// Copyright (C) 2002 Dominique Devriese // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA // 02110-1301, USA. #include "object_factory.h" #include "bogus_imp.h" #include "curve_imp.h" #include "intersection_types.h" #include "line_imp.h" #include "object_drawer.h" #include "object_holder.h" #include "other_type.h" #include "point_imp.h" #include "point_type.h" #include "text_type.h" #include "../kig/kig_document.h" #include "../kig/kig_view.h" #include "../misc/calcpaths.h" #include "../misc/coordinate.h" #include "../misc/object_hierarchy.h" #include #include ObjectHolder* ObjectFactory::fixedPoint( const Coordinate& c ) const { ObjectHolder* o = new ObjectHolder( fixedPointCalcer( c ) ); return o; } ObjectTypeCalcer* ObjectFactory::fixedPointCalcer( const Coordinate& c ) const { std::vector args; args.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) ); args.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) ); ObjectTypeCalcer* oc = new ObjectTypeCalcer( FixedPointType::instance(), args ); return oc; } ObjectTypeCalcer* ObjectFactory::cursorPointCalcer( const Coordinate& c ) const { std::vector args; args.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) ); args.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) ); ObjectTypeCalcer* oc = new ObjectTypeCalcer( CursorPointType::instance(), args ); return oc; } const ObjectFactory* ObjectFactory::instance() { static ObjectFactory f; return &f; } ObjectTypeCalcer* ObjectFactory::sensiblePointCalcer( const Coordinate& c, const KigDocument& d, const KigWidget& w ) const { std::vector os = d.whatAmIOn( c, w ); if ( os.size() == 2 ) { // we can calc intersection point *olny* between two objects... std::vector args; args.push_back( os[0]->calcer() ); args.push_back( os[1]->calcer() ); // the simpliest case: two lines... if ( ( os[0]->imp()->inherits( AbstractLineImp::stype() ) ) && ( os[1]->imp()->inherits( AbstractLineImp::stype() ) ) ) return new ObjectTypeCalcer( LineLineIntersectionType::instance(), args ); // other cases will follow... } for ( std::vector::iterator i = os.begin(); i != os.end(); ++i ) if ( (*i)->imp()->inherits( CurveImp::stype() ) ) return constrainedPointCalcer( (*i)->calcer(), c, d ); return fixedPointCalcer( c ); } ObjectHolder* ObjectFactory::sensiblePoint( const Coordinate& c, const KigDocument& d, const KigWidget& w ) const { return new ObjectHolder( sensiblePointCalcer( c, d, w ) ); } ObjectTypeCalcer* ObjectFactory::relativePointCalcer( ObjectCalcer* o, const Coordinate& loc ) const { Coordinate reference = static_cast( o->imp() )->attachPoint(); assert( reference.valid() ); double x = 0.0; double y = 0.0; if ( loc.valid() ) { x = loc.x - reference.x; y = loc.y - reference.y; } std::vector parents; parents.push_back( new ObjectConstCalcer( new DoubleImp( x ) ) ); parents.push_back( new ObjectConstCalcer( new DoubleImp( y ) ) ); parents.push_back( o ); return new ObjectTypeCalcer( RelativePointType::instance(), parents ); } ObjectTypeCalcer* ObjectFactory::constrainedPointCalcer( ObjectCalcer* curve, double param ) const { assert( curve->imp()->inherits( CurveImp::stype() ) ); std::vector parents; parents.push_back( new ObjectConstCalcer( new DoubleImp( param ) ) ); parents.push_back( curve ); return new ObjectTypeCalcer( ConstrainedPointType::instance(), parents ); } ObjectHolder* ObjectFactory::constrainedPoint( ObjectCalcer* curve, double param ) const { return new ObjectHolder( constrainedPointCalcer( curve, param ) ); } ObjectTypeCalcer* ObjectFactory::constrainedPointCalcer( ObjectCalcer* curve, const Coordinate& c, const KigDocument& d ) const { assert( curve->imp()->inherits( CurveImp::stype() ) ); double param = static_cast( curve->imp() )->getParam( c, d ); return constrainedPointCalcer( curve, param ); } ObjectHolder* ObjectFactory::constrainedPoint( ObjectCalcer* curve, const Coordinate& c, const KigDocument& d ) const { return new ObjectHolder( constrainedPointCalcer( curve, c, d ) ); } ObjectTypeCalcer* ObjectFactory::locusCalcer( ObjectCalcer* a, ObjectCalcer* b ) const { assert( dynamic_cast( a ) ); ObjectTypeCalcer* constrained = static_cast( a ); assert( constrained->type()->inherits( ObjectType::ID_ConstrainedPointType ) ); assert( constrained->parents().size() == 2 ); ObjectCalcer* curve = a->parents().back(); const ObjectCalcer* moving = b; std::vector hierparents; hierparents.push_back( constrained ); std::vector sideOfTree = sideOfTreePath( hierparents, moving ); std::copy( sideOfTree.begin(), sideOfTree.end(), std::back_inserter( hierparents ) ); ObjectHierarchy hier( hierparents, moving ); std::vector realparents( 2 + sideOfTree.size(), 0 ); realparents[0] = new ObjectConstCalcer( new HierarchyImp( hier ) ); realparents[1] = curve; copy( sideOfTree.begin(), sideOfTree.end(), realparents.begin() + 2 ); return new ObjectTypeCalcer( LocusType::instance(), realparents ); } ObjectHolder* ObjectFactory::locus( ObjectCalcer* a, ObjectCalcer* b ) const { return new ObjectHolder( locusCalcer( a, b ) ); } ObjectHolder* ObjectFactory::label( const TQString& s, const Coordinate& loc, bool needframe, const std::vector& parents, const KigDocument& doc ) const { return new ObjectHolder( labelCalcer( s, loc, needframe, parents, doc ) ); } ObjectTypeCalcer* ObjectFactory::labelCalcer( const TQString& s, const Coordinate& loc, bool needframe, const std::vector& parents, const KigDocument& doc ) const { return attachedLabelCalcer( s, 0, loc, needframe, parents, doc ); } ObjectTypeCalcer* ObjectFactory::attachedLabelCalcer( const TQString& s, ObjectCalcer* p, const Coordinate& loc, bool needframe, const std::vector& nparents, const KigDocument& doc ) const { std::vector parents; parents.reserve( nparents.size() + 3 ); parents.push_back( new ObjectConstCalcer( new IntImp( needframe ? 