/*************************************************************************** ksnumbers.cpp - description ------------------- begin : Sun Jan 13 2002 copyright : (C) 2002-2005 by Jason Harris email : kstars@30doradus.org copyright : (C) 2004-2005 by Pablo de Vicente email : p.devicente@wanadoo.es ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include "ksnumbers.h" // 63 elements const int KSNumbers::arguments[NUTTERMS][5] = { { 0, 0, 0, 0, 1}, {-2, 0, 0, 2, 2}, { 0, 0, 0, 2, 2}, { 0, 0, 0, 0, 2}, { 0, 1, 0, 0, 0}, { 0, 0, 1, 0, 0}, {-2, 1, 0, 2, 2}, { 0, 0, 0, 2, 1}, { 0, 0, 1, 2, 2}, {-2,-1, 0, 2, 2}, {-2, 0, 1, 0, 0}, {-2, 0, 0, 2, 1}, { 0, 0,-1, 2, 2}, { 2, 0, 0, 0, 0}, { 0, 0, 1, 0, 1}, { 2, 0,-1, 2, 2}, { 0, 0,-1, 0, 1}, { 0, 0, 1, 2, 1}, {-2, 0, 2, 0, 0}, { 0, 0,-2, 2, 1}, { 2, 0, 0, 2, 2}, { 0, 0, 2, 2, 2}, { 0, 0, 2, 0, 0}, {-2, 0, 1, 2, 2}, { 0, 0, 0, 2, 0}, {-2, 0, 0, 2, 0}, { 0, 0,-1, 2, 1}, { 0, 2, 0, 0, 0}, { 2, 0,-1, 0, 1}, {-2, 2, 0, 2, 2}, { 0, 1, 0, 0, 1}, {-2, 0, 1, 0, 1}, { 0,-1, 0, 0, 1}, { 0, 0, 2,-2, 0}, { 2, 0,-1, 2, 1}, { 2, 0, 1, 2, 2}, { 0, 1, 0, 2, 2}, {-2, 1, 1, 0, 0}, { 0,-1, 0, 2, 2}, { 2, 0, 0, 2, 1}, { 2, 0, 1, 0, 0}, {-2, 0, 2, 2, 2}, {-2, 0, 1, 2, 1}, { 2, 0,-2, 0, 1}, { 2, 0, 0, 0, 1}, { 0,-1, 1, 0, 0}, {-2,-1, 0, 2, 1}, {-2, 0, 0, 0, 1}, { 0, 0, 2, 2, 1}, {-2, 0, 2, 0, 1}, {-2, 1, 0, 2, 1}, { 0, 0, 1,-2, 0}, {-1, 0, 1, 0, 0}, {-2, 1, 0, 0, 0}, { 1, 0, 0, 0, 0}, { 0, 0, 1, 2, 0}, { 0, 0,-2, 2, 2}, {-1,-1, 1, 0, 0}, { 0, 1, 1, 0, 0}, { 0,-1, 1, 2, 2}, { 2,-1,-1, 2, 2}, { 0, 0, 3, 2, 2}, { 2,-1, 0, 2, 2} }; const int KSNumbers::amp[NUTTERMS][4] = { {-171996,-1742, 92025, 89}, { -13187, -16, 5736,-31}, { -2274, -2, 977, -5}, { 2062, 2, -895, 5}, { 1426, -34, 54, -1}, { 712, 1, -7, 0}, { -517, 12, 224, -6}, { -386, -4, 200, 0}, { -301, 0, 129, -1}, { 217, -5, -95, 3}, { -158, 0, 0, 0}, { 129, 1, -70, 0}, { 123, 0, -53, 0}, { 63, 0, 0, 0}, { 63, 1, -33, 0}, { -59, 0, 26, 0}, { -58, -1, 32, 0}, { -51, 0, 27, 0}, { 48, 0, 0, 0}, { 46, 0, -24, 0}, { -38, 0, 16, 0}, { -31, 0, 13, 0}, { 29, 0, 0, 0}, { 29, 0, -12, 0}, { 26, 0, 0, 0}, { -22, 0, 0, 0}, { 21, 0, -10, 0}, { 17, -1, 0, 0}, { 16, 0, -8, 0}, { -16, 1, 7, 0}, { -15, 0, 9, 0}, { -13, 0, 7, 0}, { -12, 0, 6, 0}, { 11, 0, 0, 0}, { -10, 0, 5, 0}, { -8, 0, 3, 0}, { 7, 0, -3, 0}, { -7, 0, 0, 0}, { -7, 0, 3, 0}, { -7, 0, 3, 0}, { 6, 0, 0, 0}, { 6, 0, -3, 0}, { 6, 0, -3, 0}, { -6, 0, 3, 0}, { -6, 0, 3, 0}, { 5, 0, 0, 0}, { -5, 0, 3, 0}, { -5, 0, 3, 