You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
digikam/digikam/imageplugins/hotpixels/weights.cpp

284 lines
8.5 KiB

/* ============================================================
*
* This file is a part of digiKam project
* http://www.digikam.org
*
* Date : 2005-03-27
* Description : a class to calculate filter weights
*
* Copyright (C) 2005-2006 by Unai Garro <ugarro at users dot sourceforge dot net>
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software Foundation;
* either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ============================================================ */
// C++ includes.
#include <cstring>
// Local includes.
#include "weights.h"
namespace DigikamHotPixelsImagesPlugin
{
Weights::Weights(const Weights &w)
{
(*this) = w;
}
void Weights::operator=(const Weights &w)
{
mHeight=w.height();
mWidth=w.width();
mPositions=(w.positions());
mCoefficientNumber=w.coefficientNumber();
mTwoDim=w.twoDim();
mPolynomeOrder=w.polynomeOrder();
// Allocate memory and copy weights
// if the original one was calculated
if (!w.weightMatrices()) return;
else
{
double*** origMatrices=w.weightMatrices();
mWeightMatrices = new double**[mPositions.count()]; //allocate mPositions.count() matrices
for (uint i=0; i<mPositions.count(); i++)
{
mWeightMatrices[i]=new double*[mHeight]; //allocate mHeight rows on each position
for (unsigned int j=0; j<mHeight; j++)
{
mWeightMatrices[i][j]=new double[mWidth]; //Allocate mWidth columns on each row
for (unsigned int k=0; k<mWidth; k++)
{
mWeightMatrices[i][j][k]=origMatrices[i][j][k];
}
}
}
}
}
void Weights::calculateWeights()
{
mCoefficientNumber = (mTwoDim
? ((size_t)mPolynomeOrder + 1) * ((size_t)mPolynomeOrder + 1)
: (size_t)mPolynomeOrder + 1);
double *matrix; /* num_coeff * num_coeff */
double *vector0; /* mPositions.count() * num_coeff */
double *vector1; /* mPositions.count() * num_coeff */
size_t ix,iy,i,j;
int x, y;
// Determine coordinates of pixels to be sampled
if (mTwoDim)
{
int iPolynomeOrder=(int) mPolynomeOrder; //lets avoid signed/unsigned comparison warnings
int iHeight = (int) height(); //"
int iWidth = (int) width(); //"
for (y = -iPolynomeOrder; y < iHeight + iPolynomeOrder; ++y)
{
for (x = -iPolynomeOrder; x < iWidth + iPolynomeOrder; ++x)
{
if ((x < 0 && y < 0 && -x - y < iPolynomeOrder + 2)
|| (x < 0 && y >= iHeight && -x + y - iHeight < iPolynomeOrder + 1)
|| (x >= iWidth && y < 0 && x - y - iWidth < iPolynomeOrder + 1)
|| (x >= iWidth && y >= iHeight && x + y - iWidth - iHeight < iPolynomeOrder)
|| (x < 0 && y >= 0 && y < iHeight) || (x >= iWidth && y >= 0 && y < iHeight)
|| (y < 0 && x >= 0 && x < iWidth ) || (y >= iHeight && x >= 0 && x < iWidth))
{
TQPoint position(x,y);
mPositions.append(position);
}
}
}
}
else
{
// In the one-dimensional case, only the y coordinate and y size is used. */
for (y = -mPolynomeOrder; y < 0; ++y)
{
TQPoint position(0,y);
mPositions.append(position);
}
for (y = (int) height(); y < (int) height() + (int) mPolynomeOrder; ++y)
{
TQPoint position(0,y);
mPositions.append(position);
}
}
// Allocate memory.
matrix = new double[mCoefficientNumber*mCoefficientNumber];
vector0 = new double[mPositions.count() * mCoefficientNumber];
vector1 = new double[mPositions.count() * mCoefficientNumber];
// Calculate coefficient matrix and vectors
for (iy = 0; iy < mCoefficientNumber; ++iy)
{
for (ix = 0; ix < mCoefficientNumber; ++ix)
matrix [iy*mCoefficientNumber+ix] = 0.0;
for (j = 0; j < mPositions.count(); ++j)
{
vector0 [iy * mPositions.count() + j] = polyTerm (iy, mPositions [j].x(),
mPositions [j].y(), mPolynomeOrder);
for (ix = 0; ix < mCoefficientNumber; ++ix)
matrix [iy * mCoefficientNumber + ix] += (vector0 [iy * mPositions.count() + j]
* polyTerm (ix, mPositions [j].x(), mPositions[j].y(), mPolynomeOrder));
}
}
// Invert matrix.
