/** This file is part of Kig, a KDE program for Interactive Geometry... Copyright (C) 2002 Dominique Devriese This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA **/ #include "common.h" #include "../kig/kig_view.h" #include "../objects/object_imp.h" #include #include #include #include #if KDE_IS_VERSION( 3, 1, 90 ) #include #else #include #endif Coordinate calcPointOnPerpend( const LineData& l, const Coordinate& t ) { return calcPointOnPerpend( l.b - l.a, t ); } Coordinate calcPointOnPerpend( const Coordinate& dir, const Coordinate& t ) { return t + ( dir ).orthogonal(); } Coordinate calcPointOnParallel( const LineData& l, const Coordinate& t ) { return calcPointOnParallel( l.b - l.a, t ); } Coordinate calcPointOnParallel( const Coordinate& dir, const Coordinate& t ) { return t + dir*5; } Coordinate calcIntersectionPoint( const LineData& l1, const LineData& l2 ) { const Coordinate& pa = l1.a; const Coordinate& pb = l1.b; const Coordinate& pc = l2.a; const Coordinate& pd = l2.b; double xab = pb.x - pa.x, xdc = pd.x - pc.x, xac = pc.x - pa.x, yab = pb.y - pa.y, ydc = pd.y - pc.y, yac = pc.y - pa.y; double det = xab*ydc - xdc*yab; double detn = xac*ydc - xdc*yac; // test for parallelism if ( fabs (det) < 1e-6 ) return Coordinate::invalidCoord(); double t = detn/det; return pa + t*(pb - pa); } void calcBorderPoints( Coordinate& p1, Coordinate& p2, const Rect& r ) { calcBorderPoints( p1.x, p1.y, p2.x, p2.y, r ); } const LineData calcBorderPoints( const LineData& l, const Rect& r ) { LineData ret( l ); calcBorderPoints( ret.a.x, ret.a.y, ret.b.x, ret.b.y, r ); return ret; } void calcBorderPoints( double& xa, double& ya, double& xb, double& yb, const Rect& r ) { // we calc where the line through a(xa,ya) and b(xb,yb) intersects with r: double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya; double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya; double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa; double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa; // now we go looking for valid points int novp = 0; // number of valid points we have already found if (!(top < r.left() || top > r.right())) { // the line intersects with the top side of the rect. ++novp; xa = top; ya = r.top(); }; if (!(left < r.bottom() || left > r.top())) { // the line intersects with the left side of the rect. if (novp++) { xb = r.left(); yb=left; } else { xa = r.left(); ya=left; }; }; if (!(right < r.bottom() || right > r.top())) { // the line intersects with the right side of the rect. if (novp++) { xb = r.right(); yb=right; } else { xa = r.right(); ya=right; }; }; if (!(bottom < r.left() || bottom > r.right())) { // the line intersects with the bottom side of the rect. ++novp; xb = bottom; yb = r.bottom(); }; if (novp < 2) { // line is completely outside of the window... xa = ya = xb = yb = 0; }; } void calcRayBorderPoints( const Coordinate& a, Coordinate& b, const Rect& r ) { calcRayBorderPoints( a.x, a.y, b.x, b.y, r ); } void calcRayBorderPoints( const double xa, const double ya, double& xb, double& yb, const Rect& r ) { // we calc where the line through a(xa,ya) and b(xb,yb) intersects with r: double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya; double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya; double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa; double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa; // now we see which we can use... if( // the ray intersects with the top side of the rect.. top >= r.left() && top <= r.right() // and b is above a && yb > ya ) { xb = top; yb = r.top(); return; }; if( // the ray intersects with the left side of the rect... left >= r.bottom() && left <= r.top() // and b is on the left of a.. && xb < xa ) { xb = r.left(); yb=left; return; }; if ( // the ray intersects with the right side of the rect... right >= r.bottom() && right <= r.top() // and b is to the right of a.. && xb > xa ) { xb = r.right(); yb=right; return; }; if( // the ray intersects with the bottom side of the rect... bottom >= r.left() && bottom <= r.right() // and b is under a.. && yb < ya ) { xb = bottom; yb = r.bottom(); return; }; kdError() << k_funcinfo << "damn" << endl; } bool isOnLine( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ) { double x1 = a.x; double y1 = a.y; double x2 = b.x; double y2 = b.y; // check your math theory ( homogeneous coördinates ) for this double tmp = fabs( o.x * (y1-y2) + o.y*(x2-x1) + (x1*y2-y1*x2) ); return tmp < ( fault * (b-a).length()); // if