/* * Remote Laboratory FPGA Viewer Part * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * (c) 2012 Timothy Pearson * Raptor Engineering * http://www.raptorengineeringinc.com */ #include "define.h" #include "part.h" #include //::createAboutData() #include #include #include //::start() #include #include #include #include #include #include //encodeName() #include //postInit() hack #include #include #include #include #include #include #include #include #include #include //access() #include #include #include "tracewidget.h" #include "floatspinbox.h" #include "layout.h" // RAJA UNCOMMENT ME //#define SERVER_TIMEOUT_MS 10000 // RAJA DEBUG ONLY #define SERVER_TIMEOUT_MS 100000 #define FPGA_COMM_TIMEOUT_MS 500 FPGALed::FPGALed(TQWidget *parent, const char *name) : KLed(parent, name), m_clickable(true) { connect(this, SIGNAL(clicked()), this, SLOT(toggle())); setColor(green); setOffColor(TQApplication::palette(this).active().base().dark(200)); } void FPGALed::setClickable(bool clickable) { if ((!clickable) && (m_clickable)) { disconnect(this, SIGNAL(clicked()), this, SLOT(toggle())); } else if ((clickable) && (!m_clickable)) { connect(this, SIGNAL(clicked()), this, SLOT(toggle())); } m_clickable = clickable; } void FPGALed::mouseReleaseEvent(TQMouseEvent *e) { if (e->button() == TQMouseEvent::LeftButton) { emit(clicked()); } } FPGAPushButton::FPGAPushButton(TQWidget *parent, const char *name) : KLed(parent, name), mouseDown(false) { off(); setColor(green); setOffColor(TQApplication::palette(this).active().base().dark(200)); } void FPGAPushButton::mousePressEvent(TQMouseEvent *e) { if (e->button() == TQMouseEvent::LeftButton) { on(); mouseDown = true; emit(buttonPressed()); emit(changed()); } } void FPGAPushButton::mouseReleaseEvent(TQMouseEvent *e) { if (e->button() == TQMouseEvent::LeftButton) { off(); mouseDown = false; emit(buttonReleased()); emit(changed()); } } void FPGAPushButton::enterEvent(TQEvent *e) { Q_UNUSED(e); if (mouseDown) { on(); emit(buttonPressed()); emit(changed()); } } void FPGAPushButton::leaveEvent(TQEvent *e) { Q_UNUSED(e); if (mouseDown) { off(); emit(buttonReleased()); emit(changed()); } } FPGA7Segment::FPGA7Segment( TQWidget *parent, const char *name ) : TQFrame( parent, name ) { init(); } FPGA7Segment::~FPGA7Segment() { free(m_prevSegments); free(m_currentSegments); } void FPGA7Segment::init() { setFrameStyle(TQFrame::Box | TQFrame::Raised); val = 0; smallPoint = TRUE; setSegmentStyle(Flat); m_prevSegments = (char*)malloc(sizeof(char)*9); m_currentSegments = (char*)malloc(sizeof(char)*9); m_prevSegments[0] = 99; m_currentSegments[0] = 99; d = 0; setSizePolicy(TQSizePolicy(TQSizePolicy::Minimum, TQSizePolicy::Minimum)); } void FPGA7Segment::setLitSegments(unsigned int segs) { // This produces an array of up to 10 chars, with each char being the number of a lit segment, and the list being terminated with the number 99 // The bit input in segs is active high // The bit sequence, MSB to LSB, is dp a b c d e f g // Segment letters are taken from ug130.pdf // 0: a // 1: f // 2: d // 3: g // 4: e // 5: c // 6: b // 7: dp int i = 0; if (segs & 0x80) { m_currentSegments[i] = 7; i++; } if (segs & 0x40) { m_currentSegments[i] = 0; i++; } if (segs & 0x20) { m_currentSegments[i] = 6; i++; } if (segs & 0x10) { m_currentSegments[i] = 5; i++; } if (segs & 0x08) { m_currentSegments[i] = 2; i++; } if (segs & 0x04) { m_currentSegments[i] = 4; i++; } if (segs & 0x02) { m_currentSegments[i] = 1; i++; } if (segs & 0x01) { m_currentSegments[i] = 3; i++; } m_currentSegments[i] = 99; } void FPGA7Segment::drawContents( TQPainter *p ) { // Draw all segments TQPoint pos; int digitSpace = smallPoint ? 