matrixInv (matrix, mCoefficientNumber);
// Multiply inverse matrix with vector.
for (iy = 0; iy < mCoefficientNumber; ++iy)
for (j = 0; j < mPositions.count(); ++j)
{
vector1 [iy * mPositions.count() + j] = 0.0;
for (ix = 0; ix < mCoefficientNumber; ++ix)
vector1 [iy * mPositions.count() + j] += matrix [iy * mCoefficientNumber + ix]
* vector0 [ix * mPositions.count() + j];
}
// Store weights
mWeightMatrices = new double**[mPositions.count()]; //allocate mPositions.count() matrices
for (i=0; i<mPositions.count(); i++)
{
mWeightMatrices[i] = new double*[mHeight]; //allocate mHeight rows on each position
for (j=0; j<mHeight; j++)
mWeightMatrices[i][j] = new double[mWidth]; //Allocate mWidth columns on each row
}
for (y = 0; y < (int) mHeight; ++y)
{
for (x = 0; x < (int) mWidth; ++x)
{
for (j = 0; j < mPositions.count(); ++j)
{
mWeightMatrices [j][y][x] = 0.0;
for (iy = 0; iy < mCoefficientNumber; ++iy)
mWeightMatrices [j][y][x] += vector1 [iy * mPositions.count() + j]
* polyTerm (iy, x, y, mPolynomeOrder);
mWeightMatrices [j][y][x] *= (double) mPositions.count();
}
}
}
delete[] vector1;
delete[] vector0;
delete[] matrix;
}
bool Weights::operator==(const Weights& ws) const
{
return (mHeight==ws.height() &&
mWidth==ws.width() &&
mPolynomeOrder==ws.polynomeOrder() &&
mTwoDim==ws.twoDim()
);
}
//Invert a quadratic matrix.
void Weights::matrixInv (double *const a, const size_t size)
{
double *const b = new double[size * size];
size_t ix, iy, j;
// Copy matrix to new location.
memcpy (b, a, sizeof (double) * size * size);
// Set destination matrix to unit matrix.
for (iy = 0; iy < size; ++iy)
for (ix = 0; ix < size; ++ix)
a [iy * size + ix] = ix == iy ? 1.0 : 0.0;
// Convert matrix to upper triangle form.
for (iy = 0; iy < size - 1; ++iy)
{
for (j = iy + 1; j < size; ++j)
{
const double factor = b [j * size + iy] / b [iy * size + iy];
for (ix = 0; ix < size; ++ix)
{
b [j * size + ix] -= factor * b [iy * size + ix];
a [j * size + ix] -= factor * a [iy * size + ix];
}
}
}
// Convert matrix to diagonal form.
for (iy = size - 1; iy > 0; --iy)
{
for (j = 0; j < iy; ++j)
{
const double factor = b [j * size + iy] / b [iy * size + iy];
for (ix = 0; ix < size; ++ix)
a [j * size + ix] -= factor * a [iy * size + ix];
}
}
// Convert matrix to unit matrix.
for (iy = 0; iy < size; ++iy)
for (ix = 0; ix < size; ++ix)
a [iy * size + ix] /= b [iy * size + iy];
delete [] b;
}
// Calculates one term of the polynomial
double Weights::polyTerm (const size_t i_coeff, const int x, const int y, const int poly_order)
{
const size_t x_power = i_coeff / ((size_t)poly_order + 1);
const size_t y_power = i_coeff % ((size_t)poly_order + 1);
int result;
size_t i;
result = 1;
for (i = 0; i < x_power; ++i)
result *= x;
for (i = 0; i < y_power; ++i)
result *= y;
return (double)result;
}
} // NameSpace DigikamHotPixelsImagesPlugin