0}, { -5, 0, 3, 0}, { 4, 0, 0, 0}, { 4, 0, 0, 0}, { 4, 0, 0, 0}, { -4, 0, 0, 0}, { -4, 0, 0, 0}, { -4, 0, 0, 0}, { 3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0}, { -3, 0, 0, 0} }; KSNumbers::KSNumbers( long double jd ){ K.setD( 20.49552 / 3600. ); //set the constant of aberration updateValues( jd ); } KSNumbers::~KSNumbers(){ } void KSNumbers::updateValues( long double jd ) { dms arg; double args, argc; days = jd; //Julian Centuries since J2000.0 T = ( jd - J2000 ) / 36525.; // Julian Millenia since J2000.0 jm = T / 10.0; double T2 = T*T; double T3 = T2*T; //Sun's Mean Longitude L.setD( 280.46645 + 36000.76983*T + 0.0003032*T2 ); //Mean elongation of the Moon from the Sun D.setD( 297.85036 + 445267.111480*T - 0.0019142*T2 + T3/189474.); //Sun's Mean Anomaly M.setD( 357.52910 + 35999.05030*T - 0.0001559*T2 - 0.00000048*T3); //Moon's Mean Anomaly MM.setD( 134.96298 + 477198.867398*T + 0.0086972*T2 + T3/56250.0 ); //Moon's Mean Longitude LM.setD( 218.3164591 + 481267.88134236*T - 0.0013268*T2 + T3/538841. - T*T*T*T/6519400.); //Moon's argument of latitude F.setD( 93.27191 + 483202.017538*T - 0.0036825*T2 + T3/327270.); //Longitude of Moon's Ascending Node O.setD( 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000.0 ); //Earth's orbital eccentricity e = 0.016708617 - 0.000042037*T - 0.0000001236*T2; double C = ( 1.914600 - 0.004817*T - 0.000014*T2 ) * sin( M.radians() ) + ( 0.019993 - 0.000101*T ) * sin( 2.0* M.radians() ) + 0.000290 * sin( 3.0* M.radians() ); //Sun's True Longitude L0.setD( L.Degrees() + C ); //Sun's True Anomaly M0.setD( M.Degrees() + C ); //Obliquity of the Ecliptic double U = T/100.0; double dObliq = -4680.93*U - 1.55*U*U + 1999.25*U*U*U - 51.38*U*U*U*U - 249.67*U*U*U*U*U - 39.05*U*U*U*U*U*U + 7.12*U*U*U*U*U*U*U + 27.87*U*U*U*U*U*U*U*U + 5.79*U*U*U*U*U*U*U*U*U + 2.45*U*U*U*U*U*U*U*U*U*U; Obliquity.setD( 23.43929111 + dObliq/3600.0); //Nutation parameters dms L2, M2, O2; double sin2L, cos2L, sin2M, cos2M; double sinO, cosO, sin2O, cos2O; O2.setD( 2.0*O.Degrees() ); L2.setD( 2.0*L.Degrees() ); //twice mean ecl. long. of Sun M2.setD( 2.0*LM.Degrees() ); //twice mean ecl. long. of Moon O.SinCos( sinO, cosO ); O2.SinCos( sin2O, cos2O ); L2.SinCos( sin2L, cos2L ); M2.SinCos( sin2M, cos2M ); // deltaEcLong = ( -17.2*sinO - 1.32*sin2L - 0.23*sin2M + 0.21*sin2O)/3600.0; //Ecl. long. correction // deltaObliquity = ( 9.2*cosO + 0.57*cos2L + 0.10*cos2M - 0.09*cos2O)/3600.0; //Obliq. correction deltaEcLong = 0.; deltaObliquity = 0.; for (unsigned int i=0; i < NUTTERMS; i++) { arg.setD ( arguments[i][0]*D.Degrees() + arguments[i][1]*M.Degrees() + arguments[i][2]*MM.Degrees() + arguments[i][3]*F.Degrees() + arguments[i][4]*O.Degrees() ); arg.SinCos( args, argc ); deltaEcLong += (amp[i][0] + amp[i][1]/10. * T ) * args * 1e-4 ; deltaObliquity += (amp[i][2] + amp[i][3]/10. * T ) * argc * 1e-4 ; } deltaEcLong/= 3600.0; deltaObliquity /= 3600.0; //Compute Precession Matrices: XP.setD( 0.6406161*T + 0.0000839*T2 + 0.0000050*T3 ); YP.setD( 0.5567530*T - 0.0001185*T2 - 0.0000116*T3 ); ZP.setD( 0.6406161*T + 0.0003041*T2 + 0.0000051*T3 ); XP.SinCos( SX, CX ); YP.SinCos( SY, CY ); ZP.SinCos( SZ, CZ ); //P1 is used to precess from any epoch to J2000 P1[0][0] = CX*CY*CZ - SX*SZ; P1[1][0] = CX*CY*SZ + SX*CZ; P1[2][0] = CX*SY; P1[0][1] = -1.0*SX*CY*CZ - CX*SZ; P1[1][1] = -1.0*SX*CY*SZ + CX*CZ; P1[2][1] = -1.0*SX*SY; P1[0][2] = -1.0*SY*CZ; P1[1][2] = -1.0*SY*SZ; P1[2][2] = CY; //P2 is used to precess from J2000 to any other epoch (it is the transpose of P1) P2[0][0] = CX*CY*CZ - SX*SZ; P2[1][0] = -1.0*SX*CY*CZ - CX*SZ; P2[2][0] = -1.0*SY*CZ; P2[0][1] = CX*CY*SZ + SX*CZ; P2[1][1] = -1.0*SX*CY*SZ + CX*CZ; P2[2][1] = -1.0*SY*SZ; P2[0][2] = CX*SY; P2[1][2] = -1.0*SX*SY; P2[2][2] = CY; //Compute Precession Matrices from B1950 to 1984 using Newcomb formulae XB.setD( 0.217697 ); YB.setD( 0.189274 ); ZB.setD( 0.217722 ); XB.SinCos( SXB, CXB ); YB.SinCos( SYB, CYB ); ZB.SinCos( SZB, CZB ); //P1B is used to precess from 1984 to B1950: P1B[0][0] = CXB*CYB*CZB - SXB*SZB; P1B[1][0] = CXB*CYB*SZB + SXB*CZB; P1B[2][0] = CXB*SYB; P1B[0][1] = -1.0*SXB*CYB*CZB - CXB*SZB; P1B[1][1] = -1.0*SXB*CYB*SZB + CXB*CZB; P1B[2][1] = -1.0*SXB*SYB; P1B[0][2] = -1.0*SYB*CZB; P1B[1][2] = -1.0*SYB*SZB; P1B[2][2] = CYB; //P2 is used to precess from B1950 to 1984 (it is the transpose of P1) P2B[0][0] = CXB*CYB*CZB - SXB*SZB; P2B[1][0] = -1.0*SXB*CYB*CZB - CXB*SZB; P2B[2][0] = -1.0*SYB*CZB; P2B[0][1] = CXB*CYB*SZB + SXB*CZB; P2B[1][1] = -1.0*SXB*CYB*SZB + CXB*CZB; P2B[2][1] = -1.0*SYB*SZB; P2B[0][2] = CXB*SYB; P2B[1][2] = -1.0*SXB*SYB; P2B[2][2] = CYB; // Mean longitudes for the planets. radians // // TODO Pasar a grados double LVenus = 3.1761467+1021.3285546*T; // Venus double LMars = 1.7534703+ 628.3075849*T; // Mars double LEarth = 6.2034809+ 334.0612431*T; // Earth double LJupiter = 0.5995465+ 52.9690965*T; // Jupiter double LSaturn = 0.8740168+ 21.3299095*T; // Saturn double