2 : 1; int xSegLen = width()*5/(1*(5 + digitSpace) + digitSpace); int ySegLen = height()*5/12; int segLen = ySegLen > xSegLen ? xSegLen : ySegLen; int xAdvance = segLen*( 5 + 1 )/5; int xOffset = ( width() - xAdvance + segLen/5 )/2; int yOffset = ( height() - segLen*2 )/2; pos = TQPoint(xOffset, yOffset); drawDigit(pos, *p, segLen, m_currentSegments); } TQSize FPGA7Segment::sizeHint() const { return TQSize(10 + 9 * (1 + (smallPoint ? 0 : 1)), 23); } void FPGA7Segment::setSegmentStyle( SegmentStyle s ) { fill = (s == Flat || s == Filled); shadow = (s == Outline || s == Filled); update(); } FPGA7Segment::SegmentStyle FPGA7Segment::segmentStyle() const { Q_ASSERT(fill || shadow); if (!fill && shadow) { return Outline; } if (fill && shadow) { return Filled; } return Flat; } static void addPoint( TQPointArray &a, const TQPoint &p ) { uint n = a.size(); a.resize(n + 1); a.setPoint(n, p); } void FPGA7Segment::drawDigit(const TQPoint &pos, TQPainter &p, int segLen, const char *newSegs) { char updates[20][2]; // Can hold 2 times number of segments, only // first 10 used if segment table is correct int nErases; int nUpdates; const char *segs; int i,j; const char erase = 0; const char draw = 1; const char leaveAlone = 2; segs = m_prevSegments; for ( nErases=0; segs[nErases] != 99; nErases++ ) { updates[nErases][0] = erase; // Get segments to erase to updates[nErases][1] = segs[nErases]; // remove old char } nUpdates = nErases; segs = newSegs; for(i = 0 ; segs[i] != 99 ; i++) { for ( j=0; j Factory; #define CLIENT_LIBRARY "libremotelab_fpgaviewer" K_EXPORT_COMPONENT_FACTORY(libremotelab_fpgaviewer, RemoteLab::Factory) #define LED_BASE_SIZE 20 #define LED_SIZE LED_BASE_SIZE,LED_BASE_SIZE FPGAViewPart::FPGAViewPart(TQWidget *parentWidget, const char *widgetName, TQObject *parent, const char *name, const TQStringList&) : RemoteInstrumentPart( parent, name ), m_socket(0), m_base(0), connToServerConnecting(false), connToServerState(-1), connToServerTimeoutTimer(NULL), m_interfaceMode(BasicInterfaceMode), m_commHandlerState(0), m_connectionActiveAndValid(false), m_tickerState(0), m_remoteInputModeEnabled(false), m_4bitInputValue(0), m_4bitOutputValue(0), m_8bitInputValue(0), m_8bitOutputValue(0), m_16bitInputValue(0), m_16bitOutputValue(0), m_7segDigit3OutputValue(0xffffffff), m_7segDigit2OutputValue(0xffffffff), m_7segDigit1OutputValue(0xffffffff), m_7segDigit0OutputValue(0xffffffff), m_batchOutputFile(NULL) { // Initialize mutex m_connectionMutex = new TQMutex(false); // Initialize kpart setInstance(Factory::instance()); setWidget(new TQVBox(parentWidget, widgetName)); // Create timers m_updateTimer = new TQTimer(this); // Create widgets m_base = new FPGAViewBase(widget()); // Create menu actions // Submenus KActionCollection *const ac = actionCollection(); m_modeSubMenu = new KActionMenu(i18n("Mode"), ac, "mode_submenu"); m_menuActionList.append(m_modeSubMenu); // Menu items m_modeBasicEnabled = new KToggleAction(i18n("Basic"), KShortcut(), TQT_TQOBJECT(this), TQT_SLOT(switchToBasicMode()), ac, "mode_basic_enabled"); m_modeSubMenu->insert(m_modeBasicEnabled); m_modeIntermediateEnabled = new KToggleAction(i18n("Intermediate"), KShortcut(), TQT_TQOBJECT(this), TQT_SLOT(switchToIntermediateMode()), ac, "mode_intermediate_enabled"); m_modeSubMenu->insert(m_modeIntermediateEnabled); m_modeAdvancedEnabled = new KToggleAction(i18n("Advanced"), KShortcut(), TQT_TQOBJECT(this), TQT_SLOT(switchToAdvancedMode()), ac, "mode_advanced_enabled"); m_modeSubMenu->insert(m_modeAdvancedEnabled); // Initialize widgets