/** This file is part of Kig, a KDE program for Interactive Geometry... Copyright (C) 2002 Maurizio Paolini This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA **/ #include #include "conic-common.h" #include "common.h" #include "kigtransform.h" #include #include #ifdef HAVE_IEEEFP_H #include #endif ConicCartesianData::ConicCartesianData( const ConicPolarData& polardata ) { double ec = polardata.ecostheta0; double es = polardata.esintheta0; double p = polardata.pdimen; double fx = polardata.focus1.x; double fy = polardata.focus1.y; double a = 1 - ec*ec; double b = 1 - es*es; double c = - 2*ec*es; double d = - 2*p*ec; double e = - 2*p*es; double f = - p*p; f += a*fx*fx + b*fy*fy + c*fx*fy - d*fx - e*fy; d -= 2*a*fx + c*fy; e -= 2*b*fy + c*fx; coeffs[0] = a; coeffs[1] = b; coeffs[2] = c; coeffs[3] = d; coeffs[4] = e; coeffs[5] = f; } ConicPolarData::ConicPolarData( const ConicCartesianData& cartdata ) { double a = cartdata.coeffs[0]; double b = cartdata.coeffs[1]; double c = cartdata.coeffs[2]; double d = cartdata.coeffs[3]; double e = cartdata.coeffs[4]; double f = cartdata.coeffs[5]; // 1. Compute theta (tilt of conic) double theta = std::atan2(c, b - a)/2; // now I should possibly add pi/2... double costheta = std::cos(theta); double sintheta = std::sin(theta); // compute new coefficients (c should now be zero) double aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; double bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; if (aa*bb < 0) { // we have a hyperbola we need to check the correct orientation double dd = d*costheta - e*sintheta; double ee = d*sintheta + e*costheta; double xc = - dd / ( 2*aa ); double yc = - ee / ( 2*bb ); double ff = f + aa*xc*xc + bb*yc*yc + dd*xc + ee*yc; if (ff*aa > 0) // wrong orientation { if (theta > 0) theta -= M_PI/2; else theta += M_PI/2; costheta = cos(theta); sintheta = sin(theta); aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; } } else { if ( std::fabs (bb) < std::fabs (aa) ) { if (theta > 0) theta -= M_PI/2; else theta += M_PI/2; costheta = cos(theta); sintheta = sin(theta); aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; } } double cc = 2*(a - b)*sintheta*costheta + c*(costheta*costheta - sintheta*sintheta); // cc should be zero!!! cout << "cc = " << cc << "\n"; double dd = d*costheta - e*sintheta; double ee = d*sintheta + e*costheta; a = aa; b = bb; c = cc; d = dd; e = ee; // now b cannot be zero (otherwise conic is degenerate) a /= b; c /= b; d /= b; e /= b; f /= b; b = 1.0; // 2. compute y coordinate of focuses double yf = - e/2; // new values: f += yf*yf + e*yf; e += 2*yf; // this should be zero! // now: a > 0 -> ellipse // a = 0 -> parabula // a < 0 -> hyperbola double eccentricity = sqrt(1.0 - a); double sqrtdiscrim = sqrt(d*d - 4*a*f); if (d < 0.0) sqrtdiscrim = -sqrtdiscrim; double xf = (4*a*f - 4*f - d*d)/(d + eccentricity*sqrtdiscrim) / 2; // 3. the focus needs to be rotated back into position focus1.x = xf*costheta + yf*sintheta; focus1.y = -xf*sintheta + yf*costheta; // 4. final touch: the pdimen pdimen = -sqrtdiscrim/2; ecostheta0 = eccentricity*costheta; esintheta0 = -eccentricity*sintheta; if ( pdimen < 0) { pdimen = -pdimen; ecostheta0 = -ecostheta0; esintheta0 = -esintheta0; } } const ConicCartesianData calcConicThroughPoints ( const std::vector& points, const LinearConstraints c1, const LinearConstraints c2, const LinearConstraints c3, const LinearConstraints c4, const LinearConstraints c5 ) { assert( 0 < points.size() && points.size() <= 