# -*- coding: ISO-8859-1 -*- """ Copyright 2004 Jim Bublitz (original author) 2006 Mathias Panzenböck (panzi) Terms and Conditions Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the copyright holder. """ import re from dcop import DCOPClient from qt import QString, QCString, QByteArray, QDataStream, IO_ReadOnly, IO_WriteOnly from tdecore import dcop_add, dcop_next # XXX: 64 bit integers might be handeld wrong! pythons int is AFAIK 32 bit, # but pythons long is a arbitrary-precision integer. how to handle that? # # I think 64 bit types would be: # long long, unsigned long long, long long int, unsigned long long int, # Q_LLONG, Q_ULLONG, Q_INT64, Q_UINT64 # # and on some (most?) systems: # QtOffset # add complex? complex is c99, not c++ # but python has a complex type POD = set(['char','short','int','long','float','double']) typedefIntTypes = set(["uchar", "ushort", "uint", "ulong", "Q_INT8", "Q_INT16", "Q_INT32", "Q_LONG", "Q_UINT8", "Q_UINT16", "Q_UINT32", "Q_ULONG", "sitze_t", "ssize_t", "int8_t", "int16_t", "int32_t", "uint8_t", "uint16_t", "uint32_t", "pid_t", "uid_t", "off_t"]) # XXX string and std::string too? stringTypes = set(["QString", "QCString"]) pythonStringTypes = set([QString, QCString, str]) stringTypesDict = {"QString":QString,"QCString":QCString,"str":str,"unicode":unicode} VOID = 0 BOOLEAN = 1 # XXX bool is not supported by dcop_add, but maybe some time... INTEGER = 2 FLOAT = 3 STRING = 4 CLASS = 5 """ (Most of this code is adapted from pydcop in kde-bindings, written by Torben Weis and Julian Rockey) The three classes below (DCOPApp, DCOPObj and DCOPMeth) allow transparent Python calls to DCOP methods. For example: d = DCOPApp ("kicker", dcop) (where "kicker" is the complete name of an application and 'dcop' is the dcopClient instance owned by the KApplication creating the DCOPApp instance) creates a DCOPApp instance. All of the classes in this file "borrow" a DCOPClient instance from the calling application. d.objects will return a list of the DCOP objects the application supplies. o = d.object ("Panel") will return a DCOPObj corresponding to applications "Panel" DCOP object. Similarly: o.methods will return a list of the methods the object supplies and m = o.method ("panelSize") will return a DCOPMeth corresponding to Panel's panelSize() method. The m instance also holds the methods return type, list of argument types (argtypes) and argument names (argnames). m.valid is a boolean which indicates if the method encapsulated by m is a valid method for the application/object specified. However it isn't necessary to explicitly create the DCOPObj and DCOPMeth. d.Panel.panelSize.valid for example, will also indicate if the method is valid without creating the intermediate 'o' and 'm' instances explicitly. d = DCOPApp ("kicker", dcop) ok, res = d.Panel.panelSize () is all the code necessary to perform the indicated DCOP call and return the value the call returns. In this case, panelSize takes no arguments and returns an int. 'ok' returns the status of the DCOP call (success = True, failure = False). ok = d.Panel.addURLButton (QString ("http://www.kde.org")) would call addURLButton with the required argument, and return nothing but the DCOP call status(since its return type is 'void'). Note that to instantiate a DCOPObj directly, you need to have a valid DCOPApp to pass to DCOPObj's __init__ method. Similarly, DCOPMeth requires a valid DCOPOBject. For example: d = DCOPApp ("kicker", dcop) o = DCOPObj (d, "Panel") m = DCOPMeth (o, "panelSize") or m = DCOPMeth (DCOPObj (DCOPApp ("kicker", dcop), "Panel"), "panelSize") """ # support stuff: def _xiter(*seqences): iters = [iter(seq) for seq in seqences] try: while True: yield [it.next() for it in iters] except StopIteration: pass def isStringType(s): for stringType in pythonStringTypes: if isinstance(s,stringType): return True return False # method syntax: # -------------- # method ::= rtype identifier( args ) # rtype ::= "void" | type # identifier ::= [_a-zA-Z][_a-zA-Z0-9]* # args ::= ( arg ("," arg)* )? # arg ::= type identifier? # type ::= namespace typespec | POD # POD ::= ( "unsigned" | "signed" )? identifier # namespace ::= (identifier "::")* | "::" # typespec ::= identifier ( "<" tpyelist ">" )? # typelist ::= (type | int) ("," (type | int) )* # int ::= "0x" [0-9a-fA-F]+ | [0-9]+ class MethodParser(object): ident_r = re.compile("[_a-zA-Z][_a-zA-Z0-9]*") num_r = re.compile("0x[0-0a-fA-F]+|[0-9]+") def __init__(self,method): self.method = str(method) self.rtype = None self.name = None self.args = [] self.parseMethod() def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self.method)) def getDecl(self): return ''.join([self.name, '(', ','.join(argtp for (argtp, kind), argname in self.args), ')']) def parseMethod(self): i = self.parseRtype(self.method,0) i, self.name = self.parseIdentifier(self.method,i) i = self.parseArgs(self.method,i) if i != len(self.method): raise SyntaxError, "invalid function definition: %s" % self.method @staticmethod def skipws(s,i): while s[i:i+1].isspace(): i += 1 return i def parseArg(self,s,i): i, tp = self.parseType(s,i) name = self.parseIdentifier(s,i) if name: i, name = name else: name = None return i, (tp, name) def parseIdentifier(self,s,i): i = MethodParser.skipws(s,i) m = MethodParser.ident_r.match(s,i) if m: return m.end(), s[i:m.end()] else: return False def parseInteger(self,s,i): i = MethodParser.skipws(s,i) m = MethodParser.num_r.match(s,i) if m: return m.end(), s[i:m.end()] else: return False def parseArgs(self,s,i): i = MethodParser.skipws(s,i) if s[i:i+1] == '(': i += 1 i = MethodParser.skipws(s,i) while i < len(s) and s[i:i+1] != ')': i, arg = self.parseArg(s,i) i = MethodParser.skipws(s,i) self.args.append(arg) if s[i:i+1] == ',': i += 1 else: break if s[i:i+1] == ')': i += 1 else: raise SyntaxError, "missing ')'." else: raise SyntaxError, "missing '('." return i def parseType(self,s,i): num = self.parseNumberType(s,i) if num: return num i, ns = self.parseNamespace(s,i) i, tp = self.parseTypespec(s,i) tp = ns + tp if tp in stringTypes: return i, (tp, STRING) else: return i, (tp, CLASS) def parseTypespec(self,s,i): i, tp = self.parseIdentifier(s,i) i, tplst = self.parseTypelist(s,i) return i, tp + tplst def parseTypelist(self,s,i): L = [] newi = MethodParser.skipws(s,i) if s[newi:newi+1] == '<': i = newi + 1 i = MethodParser.skipws(s,i) L.append('<') while i < len(s) and s[i:i+1] != '>': # template-parameter can be integers!! num = self.parseInteger(s,i) if num: i, tp = num else: i, (tp, kind) = self.parseType(s,i) i = MethodParser.skipws(s,i) L.append(tp) if s[i:i+1] == ',': i += 1 L.append(',') else: break if s[i:i+1] == '>': i += 1 L.append('>') else: raise SyntaxError, "missing '>'." return i, ''.join(L) def parseNumberType(self,s,i): i, tp = self.parseIdentifier(s,i) L = [] if tp == 'bool': return i, (tp, BOOLEAN) elif tp in typedefIntTypes: return i, (tp, INTEGER) elif tp in ('signed','unsigned'): L.append(tp) next = self.parseIdentifier(s,i) if next and next[1] in POD: i, tp = next else: # type can be fully quallyfied here! return i, (tp, INTEGER) if tp in POD: L.append(tp) else: # else no number-type at all! return False # long # long int # long long # long long int # long double # short # short int if tp == 'short': # short next = self.parseIdentifier(s,i) if next and next[1] == 'int': # short int i, tp = next L.append(tp) elif tp == 'long': # long next = self.parseIdentifier(s,i) if next: if next[1] in ('int', 'double'): # long int # long double i, tp = next L.append(tp) elif next[1] == 'long': # long long # XXX: this is 64bit! how should I handle this? i, tp = next L.append(tp) next = self.parseIdentifier(s,i) if next and next[1] == 'int': # long long int i, tp = next L.append(tp) if tp in ('float', 'double'): return i, (' '.join(L), FLOAT) else: return i, (' '.join(L), INTEGER) # # :: # foo:: # ::foo:: # foo::bar:: # ::foo::bar:: # ... def parseNamespace(self,s,i): L = [] i = MethodParser.skipws(s,i) if s[i:i+2] == "::": i += 2 L.append("::") while i < len(s): ns = self.parseIdentifier(s,i) if not ns: break newi, ns = ns newi = MethodParser.skipws(s,newi) if s[newi:newi+2] != "::": break i = newi + 2 L.append( ns ) L.append( "::" ) return i, ''.join(L) def parseRtype(self,s,i): tp = self.parseIdentifier(s,i) if tp and tp[1] == 'void': i, tp = tp self.rtype = (tp,VOID) else: i, self.rtype = self.parseType(s,i) return i def DCOPAppsIter(client): for app in client.registeredApplications(): yield str(app) class DCOPApp(object): """ An object corresponding to an application with a DCOP interface Can return a list of the DCOP objects the application exposes, or create and return an instance of a specific DCOP object. """ def __init__ (self, name, client): self.appname = name self.appclient = client def __getattr__ (self, item ): if item == "objects": objs, ok = self.appclient.remoteObjects(self.appname) if ok: return objs else: return None return DCOPObj(self, item) def __iter__(self): objs, ok = self.appclient.remoteObjects(self.appname) if ok: for obj in objs: yield str(obj) # sometimes a object-name is not a valid python identifier. # in that case you can use dcopapp['non-valid::object/name'] def __getitem__(self,name): return DCOPObj(self, name) def object (self, object): return DCOPObj (self, object) def __repr__(self): return '%s(%s,%s)' % (self.__class__.