m_base->group4BitInputValueLabel->setFixedSize(LED_BASE_SIZE*2, LED_BASE_SIZE*2); m_base->group4BitOutputValueLabel->setFixedSize(LED_BASE_SIZE*2, LED_BASE_SIZE*2); m_base->group4BitInputValueText->setFixedSize(LED_BASE_SIZE*2, LED_BASE_SIZE*2); m_base->group4BitOutputValueText->setFixedSize(LED_BASE_SIZE*2, LED_BASE_SIZE*2); m_base->group4BitInputLED3->setFixedSize(LED_SIZE); m_base->group4BitInputLED2->setFixedSize(LED_SIZE); m_base->group4BitInputLED1->setFixedSize(LED_SIZE); m_base->group4BitInputLED0->setFixedSize(LED_SIZE); m_base->group8BitInputLED7->setFixedSize(LED_SIZE); m_base->group8BitInputLED6->setFixedSize(LED_SIZE); m_base->group8BitInputLED5->setFixedSize(LED_SIZE); m_base->group8BitInputLED4->setFixedSize(LED_SIZE); m_base->group8BitInputLED3->setFixedSize(LED_SIZE); m_base->group8BitInputLED2->setFixedSize(LED_SIZE); m_base->group8BitInputLED1->setFixedSize(LED_SIZE); m_base->group8BitInputLED0->setFixedSize(LED_SIZE); m_base->group8BitOutputLED7->setFixedSize(LED_SIZE); m_base->group8BitOutputLED6->setFixedSize(LED_SIZE); m_base->group8BitOutputLED5->setFixedSize(LED_SIZE); m_base->group8BitOutputLED4->setFixedSize(LED_SIZE); m_base->group8BitOutputLED3->setFixedSize(LED_SIZE); m_base->group8BitOutputLED2->setFixedSize(LED_SIZE); m_base->group8BitOutputLED1->setFixedSize(LED_SIZE); m_base->group8BitOutputLED0->setFixedSize(LED_SIZE); m_base->group4BitInputLED3->setState(KLed::Off); m_base->group4BitInputLED2->setState(KLed::Off); m_base->group4BitInputLED1->setState(KLed::Off); m_base->group4BitInputLED0->setState(KLed::Off); m_base->group8BitInputLED7->setState(KLed::Off); m_base->group8BitInputLED6->setState(KLed::Off); m_base->group8BitInputLED5->setState(KLed::Off); m_base->group8BitInputLED4->setState(KLed::Off); m_base->group8BitInputLED3->setState(KLed::Off); m_base->group8BitInputLED2->setState(KLed::Off); m_base->group8BitInputLED1->setState(KLed::Off); m_base->group8BitInputLED0->setState(KLed::Off); m_base->group8BitOutputLED7->setState(KLed::Off); m_base->group8BitOutputLED6->setState(KLed::Off); m_base->group8BitOutputLED5->setState(KLed::Off); m_base->group8BitOutputLED4->setState(KLed::Off); m_base->group8BitOutputLED3->setState(KLed::Off); m_base->group8BitOutputLED2->setState(KLed::Off); m_base->group8BitOutputLED1->setState(KLed::Off); m_base->group8BitOutputLED0->setState(KLed::Off); m_base->group8BitOutputLED7->setClickable(false); m_base->group8BitOutputLED6->setClickable(false); m_base->group8BitOutputLED5->setClickable(false); m_base->group8BitOutputLED4->setClickable(false); m_base->group8BitOutputLED3->setClickable(false); m_base->group8BitOutputLED2->setClickable(false); m_base->group8BitOutputLED1->setClickable(false); m_base->group8BitOutputLED0->setClickable(false); connect(m_base->group4BitInputLED3, SIGNAL(changed()), this, SLOT(process4BitInputChanges())); connect(m_base->group4BitInputLED2, SIGNAL(changed()), this, SLOT(process4BitInputChanges())); connect(m_base->group4BitInputLED1, SIGNAL(changed()), this, SLOT(process4BitInputChanges())); connect(m_base->group4BitInputLED0, SIGNAL(changed()), this, SLOT(process4BitInputChanges())); connect(m_base->group8BitInputLED7, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED6, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED5, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED4, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED3, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED2, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED1, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group8BitInputLED0, SIGNAL(clicked()), this, SLOT(process8BitInputChanges())); connect(m_base->group16BitInputValue, SIGNAL(valueChanged(int)), this, SLOT(process16BitInputChanges())); m_base->LEDOutputDisplayDigit0->setBackgroundColor(TQt::black); m_base->LEDOutputDisplayDigit1->setBackgroundColor(TQt::black); m_base->LEDOutputDisplayDigit2->setBackgroundColor(TQt::black); m_base->LEDOutputDisplayDigit3->setBackgroundColor(TQt::black); m_base->LEDOutputDisplayDigit0->setPaletteForegroundColor(TQColor(0, 255, 64)); m_base->LEDOutputDisplayDigit1->setPaletteForegroundColor(TQColor(0, 255, 