LNeptune = 5.3118863+ 3.8133036*T; // Neptune double LUranus = 5.4812939+ 7.4781599*T; // Uranus double LMRad = 3.8103444+8399.6847337*T; // Moon double DRad = 5.1984667+7771.3771486*T; double MMRad = 2.3555559+8328.6914289*T; // Moon double FRad = 1.6279052+8433.4661601*T; /** Contibutions to the velocity of the Earth referred to the barycenter of the solar system in the J2000 equatorial system Velocities 10^{-8} AU/day Ron & Vondrak method **/ double vondrak[36][7] = { {LMars, -1719914-2*T, -25, 25-13*T,1578089+156*T, 10+32*T,684185-358*T}, {2*LMars, 6434+141*T,28007-107*T,25697-95*T, -5904-130*T,11141-48*T, -2559-55*T}, {LJupiter, 715, 0, 6, -657, -15, -282}, {LMRad, 715, 0, 0, -656, 0, -285}, {3*LMars, 486-5*T, -236-4*T, -216-4*T, -446+5*T, -94, -193}, {LSaturn, 159, 0, 2, -147, -6, -61}, {FRad, 0, 0, 0, 26, 0, -59}, {LMRad+MMRad, 39, 0, 0, -36, 0, -16}, {2*LJupiter, 33, -10, -9, -30, -5, -13}, {2*LMars-LJupiter, 31, 1, 1, -28, 0, -12}, {3*LMars-8*LEarth+3*LJupiter, 8, -28, 25, 8, 11, 3}, {5*LMars-8*LEarth+3*LJupiter, 8, -28, -25, -8, -11, -3}, {2*LVenus-LMars, 21, 0, 0, -19, 0, -8}, {LVenus, -19, 0, 0, 17, 0, 8}, {LNeptune, 17, 0, 0, -16, 0, -7}, {LMars-2*LJupiter, 16, 0, 0, 15, 1, 7}, {LUranus, 16, 0, 1, -15, -3, -6}, {LMars+LJupiter, 11, -1, -1, -10, -1, -5}, {2*LVenus-2*LMars, 0, -11, -10, 0, -4, 0}, {LMars-LJupiter, -11, -2, -2, 9, -1, 4}, {4*LMars, -7, -8, -8, 6, -3, 3}, {3*LMars-2*LJupiter, -10, 0, 0, 9, 0, 4}, {LVenus-2*LMars, -9, 0, 0, -9, 0, -4}, {2*LVenus-3*LMars, -9, 0, 0, -8, 0, -4}, {2*LSaturn, 0, -9, -8, 0, -3, 0}, {2*LVenus-4*LMars, 0, -9, 8, 0, 3, 0}, {3*LMars-2*LEarth, 8, 0, 0, -8, 0, -3}, {LMRad+2*DRad-MMRad, 8, 0, 0, -7, 0, -3}, {8*LVenus-12*LMars, -4, -7, -6, 4, -3, 2}, {8*LVenus-14*LMars, -4, -7, 6, -4, 3, -2}, {2*LEarth, -6, -5, -4, 5, -2, 2}, {3*LVenus-4*LMars, -1, -1, -2, -7, 1, -4}, {2*LMars-2*LJupiter, 4, -6, -5, -4, -2, -2}, {3*LVenus-3*LMars, 0, -7, -6, 0, -3, 0}, {2*LMars-2*LEarth, 5, -5, -4, -5, -2, -2}, {LMRad-2*DRad, 5, 0, 0, -5, 0, -2} }; dms anglev; double sa, ca; // Vearth X component vearth[0] = 0.; // Vearth Y component vearth[1] = 0.; // Vearth Z component vearth[2] = 0.; for (unsigned int i=0; i<36; i++) { anglev.setRadians(vondrak[i][0]); anglev.SinCos(sa,ca); for (unsigned int j=0; j<3; j++) { vearth[j] += vondrak[i][2*j+1]*sa +vondrak[i][2*j+2]*ca; } } const double UA2km = 1.49597870/86400.; // 10^{-8}*UA/dia -> km/s for (unsigned int j=0; j<3; j++) { vearth[j] = vearth[j] * UA2km; } }