5 ); // points is a vector of up to 5 points through which the conic is // constrained. // this routine should compute the coefficients in the cartesian equation // a x^2 + b y^2 + c xy + d x + e y + f = 0 // they are defined up to a multiplicative factor. // since we don't know (in advance) which one of them is nonzero, we // simply keep all 6 parameters, obtaining a 5x6 linear system which // we solve using gaussian elimination with complete pivoting // If there are too few, then we choose some cool way to fill in the // empty parts in the matrix according to the LinearConstraints // given.. // 5 rows, 6 columns.. double row0[6]; double row1[6]; double row2[6]; double row3[6]; double row4[6]; double *matrix[5] = {row0, row1, row2, row3, row4}; double solution[6]; int scambio[6]; LinearConstraints constraints[] = {c1, c2, c3, c4, c5}; int numpoints = points.size(); int numconstraints = 5; // fill in the matrix elements for ( int i = 0; i < numpoints; ++i ) { double xi = points[i].x; double yi = points[i].y; matrix[i][0] = xi*xi; matrix[i][1] = yi*yi; matrix[i][2] = xi*yi; matrix[i][3] = xi; matrix[i][4] = yi; matrix[i][5] = 1.0; } for ( int i = 0; i < numconstraints; i++ ) { if (numpoints >= 5) break; // don't add constraints if we have enough for (int j = 0; j < 6; ++j) matrix[numpoints][j] = 0.0; // force the symmetry axes to be // parallel to the coordinate system (zero tilt): c = 0 if (constraints[i] == zerotilt) matrix[numpoints][2] = 1.0; // force a parabula (if zerotilt): b = 0 if (constraints[i] == parabolaifzt) matrix[numpoints][1] = 1.0; // force a circle (if zerotilt): a = b if (constraints[i] == circleifzt) { matrix[numpoints][0] = 1.0; matrix[numpoints][1] = -1.0; } // force an equilateral hyperbola: a + b = 0 if (constraints[i] == equilateral) { matrix[numpoints][0] = 1.0; matrix[numpoints][1] = 1.0; } // force symmetry about y-axis: d = 0 if (constraints[i] == ysymmetry) matrix[numpoints][3] = 1.0; // force symmetry about x-axis: e = 0 if (constraints[i] == xsymmetry) matrix[numpoints][4] = 1.0; if (constraints[i] != noconstraint) ++numpoints; } if ( ! GaussianElimination( matrix, numpoints, 6, scambio ) ) return ConicCartesianData::invalidData(); // fine della fase di eliminazione BackwardSubstitution( matrix, numpoints, 6, scambio, solution ); // now solution should contain the correct coefficients.. return ConicCartesianData( solution ); } const ConicPolarData calcConicBFFP( const std::vector& args, int type ) { assert( args.size() >= 2 && args.size() <= 3 ); assert( type == 1 || type == -1 ); ConicPolarData ret; Coordinate f1 = args[0]; Coordinate f2 = args[1]; Coordinate d; double eccentricity, d1, d2, dl; Coordinate f2f1 = f2 - f1; double f2f1l = f2f1.length(); ret.ecostheta0 = f2f1.x / f2f1l; ret.esintheta0 = f2f1.y / f2f1l; if ( args.size() == 3 ) { d = args[2]; d1 = ( d - f1 ).length(); d2 = ( d - f2 ).length(); dl = fabs( d1 + type * d2 ); eccentricity = f2f1l/dl; } else { if ( type > 0 ) eccentricity = 0.7; else eccentricity = 2.0; dl = f2f1l/eccentricity; } double rhomax = (dl + f2f1l) /2.0; ret.ecostheta0 *= eccentricity; ret.esintheta0 *= eccentricity; ret.pdimen = type*(1 - eccentricity)*rhomax; ret.focus1 = type == 1 ? f1 : f2; return ret; } const LineData calcConicPolarLine ( const ConicCartesianData& data, const Coordinate& cpole, bool& valid ) { double x = cpole.x; double y = cpole.y; double a = data.coeffs[0]; double b = data.coeffs[1]; double c = data.coeffs[2]; double d = data.coeffs[3]; double e = data.coeffs[4]; double f = data.coeffs[5]; double alpha = 2*a*x + c*y + d; double beta = c*x + 2*b*y + e; double gamma = d*x + e*y + 2*f; double normsq = alpha*alpha + beta*beta; if (normsq < 1e-10) // line at infinity { valid = false; return LineData(); } valid = true; Coordinate reta = -gamma/normsq * Coordinate (alpha, beta); Coordinate retb = reta + Coordinate (-beta, alpha); return LineData( reta, retb ); } const Coordinate calcConicPolarPoint ( const ConicCartesianData& data, const LineData& polar ) { Coordinate p1 = polar.a; Coordinate p2 = polar.b; double alpha = p2.y - p1.y; double beta = p1.x - p2.x; double gamma = p1.y*p2.x - p1.x*p2.y; double a11 = data.coeffs[0]; double a22 = data.coeffs[1]; double a12 = data.coeffs[2]/2.0; double a13 = data.coeffs[3]/2.0; double a23 = data.coeffs[4]/2.0; double a33 = data.coeffs[5]; // double detA = a11*a22*a33 - a11*a23*a23 - a22*a13*a13 - a33*a12*a12 + // 2*a12*a23*a13; double a11inv = a22*a33 - a23*a23; double a22inv = a11*a33 - a13*a13; double a33inv = a11*a22 - a12*a12; double a12inv = a23*a13 - a12*a33; double a23inv = a12*a13 - a23*a11; double a13inv = a12*a23 - a13*a22; double x = a11inv*alpha + a12inv*beta + a13inv*gamma; double y = a12inv*alpha + a22inv*beta + a23inv*gamma; double z = a13inv*alpha + a23inv*beta + a33inv*gamma; if (fabs(z) < 1e-10) // point at infinity { return Coordinate::invalidCoord(); } x /= z; y /= z; return Coordinate (x, y); } const Coordinate calcConicLineIntersect( const ConicCartesianData& c, const LineData& l, double knownparam, int which ) { assert( which == 1 || which == -1 || which == 0 ); double aa = c.coeffs[0]; double bb = c.coeffs[1]; double cc = c.coeffs[2]; double dd = c.coeffs[3]; double ee = c.coeffs[4]; double ff = c.coeffs[5]; double x = l.a.x; double y = l.a.y; double dx = l.b.x - l.a.x; double dy = l.b.y - l.a.y; double aaa = aa*dx*dx + bb*dy*dy + cc*dx*dy; double bbb = 2*aa*x*dx + 2*bb*y*dy + cc*x*dy + cc*y*dx + dd*dx + ee*dy; double ccc = aa*x*x + bb*y*y + cc*x*y + dd*x + ee*y + ff; double t; if ( which == 0 ) /* i.e. we have a known intersection */ { t = - bbb/aaa - knownparam; return l.a + t*(l.b - l.a); } double discrim = bbb*bbb - 4*aaa*ccc; if (discrim < 0.0) { return Coordinate::invalidCoord(); } else { if ( which*bbb > 0 ) { t = bbb + which*sqrt(discrim); t = - 2*ccc/t; } else { t = -bbb + which*sqrt(discrim); t /= 2*aaa; } return l.a + t*(l.b - l.a); } } ConicPolarData::ConicPolarData( const Coordinate& f, double d, double ec, double es ) : focus1( f ), pdimen( d ), ecostheta0( ec ), esintheta0( es ) { } ConicPolarData::ConicPolarData() : focus1(), pdimen( 0 ), ecostheta0( 0 ), esintheta0( 0 ) { } const ConicPolarData calcConicBDFP( const LineData& directrix, const Coordinate& cfocus, const Coordinate& cpoint ) { ConicPolarData ret; Coordinate ba = directrix.dir(); double bal = ba.length(); ret.ecostheta0 = -ba.y / bal; ret.esintheta0 = ba.x / bal; Coordinate pa = cpoint - directrix.a; double distpf = (cpoint - cfocus).length(); double distpd = ( pa.y*ba.x - pa.x*ba.y)/bal; double eccentricity = distpf/distpd; ret.ecostheta0 *= eccentricity; ret.esintheta0 *= eccentricity; Coordinate fa = cfocus - directrix.a; ret.pdimen = ( fa.y*ba.x - fa.x*ba.y )/bal; ret.pdimen *= eccentricity; ret.focus1 = cfocus; return ret; } ConicCartesianData::ConicCartesianData( const double incoeffs[6] ) { std::copy( incoeffs, incoeffs + 6, coeffs ); } const LineData calcConicAsymptote( const ConicCartesianData