64)); m_base->LEDOutputDisplayDigit2->setPaletteForegroundColor(TQColor(0, 255, 64)); m_base->LEDOutputDisplayDigit3->setPaletteForegroundColor(TQColor(0, 255, 64)); // The LED display can work one of two ways #if 0 // Separated segments m_base->LEDOutputDisplayDigit0->setFrameStyle(TQFrame::Box | TQFrame::Raised); m_base->LEDOutputDisplayDigit1->setFrameStyle(TQFrame::Box | TQFrame::Raised); m_base->LEDOutputDisplayDigit2->setFrameStyle(TQFrame::Box | TQFrame::Raised); m_base->LEDOutputDisplayDigit3->setFrameStyle(TQFrame::Box | TQFrame::Raised); m_base->frameLEDDisplay->setFrameStyle(TQFrame::NoFrame); #else // Combined segments m_base->frameLEDDisplay->setBackgroundColor(TQt::black); m_base->LEDOutputDisplayDigit0->setFrameStyle(TQFrame::NoFrame); m_base->LEDOutputDisplayDigit1->setFrameStyle(TQFrame::NoFrame); m_base->LEDOutputDisplayDigit2->setFrameStyle(TQFrame::NoFrame); m_base->LEDOutputDisplayDigit3->setFrameStyle(TQFrame::NoFrame); m_base->frameLEDDisplay->setFrameStyle(TQFrame::Box | TQFrame::Raised); #endif connect(m_base->batchTestRunButton, SIGNAL(clicked()), this, SLOT(batchTestRunButtonClicked())); processAllGraphicsUpdates(); TQTimer::singleShot(0, this, TQT_SLOT(postInit())); } FPGAViewPart::~FPGAViewPart() { if (m_connectionMutex->locked()) { printf("[WARNING] Exiting when data transfer still in progress!\n\r"); fflush(stdout); } disconnectFromServer(); delete m_connectionMutex; } void FPGAViewPart::processAllGraphicsUpdates() { // This is an expensive operation // Use it sparingly! process4BitInputChanges(); process4BitOutputChanges(); process8BitInputChanges(); process8BitOutputChanges(); process16BitInputChanges(); process16BitOutputChanges(); processLCDOutputChanges(); process7SegmentLEDOutputChanges(); processLockouts(); } void FPGAViewPart::process4BitInputChanges() { // Read LED status into m_4bitInputValue m_4bitInputValue = 0; if (m_base->group4BitInputLED3->state() == KLed::On) m_4bitInputValue |= 0x08; if (m_base->group4BitInputLED2->state() == KLed::On) m_4bitInputValue |= 0x04; if (m_base->group4BitInputLED1->state() == KLed::On) m_4bitInputValue |= 0x02; if (m_base->group4BitInputLED0->state() == KLed::On) m_4bitInputValue |= 0x01; m_base->group4BitInputValueText->setText(TQString("0x%1").arg(m_4bitInputValue, 0, 16)); } void FPGAViewPart::process4BitOutputChanges() { // Write m_4bitOutputValue to label m_base->group4BitOutputValueText->setText(TQString("0x%1").arg(m_16bitOutputValue, 0, 16)); } void FPGAViewPart::process8BitInputChanges() { if (m_remoteInputModeEnabled) { // Read LED status into m_8bitInputValue m_8bitInputValue = 0; if (m_base->group8BitInputLED7->state() == KLed::On) m_8bitInputValue |= 0x80; if (m_base->group8BitInputLED6->state() == KLed::On) m_8bitInputValue |= 0x40; if (m_base->group8BitInputLED5->state() == KLed::On) m_8bitInputValue |= 0x20; if (m_base->group8BitInputLED4->state() == KLed::On) m_8bitInputValue |= 0x10; if (m_base->group8BitInputLED3->state() == KLed::On) m_8bitInputValue |= 0x08; if (m_base->group8BitInputLED2->state() == KLed::On) m_8bitInputValue |= 0x04; if (m_base->group8BitInputLED1->state() == KLed::On) m_8bitInputValue |= 0x02; if (m_base->group8BitInputLED0->state() == KLed::On) m_8bitInputValue |= 0x01; m_base->group8BitInputLED7->setClickable(true); m_base->group8BitInputLED6->setClickable(true); m_base->group8BitInputLED5->setClickable(true); m_base->group8BitInputLED4->setClickable(true); m_base->group8BitInputLED3->setClickable(true); m_base->group8BitInputLED2->setClickable(true); m_base->group8BitInputLED1->setClickable(true); m_base->group8BitInputLED0->setClickable(true); } else { // Write m_8bitInputValue to LEDs