_CONFIG_COMMANDS([chmod-libvncserver-config],[chmod a+x libvncserver-config])
AC_OUTPUT
chmod a+x ./libvncserver-config