data, int which, bool &valid ) { assert( which == -1 || which == 1 ); LineData ret; double a=data.coeffs[0]; double b=data.coeffs[1]; double c=data.coeffs[2]; double d=data.coeffs[3]; double e=data.coeffs[4]; double normabc = a*a + b*b + c*c; double delta = c*c - 4*a*b; if (fabs(delta) < 1e-6*normabc) { valid = false; return ret; } double yc = (2*a*e - c*d)/delta; double xc = (2*b*d - c*e)/delta; // let c be nonnegative; we no longer need d, e, f. if (c < 0) { c *= -1; a *= -1; b *= -1; } if ( delta < 0 ) { valid = false; return ret; } double sqrtdelta = sqrt(delta); Coordinate displacement; if (which > 0) displacement = Coordinate(-2*b, c + sqrtdelta); else displacement = Coordinate(c + sqrtdelta, -2*a); ret.a = Coordinate(xc, yc); ret.b = ret.a + displacement; return ret; } const ConicCartesianData calcConicByAsymptotes( const LineData& line1, const LineData& line2, const Coordinate& p ) { Coordinate p1 = line1.a; Coordinate p2 = line1.b; double x = p.x; double y = p.y; double c1 = p1.x*p2.y - p2.x*p1.y; double b1 = p2.x - p1.x; double a1 = p1.y - p2.y; p1 = line2.a; p2 = line2.b; double c2 = p1.x*p2.y - p2.x*p1.y; double b2 = p2.x - p1.x; double a2 = p1.y - p2.y; double a = a1*a2; double b = b1*b2; double c = a1*b2 + a2*b1; double d = a1*c2 + a2*c1; double e = b1*c2 + c1*b2; double f = a*x*x + b*y*y + c*x*y + d*x + e*y; f = -f; return ConicCartesianData( a, b, c, d, e, f ); } const LineData calcConicRadical( const ConicCartesianData& cequation1, const ConicCartesianData& cequation2, int which, int zeroindex, bool& valid ) { assert( which == 1 || which == -1 ); assert( 0 < zeroindex && zeroindex < 4 ); LineData ret; valid = true; double a = cequation1.coeffs[0]; double b = cequation1.coeffs[1]; double c = cequation1.coeffs[2]; double d = cequation1.coeffs[3]; double e = cequation1.coeffs[4]; double f = cequation1.coeffs[5]; double a2 = cequation2.coeffs[0]; double b2 = cequation2.coeffs[1]; double c2 = cequation2.coeffs[2]; double d2 = cequation2.coeffs[3]; double e2 = cequation2.coeffs[4]; double f2 = cequation2.coeffs[5]; // background: the family of conics c + lambda*c2 has members that // degenerate into a union of two lines. The values of lambda giving // such degenerate conics is the solution of a third degree equation. // The coefficients of such equation are given by: // (Thanks to Dominique Devriese for the suggestion of this approach) // domi: (And thanks to Maurizio for implementing it :) double df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e; double cf = 4*a2*b*f + 4*a*b2*f + 4*a*b*f2 - 2*a*e*e2 - 2*b*d*d2 - 2*f*c*c2 - a2*e*e - b2*d*d - f2*c*c + c2*d*e + c*d2*e + c*d*e2; double bf = 4*a*b2*f2 + 4*a2*b*f2 + 4*a2*b2*f - 2*a2*e2*e - 2*b2*d2*d - 2*f2*c2*c - a*e2*e2 - b*d2*d2 - f*c2*c2 + c*d2*e2 + c2*d*e2 + c2*d2*e; double af = 4*a2*b2*f2 - a2*e2*e2 - b2*d2*d2 - c2*c2*f2 + c2*d2*e2; // assume both conics are nondegenerate, renormalize so that af = 1 df /= af; cf /= af; bf /= af; af = 1.0; // not needed, just for consistency // computing the coefficients of the Sturm sequence double p1a = 2*bf*bf - 6*cf; double p1b = bf*cf - 9*df; double p0a = cf*p1a*p1a + p1b*(3*p1b - 2*bf*p1a); double fval, fpval, lambda; if (p0a < 0 && p1a < 0) { // -+-- ---+ valid = false; return ret; } lambda = -bf/3.0; //inflection point double displace = 1.0; if (p1a > 0) // with two stationary points { displace += sqrt(p1a); // should be enough. The important // thing is that it is larger than the // semidistance between