/*************************************************************************** kscomet.cpp - Trinity Desktop Planetarium ------------------- begin : Wed 19 Feb 2003 copyright : (C) 2001 by Jason Harris email : jharris@30doradus.org ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include #include "kstarsdata.h" #include "kstarsdatetime.h" #include "ksnumbers.h" #include "dms.h" #include "kscomet.h" KSComet::KSComet( KStarsData *_kd, TQString _s, TQString imfile, long double _JD, double _q, double _e, dms _i, dms _w, dms _Node, double Tp ) : KSPlanetBase(_kd, _s, imfile), kd(_kd), JD(_JD), q(_q), e(_e), i(_i), w(_w), N(_Node) { setType( 9 ); //Comet //Find the Julian Day of Perihelion from Tp //Tp is a double which encodes a date like: YYYYMMDD.DDDDD (e.g., 19730521.33333 int year = int( Tp/10000.0 ); int month = int( (int(Tp) % 10000)/100.0 ); int day = int( int(Tp) % 100 ); double Hour = 24.0 * ( Tp - int(Tp) ); int h = int( Hour ); int m = int( 60.0 * ( Hour - h ) ); int s = int( 60.0 * ( 60.0 * ( Hour - h) - m ) ); JDp = KStarsDateTime( ExtDate( year, month, day ), TQTime( h, m, s ) ).djd(); //compute the semi-major axis, a: a = q/(1.0-e); //Compute the orbital Period from Kepler's 3rd law: P = 365.2568984 * pow(a, 1.5); //period in days //If the name contains a "/", make this name2 and make name a truncated version without the leading "P/" or "C/" if ( name().contains( "/" ) ) { setLongName( name() ); setName( name().mid( name().find("/") + 1 ) ); } } bool KSComet::findGeocentricPosition( const KSNumbers *num, const KSPlanetBase *Earth ) { double v(0.0), r(0.0); //Precess the longitude of the Ascending Node to the desired epoch: dms n = dms( double(N.Degrees() - 3.82394E-5 * ( num->julianDay() - J2000 )) ).reduce(); if ( e > 0.98 ) { //Use near-parabolic approximation double k = 0.01720209895; //Gauss gravitational constant double a = 0.75 * ( num->julianDay() - JDp ) * k * sqrt( (1+e)/(q*q*q) ); double b = sqrt( 1.0 + a*a ); double W = pow((b+a),1.0/3.0) - pow((b-a),1.0/3.0); double c = 1.0 + 1.0/(W*W); double f = (1.0-e)/(1.0+e); double g = f/(c*c); double a1 = (2.0/3.0) + (2.0*W*W/5.0); double a2 = (7.0/5.0) + (33.0*W*W/35.0) + (37.0*W*W*W*W/175.0); double a3 = W*W*( (432.0/175.0) + (956.0*W*W/1125.0) + (84.0*W*W*W*W/1575.0) ); double w = W*(1.0 + g*c*( a1 + a2*g + a3*g*g )); v = 2.0*atan(w) / dms::DegToRad; r = q*( 1.0 + w*w )/( 1.0 + w*w*f ); } else { //Use normal ellipse method //Determine Mean anomaly for desired date: dms m = dms( double(360.0*( num->julianDay() - JDp )/P) ).reduce(); double sinm, cosm; m.SinCos( sinm, cosm ); //compute eccentric anomaly: double E = m.Degrees() + e*180.0/dms::PI * sinm * ( 1.0 + e*cosm ); if ( e > 0.05 ) { //need more accurate approximation, iterate... double E0; int iter(0); do { E0 = E; iter++; E = E0 - ( E0 - e*180.0/dms::PI *sin( E0*dms::DegToRad ) - m.Degrees() )/(1 - e*cos( E0*dms::DegToRad ) ); } while ( fabs( E - E0 ) > 0.001 && iter < 1000 ); } double sinE, cosE; dms E1( E ); E1.SinCos( sinE, cosE ); double xv = a * ( cosE - e ); double yv = a * sqrt( 1.0 - e*e ) * sinE; //v is the true anomaly; r is the distance from the Sun v = atan( yv/xv ) / dms::DegToRad; //resolve atan ambiguity if ( xv < 0.0 ) v += 180.0; r = sqrt( xv*xv + yv*yv ); } //vw is the sum of the true anomaly and the argument of perihelion dms vw( v + w.Degrees() ); double sinN, cosN, sinvw, cosvw, sini, cosi; n.SinCos( sinN, cosN ); vw.SinCos( sinvw, cosvw ); i.SinCos( sini, cosi ); //xh, yh, zh are the heliocentric cartesian coords with the ecliptic plane congruent with zh=0. double xh = r * ( cosN * cosvw - sinN * sinvw * cosi ); double yh = r * ( sinN * cosvw + cosN * sinvw * cosi ); double zh = r * ( sinvw * sini ); //xe, ye, ze are the Earth's heliocentric cartesian coords double cosBe, sinBe, cosLe, sinLe; Earth->ecLong()->SinCos( sinLe, cosLe ); Earth->ecLat()->SinCos( sinBe, cosBe ); double xe = Earth->rsun() * cosBe * cosLe; double ye = Earth->rsun() * cosBe * sinLe; double ze = Earth->rsun() * sinBe; //convert to geocentric ecliptic coordinates by subtracting Earth's coords: xh -= xe; yh -= ye; zh -= ze; //Finally, the spherical ecliptic coordinates: double ELongRad = atan( yh/xh ); //resolve atan ambiguity if ( xh < 0.0 ) ELongRad += dms::PI; double rr = sqrt( xh*xh + yh*yh ); double ELatRad = atan( zh/rr ); //(rr can't possibly be negative, so no atan ambiguity) ep.longitude.setRadians( ELongRad ); ep.latitude.setRadians( ELatRad ); setRsun( r ); setRearth( Earth ); EclipticToEquatorial( num->obliquity() ); nutate( num ); aberrate( num ); return true; } //Unused virtual function from KSPlanetBase bool KSComet::loadData() { return false; }