You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kstars/kstars/ksplanet.cpp

292 lines
7.0 KiB

/***************************************************************************
ksplanet.cpp - Trinity Desktop Planetarium
-------------------
begin : Sun Jul 22 2001
copyright : (C) 2001 by Jason Harris
email : jharris@30doradus.org
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include <math.h>
#include <kdebug.h>
#include <tqfile.h>
#include "ksplanet.h"
#include "ksnumbers.h"
#include "ksutils.h"
#include "ksfilereader.h"
KSPlanet::OrbitDataManager KSPlanet::odm;
KSPlanet::OrbitDataColl::OrbitDataColl() {
// avoid memory leaks
for (int i=0; i<6; i++) {
Lon[i].setAutoDelete(true);
Lat[i].setAutoDelete(true);
Dst[i].setAutoDelete(true);
}
}
KSPlanet::OrbitDataManager::OrbitDataManager() : dict(31, true) {
// delete all data automatically to avoid a leak
dict.setAutoDelete(true);
}
bool KSPlanet::OrbitDataManager::readOrbitData(TQString fname,
TQPtrVector<KSPlanet::OrbitData> *vector) {
TQString line;
TQFile f;
double A, B, C;
TQPtrList<OrbitData> DData;
if ( KSUtils::openDataFile( f, fname ) ) {
KSFileReader fileReader( f ); // close file is included
while ( fileReader.hasMoreLines() ) {
line = fileReader.readLine();
TQTextIStream instream( &line );
instream >> A >> B >> C;
DData.append(new OrbitData(A, B, C));
}
/* old code
TQTextStream stream( &f );
while ( !stream.eof() ) {
line = stream.readLine();
TQTextIStream instream( &line );
instream >> A >> B >> C;
DData.append(new OrbitData(A, B, C));
}
f.close();
*/
} else {
return false;
}
DData.toVector(vector);
return true;
}
KSPlanet::OrbitDataColl *KSPlanet::OrbitDataManager::loadData(TQString n) {
TQString fname, snum, line;
TQFile f;
int nCount = 0;
OrbitDataColl *ret;
// kdDebug() << k_funcinfo << " Loading data named " << n << endl;
n = n.lower();
if ((ret = dict[n])) {
// kdDebug() << k_funcinfo << " already loaded - returning" << endl;
return ret;
}
ret = new OrbitDataColl;
//Ecliptic Longitude
for (int i=0; i<6; ++i) {
snum.setNum( i );
fname = n + ".L" + snum + ".vsop";
if (readOrbitData(fname, &(ret->Lon[i])))
nCount++;
}
if ( nCount==0 ){ //No longitude data found!
delete ret;
return 0;
}
//Ecliptic Latitude
for (int i=0; i<6; ++i) {
snum.setNum( i );
fname = n + ".B" + snum + ".vsop";
if (readOrbitData(fname, &(ret->Lat[i])))
nCount++;
}
if (nCount==0){ //no latitude data found!
delete ret;
return 0;
}
//Heliocentric Distance
for (int i=0; i<6; ++i) {
snum.setNum( i );
fname = n + ".R" + snum + ".vsop";
if (readOrbitData(fname, &(ret->Dst[i])))
nCount++;
}
if (nCount==0){ //no distance data found!