the stationary points } // compute the value at the inflection point using Horner scheme fval = bf + lambda; // b + x fval = cf + lambda*fval; // c + xb + xx fval = df + lambda*fval; // d + xc + xxb + xxx if (fabs(p0a) < 1e-7) { // this is the case if we intersect two vertical parabulas! p0a = 1e-7; // fall back to the one zero case } if (p0a < 0) { // we have three roots.. // we select the one we want ( defined by mzeroindex.. ) lambda += ( 2 - zeroindex )* displace; } else { // we have just one root if( zeroindex > 1 ) // cannot find second and third root { valid = false; return ret; } if (fval > 0) // zero on the left { lambda -= displace; } else { // zero on the right lambda += displace; } // p0a = 0 means we have a root with multiplicity two } // // find a root of af*lambda^3 + bf*lambda^2 + cf*lambda + df = 0 // (use a Newton method starting from lambda = 0. Hope...) // double delta; int iterations = 0; const int maxiterations = 30; while (iterations++ < maxiterations) // using Newton, iterations should be very few { // compute value of function and polinomial fval = fpval = af; fval = bf + lambda*fval; // b + xa fpval = fval + lambda*fpval; // b + 2xa fval = cf + lambda*fval; // c + xb + xxa fpval = fval + lambda*fpval; // c + 2xb + 3xxa fval = df + lambda*fval; // d + xc + xxb + xxxa delta = fval/fpval; lambda -= delta; if (fabs(delta) < 1e-6) break; } if (iterations >= maxiterations) { valid = false; return ret; } // now we have the degenerate conic: a, b, c, d, e, f a += lambda*a2; b += lambda*b2; c += lambda*c2; d += lambda*d2; e += lambda*e2; f += lambda*f2; // domi: // this is the determinant of the matrix of the new conic. It // should be zero, for the new conic to be degenerate. df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e; //lets work in homogeneous coordinates... double dis1 = e*e - 4*b*f; double maxval = fabs(dis1); int maxind = 1; double dis2 = d*d - 4*a*f; if (fabs(dis2) > maxval) { maxval = fabs(dis2); maxind = 2; } double dis3 = c*c - 4*a*b; if (fabs(dis3) > maxval) { maxval = fabs(dis3); maxind = 3; } // one of these must be nonzero (otherwise the matrix is ...) // exchange elements so that the largest is the determinant of the // first 2x2 minor double temp; switch (maxind) { case 1: // exchange 1 <-> 3 temp = a; a = f; f = temp; temp = c; c = e; e = temp; temp = dis1; dis1 = dis3; dis3 = temp; break; case 2: // exchange 2 <-> 3 temp = b; b = f; f = temp; temp = c; c = d; d = temp; temp = dis2; dis2 = dis3; dis3 = temp; break; } // domi: // this is the negative of the determinant of the top left of the // matrix. If it is 0, then the conic is a parabola, if it is < 0, // then the conic is an ellipse, if positive, the conic is a // hyperbola. In this case, it should be positive, since we have a // degenerate conic, which is a degenerate case of a hyperbola.. // note that it is negative if there is no valid conic to be // found ( e.g. not enough intersections.. ) // double discrim = c*c - 4*a*b; if (dis3 < 0) { // domi: // i would put an assertion here, but well, i guess it doesn't // really matter, and this prevents crashes if the math i still // recall from high school happens to be wrong :) valid = false; return ret; }; double r[3]; // direction of the null space r[0] = 2*b*d - c*e; r[1] = 2*a*e - c*d; r[2] = dis3; // now remember the switch: switch (maxind) { case 1: // exchange 1 <-> 3 temp = a; a = f; f = temp; temp = c; c = e; e = temp; temp = dis1; dis1 = dis3; dis3 = temp; temp = r[0]; r[0] = r[2]; r[2] = temp; break; case 2: // exchange 2 <-> 3 temp = b; b = f; f = temp; temp = c; c = d; d = temp; temp = dis2; dis2 = dis3; dis3 = temp; temp = r[1]; r[1] = r[2]; r[2] = temp; break; } // Computing a Householder reflection transformation that // maps r onto [0, 0, k] double w[3]; double rnormsq = r[0]*r[0] + r[1]*r[1] + r[2]*r[2]; double k = sqrt( rnormsq ); if ( k*r[2] < 0) k = -k; double wnorm = sqrt( 2*rnormsq + 2*k*r[2] ); w[0] = r[0]/wnorm; w[1] = r[1]/wnorm; w[2] = (r[2] + k)/wnorm; // matrix transformation using Householder matrix, the resulting // matrix is zero on third row and column // [q0,q1,q2]^t = A w // alpha = w^t A w double q0 = a*w[0] + c*w[1]/2 + d*w[2]/2; double q1 = b*w[1] + c*w[0]/2 + e*w[2]/2; double alpha = a*w[0]*w[0] + b*w[1]*w[1] + c*w[0]*w[1] + d*w[0]*w[2] + e*w[1]*w[2] + f*w[2]*w[2]; double a00 = a - 4*w[0]*q0 + 4*w[0]*w[0]*alpha; double a11 = b - 4*w[1]*q1 + 4*w[1]*w[1]*alpha; double a01 = c/2 - 2*w[1]*q0 - 2*w[0]*q1 + 4*w[0]*w[1]*alpha; double dis = a01*a01 - a00*a11; assert ( dis >= 0 ); double sqrtdis = sqrt( dis ); double px, py; if ( which*a01 > 0 ) { px = a01 + which*sqrtdis; py = a11; } else { px = a00; py = a01 - which*sqrtdis; } double p[3]; // vector orthogonal to one of the two planes double pscalw = w[0]*px + w[1]*py; p[0] = px - 2*pscalw*w[0]; p[1] = py - 2*pscalw*w[1]; p[2] = - 2*pscalw*w[2]; // "r" is the solution of the equation A*(x,y,z) = (0,0,0) where // A is the matrix of the degenerate conic. This is what we // called in the conic theory we saw in high school a "double // point". It has the unique property that any line going through // it is a "polar line" of the conic at hand. It only exists for // degenerate conics. It has another unique property that if you // take any other point on the conic, then the line between it and // the double point is part of the conic. // this is what we use here: we find the double point ( ret.a // ), and then find another points on the conic. ret.a = -p[2]/(p[0]*p[0] + p[1]*p[1]) * Coordinate (p[0],p[1]); ret.b = ret.a + Coordinate (-p[1],p[0]); valid = true; return ret; } const ConicCartesianData calcConicTransformation ( const ConicCartesianData& data, const Transformation& t, bool& valid ) { double a[3][3]; double b[3][3]; a[1][1] = data.coeffs[0]; a[2][2] = data.coeffs[1]; a[1][2] = a[2][1] = data.coeffs[2]/2; a[0][1] = a[1][0] = data.coeffs[3]/2; a[0][2] = a[2][0] = data.coeffs[4]/2; a[0][0] = data.coeffs[5]; Transformation ti = t.inverse( valid ); if ( ! valid ) return ConicCartesianData(); double supnorm = 0.0; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { b[i][j] = 0.; for (int ii = 0; ii < 3; ii++) { for (int jj = 0; jj < 3; jj++) { b[i][j] += a[ii][jj]*ti.data( ii, i )*ti.data( jj, j ); } } if ( std::fabs( b[i][j] ) > supnorm ) supnorm = std::fabs( b[i][j] ); } } for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { b[i][j] /= supnorm; } } return ConicCartesianData ( b[1][1], b[2][2], b[1][2] + b[2][1], b[0][1] + b[1][0], b[0][2] + b[2][0], b[0][0] ); } ConicCartesianData::ConicCartesianData() { } bool operator==( const ConicPolarData& lhs, const ConicPolarData& rhs ) { return lhs.focus1 == rhs.focus1 && lhs.pdimen == rhs.pdimen && lhs.ecostheta0 == rhs.ecostheta0 && lhs.esintheta0 == rhs.esintheta0; } ConicCartesianData ConicCartesianData::invalidData() { ConicCartesianData ret; ret.coeffs[0] = double_inf; return ret; } bool ConicCartesianData::valid() const { return finite( coeffs[0] ); }