1 : 0 ) ) ); parents.push_back( getAttachPoint( p, loc, doc ) ); parents.push_back( new ObjectConstCalcer( new StringImp( s ) ) ); std::copy( nparents.begin(), nparents.end(), std::back_inserter( parents ) ); ObjectTypeCalcer* ret = new ObjectTypeCalcer( TextType::instance(), parents ); ret->calc( doc ); return ret; } ObjectCalcer* ObjectFactory::getAttachPoint( ObjectCalcer* p, const Coordinate& loc, const KigDocument& doc ) const { /* * mp: (changes to add relative-attachment). Now an object is tested * as follows: * - if attachPoint() returns a valid coordinate, then we use the new method * - if it is a point: 'old-style' treatment (we can change this shortly) * - if it is a curve: 'old-style' treatment (we could use the new approach, * which can be better/worse depending on personal taste, I think) * * the first condition that matches determines the behaviour. * the new method works similarly to the curve case, but we generate a new * RelativePointType instead of a ConstrainedPointType; this will in turn make use * of the new attachPoint() method for objects. * * changed the preference order 2005/01/21 (now attachPoint has preference over points) * * NOTE: changes in the tests performed should be matched also in * modes/popup.cc (addNameLabel) and in label.cc (TextLabelModeBase::mouseMoved) */ if ( p && p->imp()->attachPoint().valid() ) { ObjectCalcer* o = relativePointCalcer( p, loc ); o->calc( doc ); return o; } else if ( p && p->imp()->inherits( PointImp::stype() ) ) { return p; } else if ( p && p->imp()->inherits( CurveImp::stype() ) ) { double param = 0.5; if ( loc.valid() ) param = static_cast( p->imp() )->getParam( loc, doc ); ObjectCalcer* o = constrainedPointCalcer( p, param ); o->calc( doc ); return o; } else { if ( loc.valid() ) return new ObjectConstCalcer( new PointImp( loc ) ); else return new ObjectConstCalcer( new PointImp( Coordinate( 0, 0 ) ) ); } } ObjectHolder* ObjectFactory::attachedLabel( const TQString& s, ObjectCalcer* locationparent, const Coordinate& loc, bool needframe, const std::vector& parents, const KigDocument& doc ) const { return new ObjectHolder( attachedLabelCalcer( s, locationparent, loc, needframe, parents, doc ) ); } ObjectPropertyCalcer* ObjectFactory::propertyObjectCalcer( ObjectCalcer* o, const char* p ) const { int wp = o->imp()->propertiesInternalNames().findIndex( p ); if ( wp == -1 ) return 0; return new ObjectPropertyCalcer( o, wp ); } ObjectHolder* ObjectFactory::propertyObject( ObjectCalcer* o, const char* p ) const { return new ObjectHolder( propertyObjectCalcer( o, p ) ); } void ObjectFactory::redefinePoint( ObjectTypeCalcer* point, const Coordinate& c, KigDocument& doc, const KigWidget& w ) const { std::vector hos = doc.whatAmIOn( c, w ); std::vector os; ObjectCalcer* (ObjectHolder::*calcmeth)() = &ObjectHolder::calcer; std::transform( hos.begin(), hos.end(), std::back_inserter( os ), std::mem_fun( calcmeth ) ); ObjectCalcer* v = 0; // we don't want one of our children as a parent... std::set children = getAllChildren( point ); for ( std::vector::iterator i = os.begin(); i != os.end(); ++i ) if ( (*i)->imp()->inherits( CurveImp::stype() ) && children.find( *i ) == children.end() ) { v = *i; break; }; if ( v ) { // we want a constrained point... const CurveImp* curveimp = static_cast( v->imp() ); double newparam = curveimp->getParam( c, doc ); if ( point->type()->inherits( ObjectType::ID_ConstrainedPointType ) ) { // point already was constrained -> simply update the param // DataObject and make sure point is on the right curve... ObjectCalcer* dataobj = 0; std::vector parents = point->parents(); assert( parents.size() == 2 ); assert ( parents[0]->imp()->inherits( DoubleImp::stype() ) ); dataobj = parents[0]; parents.clear(); parents.push_back( dataobj ); parents.push_back( v ); point->setParents( parents ); assert( dynamic_cast( dataobj ) ); static_cast( dataobj )->setImp( new DoubleImp( newparam ) ); } else { // point used to be fixed -> add a new DataObject etc. std::vector args; args.push_back( new ObjectConstCalcer( new DoubleImp( newparam ) ) ); args.push_back( v ); point->setType( ConstrainedPointType::instance() ); point->setParents( args ); } } else { // a fixed point... if ( point->type()->inherits( ObjectType::ID_ConstrainedPointType ) ) { // point used to be constrained.. std::vector a; a.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) ); a.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) ); point->setType( FixedPointType::instance() ); point->setParents( a ); } else { // point used to be fixed -> simply update the DataObject's // we can use the point's move function for that.. point->move( c, doc ); }; } }