delete ret;
return 0;
}
dict.insert(n, ret);
// kdDebug() << k_funcinfo << " successful load" << endl;
return ret;
}
KSPlanet::KSPlanet( KStarsData *kd, TQString s, TQString imfile, double pSize )
: KSPlanetBase(kd, s, imfile, pSize ), data_loaded(false) {
}
bool KSPlanet::loadData() {
return (odm.loadData(name()) != 0);
}
void KSPlanet::calcEcliptic(double Tau, EclipticPosition &epret) const {
double sum[6];
OrbitDataColl * odc;
double Tpow[6];
Tpow[0] = 1.0;
for (int i=1; i<6; ++i) {
Tpow[i] = Tpow[i-1] * Tau;
}
if (!(odc = odm.loadData(name()))) {
epret.longitude = 0.0;
epret.latitude = 0.0;
epret.radius = 0.0;
kdError() << "Could not get data for '" << name() << "'" << endl;
return;
}
//Ecliptic Longitude
for (int i=0; i<6; ++i) {
sum[i] = 0.0;
for (uint j = 0; j < odc->Lon[i].size(); ++j) {
sum[i] += odc->Lon[i][j]->A * cos( odc->Lon[i][j]->B + odc->Lon[i][j]->C*Tau );
/*
kdDebug() << "sum[" << i <<"] =" << sum[i] <<
" A = " << odc->Lon[i][j]->A << " B = " << odc->Lon[i][j]->B <<
" C = " << odc->Lon[i][j]->C << endl;
*/
}
sum[i] *= Tpow[i];
//kdDebug() << name() << " : sum[" << i << "] = " << sum[i] <<endl;
}
epret.longitude.setRadians( sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] );
epret.longitude.setD( epret.longitude.reduce().Degrees() );
//Compute Ecliptic Latitude
for (uint i=0; i<6; ++i) {
sum[i] = 0.0;
for (uint j = 0; j < odc->Lat[i].size(); ++j) {
sum[i] += odc->Lat[i][j]->A * cos( odc->Lat[i][j]->B + odc->Lat[i][j]->C*Tau );
}
sum[i] *= Tpow[i];
}
epret.latitude.setRadians( sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] );
//Compute Heliocentric Distance
for (uint i=0; i<6; ++i) {
sum[i] = 0.0;
for (uint j = 0; j < odc->Dst[i].size(); ++j) {
sum[i] += odc->Dst[i][j]->A * cos( odc->Dst[i][j]->B + odc->Dst[i][j]->C*Tau );
}
sum[i] *= Tpow[i];
}
epret.radius = sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5];
/*
kdDebug() << name() << " pre: Lat = " << epret.latitude.toDMSString() << " Long = " <<
epret.longitude.toDMSString() << " Dist = " << epret.radius << endl;
*/
}
bool KSPlanet::findGeocentricPosition( const KSNumbers *num, const KSPlanetBase *Earth ) {
if ( Earth != NULL ) {
double sinL, sinL0, sinB, sinB0;
double cosL, cosL0, cosB, cosB0;
double x = 0.0, y = 0.0, z = 0.0;
double olddst = -1000;
double dst = 0;
EclipticPosition trialpos;
double jm = num->julianMillenia();
Earth->ecLong()->SinCos( sinL0, cosL0 );
Earth->ecLat()->SinCos( sinB0, cosB0 );
double eX = Earth->rsun()*cosB0*cosL0;
double eY = Earth->rsun()*cosB0*sinL0;
double eZ = Earth->rsun()*sinB0;
bool once=true;
while (fabs(dst - olddst) > .001) {
calcEcliptic(jm, trialpos);
// We store the heliocentric ecliptic coordinates the first time they are computed.
if(once){
helEcPos = trialpos;
once=false;
}
olddst = dst;
trialpos.longitude.SinCos( sinL, cosL );
trialpos.latitude.SinCos( sinB, cosB );
x = trialpos.radius*cosB*cosL - eX;
y = trialpos.radius*cosB*sinL - eY;
z = trialpos.radius*sinB - eZ;
//distance from Earth
dst = sqrt(x*x + y*y + z*z);
double delay = (.0057755183 * dst) / 365250.0;
jm = num->julianMillenia() - delay;
}
ep.longitude.setRadians( atan( y/x ) );
if (x<0) ep.longitude.setD( ep.longitude.Degrees() + 180.0 ); //resolve atan ambiguity
ep.latitude.setRadians( atan( z/( sqrt( x*x + y*y ) ) ) );
setRsun( trialpos.radius );
setRearth( dst );
EclipticToEquatorial( num->obliquity() );
nutate(num);
aberrate(num);
} else {
calcEcliptic(num->julianMillenia(), ep);
helEcPos = ep;
}
//determine the position angle
findPA( num );
return true;
}