o is on the line ( if the determinant of the matrix // |---|---|---| // | x | y | z | // |---|---|---| // | x1| y1| z1| // |---|---|---| // | x2| y2| z2| // |---|---|---| // equals 0, then p(x,y,z) is on the line containing points // p1(x1,y1,z1) and p2 here, we're working with normal coords, no // homogeneous ones, so all z's equal 1 } bool isOnSegment( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ) { return isOnLine( o, a, b, fault ) // not too far to the right && (o.x - kigMax(a.x,b.x) < fault ) // not too far to the left && ( kigMin (a.x, b.x) - o.x < fault ) // not too high && ( kigMin (a.y, b.y) - o.y < fault ) // not too low && ( o.y - kigMax (a.y, b.y) < fault ); } bool isOnRay( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ) { return isOnLine( o, a, b, fault ) // not too far in front of a horizontally.. // && ( a.x - b.x < fault ) == ( a.x - o.x < fault ) && ( ( a.x < b.x ) ? ( a.x - o.x < fault ) : ( a.x - o.x > -fault ) ) // not too far in front of a vertically.. // && ( a.y - b.y < fault ) == ( a.y - o.y < fault ); && ( ( a.y < b.y ) ? ( a.y - o.y < fault ) : ( a.y - o.y > -fault ) ); } bool isOnArc( const Coordinate& o, const Coordinate& c, const double r, const double sa, const double a, const double fault ) { if ( fabs( ( c - o ).length() - r ) > fault ) return false; Coordinate d = o - c; double angle = atan2( d.y, d.x ); if ( angle < sa ) angle += 2 * M_PI; return angle - sa - a < 1e-4; } const Coordinate calcMirrorPoint( const LineData& l, const Coordinate& p ) { Coordinate m = calcIntersectionPoint( l, LineData( p, calcPointOnPerpend( l, p ) ) ); return 2*m - p; } const Coordinate calcCircleLineIntersect( const Coordinate& c, const double sqr, const LineData& l, int side ) { Coordinate proj = calcPointProjection( c, l ); Coordinate hvec = proj - c; Coordinate lvec = -l.dir(); double sqdist = hvec.squareLength(); double sql = sqr - sqdist; if ( sql < 0.0 ) return Coordinate::invalidCoord(); else { double l = sqrt( sql ); lvec = lvec.normalize( l ); lvec *= side; return proj + lvec; }; } const Coordinate calcArcLineIntersect( const Coordinate& c, const double sqr, const double sa, const double angle, const LineData& l, int side ) { const Coordinate possiblepoint = calcCircleLineIntersect( c, sqr, l, side ); if ( isOnArc( possiblepoint, c, sqrt( sqr ), sa, angle, test_threshold ) ) return possiblepoint; else return Coordinate::invalidCoord(); } const Coordinate calcPointProjection( const Coordinate& p, const LineData& l ) { Coordinate orth = l.dir().orthogonal(); return p + orth.normalize( calcDistancePointLine( p, l ) ); } double calcDistancePointLine( const Coordinate& p, const LineData& l ) { double xa = l.a.x; double ya = l.a.y; double xb = l.b.x; double yb = l.b.y; double x = p.x; double y = p.y; double norm = l.dir().length(); return ( yb * x - ya * x - xb * y + xa * y + xb * ya - yb * xa ) / norm; } Coordinate calcRotatedPoint( const Coordinate& a, const Coordinate& c, const double arc ) { // we take a point p on a line through c and parallel with the // X-axis.. Coordinate p( c.x + 5, c.y ); // we then calc the arc that ac forms with cp... Coordinate d = a - c; d = d.normalize(); double aarc = std::acos( d.x ); if ( d.y < 0 ) aarc = 2*M_PI - aarc; // we now take the sum of the two arcs to find the arc between // pc and ca double asum = aarc + arc; Coordinate ret( std::cos( asum ), std::sin( asum ) ); ret = ret.normalize( ( a -c ).length() ); return ret + c; } Coordinate calcCircleRadicalStartPoint( const Coordinate& ca, const Coordinate& cb, double sqra, double sqrb ) { Coordinate direc = cb - ca; Coordinate m = (ca + cb)/2; double dsq = direc.squareLength(); double lambda = dsq == 0.0 ? 0.0 : (sqra - sqrb) / (2*dsq); direc *= lambda; return m + direc; } double getDoubleFromUser( const TQString& caption, const TQString& label, double value, TQWidget* parent, bool* ok, double min, double max, int decimals ) { #ifdef KIG_USE_KDOUBLEVALIDATOR KDoubleValidator vtor( min, max, decimals, 0, 0 ); #else KFloatValidator vtor( min, max, (TQWidget*) 0, 0 ); #endif #if KDE_IS_VERSION( 3, 1, 90 ) TQString input = KInputDialog::getText( caption, label, KGlobal::locale()->formatNumber( value, decimals ), ok, parent, "getDoubleFromUserDialog", &vtor ); #else TQString input = KLineEditDlg::getText( caption, label, KGlobal::locale()->formatNumber( value, decimals ), ok, parent, &vtor ); #endif bool myok = true; double ret = KGlobal::locale()->readNumber( input, &myok ); if ( ! myok ) ret = input.toDouble( & myok ); if ( ok ) *ok = myok; return ret; } const Coordinate calcCenter( const Coordinate& a, const Coordinate& b, const Coordinate& c ) { // this algorithm is written by my brother, Christophe Devriese // ... // I don't get it myself :) double xdo = b.x-a.x; double ydo = b.y-a.y; double xao = c.x-a.x; double yao = c.y-a.y; double a2 = xdo*xdo + ydo*ydo; double b2 = xao*xao + yao*yao; double numerator = (xdo * yao - xao * ydo); if ( numerator == 0 ) { // problem: xdo * yao == xao * ydo <=> xdo/ydo == xao / yao // this means that the lines ac and ab have the same direction, // which means they're the same line.. // FIXME: i would normally throw an error here, but KDE doesn't // use exceptions, so i'm returning a bogus point :( return a.invalidCoord(); /* return (a+c)/2; */ }; double denominator = 0.5 / numerator; double centerx = a.x - (ydo * b2 - yao * a2) * denominator; double centery = a.y + (xdo * b2 - xao * a2) * denominator; return Coordinate(centerx, centery); } bool lineInRect( const Rect& r, const Coordinate& a, const Coordinate& b, const int width, const ObjectImp* imp, const KigWidget& w ) { double miss = w.screenInfo().normalMiss( width ); //mp: the following test didn't work for vertical segments; // fortunately the ieee floating point standard allows us to avoid // the test altogether, since it would produce an infinity value that // makes the final r.contains to fail // in any case the corresponding test for a.y - b.y was missing. // if ( fabs( a.x - b.x ) <= 1e-7 ) // { // // too small to be useful.. // return r.contains( Coordinate( a.x, r.center().y ), miss ); // } // in case we have a segment we need also to check for the case when // the segment is entirely contained in the rect, in which case the // final tests all fail. // it is ok to just check for the midpoint in the rect since: // - if we have a segment completely contained in the rect this is true // - if the midpoint is in the rect than returning true is safe (also // in the cases where we have a ray or a line) if ( r.contains( 0.5*( a + b ), miss ) ) return true; Coordinate dir = b - a; double m = dir.y / dir.x; double lefty = a.y + m * ( r.left() - a.x ); double righty = a.y + m * ( r.right() - a.x ); double minv = dir.x / dir.y; double bottomx = a.x + minv * ( r.bottom() - a.y ); double topx = a.x + minv * ( r.top() - a.y ); // these are the intersections between the line, and the lines // defined by the sides of the rectangle. Coordinate leftint( r.left(), lefty ); Coordinate rightint( r.right(), righty ); Coordinate bottomint( bottomx, r.bottom() ); Coordinate topint( topx, r.top() ); // For each intersection, we now check if we contain the // intersection ( this might not be the case for a segment, when the // intersection is not between the begin and end point.. ) and if // the rect contains the intersection.. If it does, we have a winner.. return ( imp->contains( leftint, width, w ) && r.contains( leftint, miss ) ) || ( imp->contains( rightint, width, w ) && r.contains( rightint, miss ) ) || ( imp->contains( bottomint, width, w ) && r.contains( bottomint, miss ) ) || ( imp->contains( topint, width, w ) && r.contains( topint, miss ) ); } bool operator==( const LineData& l, const LineData& r ) { return l.a == r.a && l.b == r.b; } bool LineData::isParallelTo( const LineData& l ) const { const Coordinate& p1 = a; const Coordinate& p2 = b; const Coordinate& p3 = l.a; const Coordinate& p4 = l.b; double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dx2 = p4.x - p3.x; double dy2 = p4.y - p3.y; return isSingular( dx1, dy1, dx2, dy2 ); } bool LineData::isOrthogonalTo( const LineData& l ) const { const Coordinate& p1 = a; const Coordinate& p2 = b; const Coordinate& p3 = l.a; const Coordinate& p4 = l.b; double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dx2 = p4.x - p3.x; double dy2 = p4.y - p3.y; return isSingular( dx1, dy1, -dy2, dx2 ); } bool areCollinear( const Coordinate& p1, const Coordinate& p2, const Coordinate& p3 ) { return isSingular( p2.x - p1.x, p2.y - p1.y, p3.x - p1.x, p3.y - p1.y ); } bool isSingular( const double& a, const double& b, const double& c, const double& d ) { double det = a*d - b*c; double norm1 = std::fabs(a) + std::fabs(b); double norm2 = std::fabs(c) + std::fabs(d); /* * test must be done relative to the magnitude of the two * row (or column) vectors! */ return ( std::fabs(det) < test_threshold*norm1*norm2 ); } const double double_inf = HUGE_VAL; const double test_threshold = 1e-6;