m_base->group8BitInputLED7->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED6->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED5->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED4->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED3->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED2->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED1->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED0->setState((m_8bitInputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitInputLED7->setClickable(false); m_base->group8BitInputLED6->setClickable(false); m_base->group8BitInputLED5->setClickable(false); m_base->group8BitInputLED4->setClickable(false); m_base->group8BitInputLED3->setClickable(false); m_base->group8BitInputLED2->setClickable(false); m_base->group8BitInputLED1->setClickable(false); m_base->group8BitInputLED0->setClickable(false); } m_base->group8BitInputValueText->setText(TQString("0x%1").arg(m_8bitInputValue, 0, 16)); if (m_remoteInputModeEnabled) { m_base->group8BitInput->setTitle(i18n("8-Bit Input Values") + " [" + i18n("Remote Input Mode") + "]"); } else { m_base->group8BitInput->setTitle(i18n("8-Bit Input Values") + " [" + i18n("Local Input Mode") + "]"); } } void FPGAViewPart::process8BitOutputChanges() { // Write m_8bitOutputValue to LEDs m_base->group8BitOutputLED7->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED6->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED5->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED4->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED3->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED2->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED1->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputLED0->setState((m_8bitOutputValue & 0x80)?KLed::On:KLed::Off); m_base->group8BitOutputValueText->setText(TQString("0x%1").arg(m_8bitOutputValue, 0, 16)); } void FPGAViewPart::process16BitInputChanges() { // Read input into m_16bitInputValue m_16bitInputValue = m_base->group16BitInputValue->value(); } void FPGAViewPart::process16BitOutputChanges() { // Write m_16bitOutputValue to label m_base->group16BitOutputValue->setText(TQString("0x%1").arg(m_16bitOutputValue, 0, 16)); } void FPGAViewPart::processLCDOutputChanges() { // Write m_LCDOutputValue to label TQString topLine = m_LCDOutputValue; TQString bottomLine = m_LCDOutputValue; topLine.truncate(16); bottomLine.remove(0,8); m_base->LCDOutputLabel->setText(topLine + "\n" + bottomLine); } void FPGAViewPart::process7SegmentLEDOutputChanges() { // Write LED digits to 7 segment displays // Note that the information stored in the data structures is bitwise inverted m_base->LEDOutputDisplayDigit0->setLitSegments(~m_7segDigit0OutputValue); m_base->LEDOutputDisplayDigit1->setLitSegments(~m_7segDigit1OutputValue); m_base->LEDOutputDisplayDigit2->setLitSegments(~m_7segDigit2OutputValue); m_base->LEDOutputDisplayDigit3->setLitSegments(~m_7segDigit3OutputValue); } void FPGAViewPart::processLockouts() { TQWidget* mainWidget = widget(); if (mainWidget) { if ((m_socket) && (m_socket->state() == TQSocket::Connected) && (connToServerState > 0) && (connToServerConnecting == false)) { mainWidget->setEnabled(true); } else { mainWidget->setEnabled(false); } } if (m_interfaceMode == BasicInterfaceMode) { m_modeBasicEnabled->setChecked(true); m_modeIntermediateEnabled->setChecked(false); m_modeAdvancedEnabled->setChecked(false); } if (m_interfaceMode == IntermediateInterfaceMode) { m_modeBasicEnabled->setChecked(false); m_modeIntermediateEnabled->setChecked(true); m_modeAdvancedEnabled->setChecked(false); } if (m_interfaceMode == AdvancedInterfaceMode) { m_modeBasicEnabled->setChecked(false); m_modeIntermediateEnabled->setChecked(false); m_modeAdvancedEnabled->setChecked(true); } if ((m_base->batchTestInputFile->url() != "") && (m_base->batchTestOutputFile->url() != "") && (m_commHandlerMode != 1) && (m_connectionActiveAndValid == true)) { m_base->batchTestRunButton->setEnabled(true); m_base->batchTest16BitCheckBox->setEnabled(true); } else { m_base->batchTestRunButton->setEnabled(false); m_base->batchTest16BitCheckBox->setEnabled(false); } if (m_commHandlerMode == 1) { m_base->batchTestInputFile->setEnabled(false); m_base->batchTestOutputFile->setEnabled(false); } else { m_base->batchTestInputFile->setEnabled(true); m_base->batchTestOutputFile->setEnabled(true); } } void FPGAViewPart::switchToBasicMode() { m_interfaceMode = BasicInterfaceMode; processLockouts(); } void FPGAViewPart::switchToIntermediateMode() { m_interfaceMode = IntermediateInterfaceMode; processLockouts(); } void FPGAViewPart::switchToAdvancedMode() { m_interfaceMode = AdvancedInterfaceMode; processLockouts(); } void FPGAViewPart::connectionClosed() { closeURL(); } void FPGAViewPart::postInit() { connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(updateDisplay())); } bool FPGAViewPart::openURL(const KURL &url) { int ret; ret = connectToServer(url.url()); processLockouts(); return (ret != 0); } bool FPGAViewPart::closeURL() { disconnectFromServer(); m_url = KURL(); return true; } void FPGAViewPart::disconnectFromServer() { if (m_socket) { m_socket->clearPendingData(); m_socket->close(); delete m_socket; m_socket = NULL; } processLockouts(); } void FPGAViewPart::finishConnectingToServer() { if (!m_socket) { connToServerState = -1; connToServerConnecting = false; processLockouts(); return; } if (connToServerConnecting) { switch(connToServerState) { case 0: if (!connToServerTimeoutTimer) { connToServerTimeoutTimer = new TQTimer; connToServerTimeoutTimer->start(SERVER_TIMEOUT_MS, TRUE); } if ((m_socket->state() == TQSocket::Connecting) || (m_socket->state() == TQSocket::HostLookup)) { if (!connToServerTimeoutTimer->isActive()) { connToServerState = -3; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("Unable to establish connection to remote server"), i18n("Connection Failed")); } } else { if (m_socket->state() == TQSocket::Connected) { printf("[DEBUG] Initial connection established...\n\r"); fflush(stdout); m_socket->setDataTimeout(SERVER_TIMEOUT_MS); m_socket->setUsingKerberos(true); connToServerState = 1; } else { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("Unable to establish connection to remote server"), i18n("Connection Failed")); } } break; case 1: if (m_socket->kerberosStatus() == TDEKerberosClientSocket::KerberosInitializing) { // Do nothing } else { if (m_socket->kerberosStatus() != TDEKerberosClientSocket::KerberosInUse) { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("Unable to establish Kerberos protocol with remote server

Please verify that you currently hold a valid Kerberos ticket"), i18n("Connection Failed")); } else { connToServerState = 2; } } break; case 2: // Connection established! // Read magic number and proto version from server TQDataStream ds(m_socket); TQ_UINT32 magicnum; TQ_UINT32 protover; ds >> magicnum; ds >> protover; printf("[DEBUG] Got magic number %d and protocol version %d\n\r", magicnum, protover); fflush(stdout); // Request connection to backend server TQString response; ds << TQString("SERV"); ds << TQString(CLIENT_LIBRARY); ds >> response; printf("[RAJA DEBUG 400.0] Got '%s' from the server\n\r", response.ascii()); fflush(stdout); if (response == "OK") { connToServerState = 3; connToServerConnecting = false; connect(m_socket, SIGNAL(readyRead()), m_socket, SLOT(processPendingData())); connect(m_socket, SIGNAL(newDataReceived()), this, SLOT(updateDisplay())); m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); processLockouts(); return; } else if (response == "ERRNOCONN") { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("Unable to establish connection with backend server