__name__,repr(self.appname),repr(self.appclient)) def __str__(self): return repr(self) class DCOPObj(object): """ An object corresponding to a specific DCOP object owned by a specific application with a DCOP interface Can return a list of the DCOP methods the object exposes, or create and return an instance of a specific DCOP method. """ def __init__ (self, *args): if isStringType(args[0]): self.appname = args [0] self.objclient = args [1] self.objname = args [2] else: self.appname = args [0].appname self.objname = args [1] self.objclient = args [0].appclient self.objmethods = self.getMethods() def __repr__( self ): return "%s(%s,%s)" % (self.__class__.__name__,repr(self.appname), repr(self.objname)) def __str__( self ): return repr(self) def __getattr__( self, item ): if item == "methods": return self.objmethods return DCOPMeth(self, item) def __getitem__(self,name): return DCOPMeth(self, name) def getMethods(self): flist, ok = self.objclient.remoteFunctions(self.appname, self.objname) if ok: return flist else: return None def __iter__(self): flist, ok = self.objclient.remoteFunctions(self.appname, self.objname) if ok: for meth in flist: yield str(meth) def getMethodNames(self): return [MethodParser(meth).name for meth in self.objmethods] def getParsedMethods(self): return [MethodParser(meth) for meth in self.objmethods] def method(self, method): return DCOPMeth(self, method) class DCOPMeth(object): """ An object corresponding to a specific DCOP method owned by a specific DCOP object. """ def __init__(self, dcopObj, name): self.argtypes = [] self.argnames = [] self.fcnname = [] self.rtype = [] self.appname = dcopObj.appname self.objname = dcopObj.objname self.methname = name self.client = dcopObj.objclient try: self.methods = [str(meth) for meth in dcopObj.objmethods] except TypeError: self.methods = [] self.valid = self.findMethod() # # if not self.valid: # self.fcnname = self.rtype = self.argtypes = self.argnames = None def __repr__( self ): return "%s(%s,%s,%s)" % (self.__class__.__name__,repr(self.appname),repr(self.objname),repr(self.methname)) def __str__(self): return repr(self) def __call__(self, *args): return self.dcop_call(args) def __iter__(self): return iter(self.fcnname) def dcop_call(self, args): # method valid? if not self.valid: return False, None found = self.getMatchingMethod(args) if found is None: return False, None meth, argtypes = found ok, replyType, replyData = self.client.call(self.appname, self.objname, meth, self.__marshall(args,argtypes)) if ok: return ok, self.__unmarshall(replyData, replyType) else: return ok, None def getMatchingMethod(self,args): count = len(args) for funct, argtypes in _xiter(self.fcnname, self.argtypes): if len(argtypes) == count: match = True for (wanttp, wantkind), have in _xiter(argtypes,args): if wantkind == BOOLEAN: if not isinstance(have, bool): match = False break elif wantkind == INTEGER: if not isinstance(have, int): match = False break elif wantkind == FLOAT: if not isinstance(have, float): match = False break elif wantkind == STRING: if not isStringType(have): match = False break elif wanttp != have.__class__.__name__: match = False break if match: return funct, argtypes return None def findMethod(self): has = False for meth in self.methods: fun = MethodParser(meth) if fun.name == self.methname: self.argtypes.append([argtp for argtp, argname in fun.args]) self.argnames.append([argname for argtp, argname in fun.args]) self.rtype.append(fun.rtype) self.fcnname.append(fun.getDecl()) has = True return has def __marshall(self, args, argtypes): data = QByteArray() if argtypes == []: return data params = QDataStream (data, IO_WriteOnly) for arg, (argtype, argkind) in _xiter(args, argtypes): if argkind == BOOLEAN: # XXX for now, let bools be handelt like int dcop_add(params, int(arg), 'int') elif argkind in (INTEGER, FLOAT): dcop_add(params, arg, argtype) elif argkind == STRING: # convert it to the right string type: if argtype != arg.__class__.__name__: arg = stringTypesDict[argtype](arg) dcop_add(params, arg) elif argtype.startswith("QMap") or argtype.startswith("QValueList"): dcop_add(params, arg, argtype) # XXX: # Is 'isinstance(arg, eval(argtype))' really good? # What if 'argtype' is located in some modul? Like 'qt.QString'. # Then this will fail (but it should not!). # And the worst thing: the eval() will raise a NameError! # # On the other hand 'arg.__class__.__name__ == argtype' has the # disadvantage that it can't be a derived class! # # Would no check at all be better?? # # But I doubt a derived class would be ok anyway. I have to check # this in the DCOP-docu, but I think a derived class would not be # correctly unmarshalled, because a derived class could be marshalled # in a total different way to it's super-class. elif arg.__class__.__name__ == argtype: dcop_add(params, arg) else: raise TypeError, "expected type %s, got type %s." % (argtype, arg.__class__.__name__) return data def __unmarshall(self, data, type_): s = QDataStream(data, IO_ReadOnly) if str(type_) in stringTypes: return unicode(dcop_next(s, type_)) else: return dcop_next(s, type_)