Please verify that you are currently connected to a workspace"), i18n("Connection Failed")); close(); return; } else if (response == "ERRNOTAVL") { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("The backend server is not available at this time

Please try a different workspace, or try again later"), i18n("Connection Failed")); close(); return; } else if (response == "ERRNOSERV") { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("The active laboratory workspace does not support the requested service"), i18n("Service Unavailable")); close(); return; } else { connToServerState = -1; connToServerConnecting = false; disconnectFromServer(); KMessageBox::error(0, i18n("Unable to establish connection with remote server"), i18n("Connection Failed")); close(); return; } break; } TQTimer::singleShot(0, this, SLOT(finishConnectingToServer())); } } int FPGAViewPart::connectToServer(TQString server) { if (m_socket) { return -1; } if (!m_socket) { m_socket = new TDEKerberosClientSocket(this); connect(m_socket, TQT_SIGNAL(statusMessageUpdated(const TQString&)), this, TQT_SLOT(setStatusMessage(const TQString&) )); } m_socket->setServiceName("remotefpga"); m_socket->setServerFQDN(server); m_socket->connectToHost(server, 4004); // Finish connecting when appropriate connToServerState = 0; connToServerConnecting = true; TQTimer::singleShot(0, this, SLOT(finishConnectingToServer())); return 0; } TQPtrList FPGAViewPart::menuActionList() { return m_menuActionList; } void FPGAViewPart::batchTestRunButtonClicked() { m_commHandlerState = 0; m_commHandlerMode = 1; m_batchUsing16Bit = m_base->batchTest16BitCheckBox->isChecked(); processLockouts(); } void FPGAViewPart::sendInputStatesToRemoteFPGA() { if (m_socket) { char data[64]; process4BitInputChanges(); process8BitInputChanges(); process16BitInputChanges(); // 4-bit inputs data[0] = 'I'; data[1] = '\r'; data[2] = m_4bitInputValue; data[3] = '\r'; // 8-bit inputs data[4] = 'B'; data[5] = '\r'; data[6] = m_8bitInputValue; data[7] = '\r'; // 16-bit inputs data[8] = 'C'; data[9] = '\r'; data[10] = (m_16bitInputValue&0xff00)>>8; data[11] = m_16bitInputValue&0xff; data[12] = '\r'; m_socket->writeBlock(data, 13); } } void FPGAViewPart::receiveInputStatesFromRemoteFPGA() { if (m_socket) { char data[64]; // LCD m_socket->readBlock(data, 32); char line[34]; memcpy(line, data, 16); line[16] = '\n'; memcpy(line+17, data+16, 16); line[33] = 0; m_base->LCDOutputLabel->setText(line); // Remote/Local input mode m_socket->readBlock(data, 1); if (data[0] == 0) { // Local mode m_remoteInputModeEnabled = false; } else { // Remote mode m_remoteInputModeEnabled = true; } // 4-bit outputs m_socket->readBlock(data, 1); m_4bitOutputValue = data[0]; // 8-bit outputs m_socket->readBlock(data, 1); m_8bitOutputValue = data[0]; // 16-bit outputs m_socket->readBlock(data, 2); m_16bitOutputValue = (data[0] << 8) | data[1]; // 7-segment LED display m_socket->readBlock(data, 4); m_7segDigit3OutputValue = data[0]; m_7segDigit2OutputValue = data[1]; m_7segDigit1OutputValue = data[2]; m_7segDigit0OutputValue = data[3]; // Write changes to GUI process4BitOutputChanges(); process8BitInputChanges(); process8BitOutputChanges(); process16BitOutputChanges(); processLCDOutputChanges(); process7SegmentLEDOutputChanges(); } } #define UPDATEDISPLAY_TIMEOUT m_connectionActiveAndValid = false; \ m_tickerState = 0; \ m_commHandlerState = 0; \ m_commHandlerMode = 0; \ while (m_socket->bytesAvailable() > 0) { \ m_socket->readBlock(data, 64); \ } \ setStatusMessage(i18n("Debug interface timeout, still waiting for data. Please verify that the FPGA is properly configured.")); \ m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); \ return; void FPGAViewPart::updateDisplay() { m_updateTimer->stop(); if (m_socket) { char data[64]; if (m_commHandlerMode == 0) { // Normal operation switch (m_commHandlerState) { case 0: // Send current input states to remote system sendInputStatesToRemoteFPGA(); // Send request for all output states m_socket->writeLine("L\r"); m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); m_commHandlerState = 1; break; case 1: // Get all data if (m_socket->bytesAvailable() >= 41) { // Process the received data packet receiveInputStatesFromRemoteFPGA(); m_connectionActiveAndValid = true; TQString tickerChar; switch (m_tickerState) { case 0: tickerChar = "-"; break; case 1: tickerChar = "\\"; break; case 2: tickerChar = "|"; break; case 3: tickerChar = "/"; break; } setStatusMessage(i18n("Running") + TQString("... %1").arg(tickerChar)); m_tickerState++; if (m_tickerState > 3) { m_tickerState = 0; } m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); m_commHandlerState = 0; } else { if (!m_updateTimer->isActive()) { UPDATEDISPLAY_TIMEOUT } } break; } } else if (m_commHandlerMode == 1) { // Batch test mode // This expects to see a newline-delimited text file containing input values to test if (m_commHandlerState == 0) { m_batchInputValueList.clear(); TQFile file(m_base->batchTestInputFile->url()); if (file.open(IO_ReadOnly)) { TQTextStream stream(&file); TQString line; while (!stream.atEnd()) { line = stream.readLine(); m_batchInputValueList.append(line.toUInt()); } file.close(); m_base->batchTestProgressBar->setTotalSteps(m_batchInputValueList.count()); m_batchOutputFile = new TQFile(m_base->batchTestOutputFile->url()); if (m_batchOutputFile->open(IO_WriteOnly)) { m_batchCurrentValueIndex = 0; m_commHandlerState = 1; } else { KMessageBox::error(0, i18n("Unable to open selected batch output file"), i18n("Batch Failed")); m_commHandlerMode = 0; m_commHandlerState = 0; m_base->batchTestProgressBar->setProgress(0); processLockouts(); } } else { KMessageBox::error(0, i18n("Unable to open selected batch input file"), i18n("Batch Failed")); m_commHandlerMode = 0; m_commHandlerState = 0; m_base->batchTestProgressBar->setProgress(0); processLockouts(); } } else if (m_commHandlerState == 1) { if (m_batchCurrentValueIndex >= m_batchInputValueList.count()) { // Done! m_commHandlerMode = 0; m_commHandlerState = 0; m_base->batchTestProgressBar->setProgress(0); processLockouts(); } else { if (m_batchUsing16Bit) { m_16bitInputValue = m_batchInputValueList[m_batchCurrentValueIndex]; } else { m_8bitInputValue = m_batchInputValueList[m_batchCurrentValueIndex]; } sendInputStatesToRemoteFPGA(); // Send request for all output states m_socket->writeLine("L\r"); m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); m_commHandlerState = 2; } } else if (m_commHandlerState == 2) { // Get all data if (m_socket->bytesAvailable() >= 41) { TQString line; // Process the received data packet receiveInputStatesFromRemoteFPGA(); // Write received data to batch output file if (m_batchUsing16Bit) { line = TQString("%1\n").arg(m_16bitOutputValue); } else { line = TQString("%1\n").arg(m_8bitOutputValue); } m_batchOutputFile->writeBlock(line.ascii(), line.length()); m_base->batchTestProgressBar->setProgress(m_batchCurrentValueIndex); m_batchCurrentValueIndex++; m_connectionActiveAndValid = true; setStatusMessage(i18n("Running batch test") + "..."); m_updateTimer->start(FPGA_COMM_TIMEOUT_MS, FALSE); m_commHandlerState = 1; } else { if (!m_updateTimer->isActive()) { UPDATEDISPLAY_TIMEOUT m_base->batchTestProgressBar->setProgress(0); processLockouts(); } } } } else if (m_commHandlerMode == 2) { // Data processing mode // This detects when the incoming data file is a picture (bmp, png, etc.) and processes it accordingly // RAJA FIXME } } else { m_commHandlerState = 0; m_commHandlerMode = 0; } } KAboutData* FPGAViewPart::createAboutData() { return new KAboutData( APP_NAME, I18N_NOOP( APP_PRETTYNAME ), APP_VERSION ); } } //namespace RemoteLab #include "part.moc"