You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
digikam/digikam/libs/dimg/loaders/tiffloader.cpp

807 lines
26 KiB

/* ============================================================
*
* This file is a part of digiKam project
* http://www.digikam.org
*
* Date : 2005-06-17
* Description : A TIFF IO file for DImg framework
*
* Copyright (C) 2005 by Renchi Raju <renchi@pooh.tam.uiuc.edu>
* Copyright (C) 2006-2008 by Gilles Caulier <caulier dot gilles at gmail dot com>
*
* Specifications & references:
* - TIFF 6.0 : http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
* - TIFF/EP : http://www.map.tu.chiba-u.ac.jp/IEC/100/TA2/recdoc/N4378.pdf
* - TIFF/Tags : http://www.awaresystems.be/imaging/tiff/tifftags.html
* - DNG : http://www.adobe.com/products/dng/pdfs/dng_spec.pdf
*
* Others Linux Tiff Loader implementation using libtiff:
* - http://websvn.kde.org/trunk/koffice/filters/krita/tiff/kis_tiff_converter.cc
* - http://artis.inrialpes.fr/Software/TiffIO/
* - http://cvs.graphicsmagick.org/cgi-bin/cvsweb.cgi/GraphicsMagick/coders/tiff.c
* - http://freeimage.cvs.sourceforge.net/freeimage/FreeImage/Source/FreeImage/PluginTIFF.cpp
* - http://freeimage.cvs.sourceforge.net/freeimage/FreeImage/Source/Metadata/XTIFF.cpp
* - https://subversion.imagemagick.org/subversion/ImageMagick/trunk/coders/tiff.c
*
* Test images repository:
* - http://www.remotesensing.org/libtiff/images.html
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software Foundation;
* either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ============================================================ */
// This line must be commented to prevent any latency time
// when we use threaded image loader interface for each image
// files io. Uncomment this line only for debugging.
//#define ENABLE_DEBUG_MESSAGES
// C ANSI includes.
extern "C"
{
#include <tiffvers.h>
}
// C++ includes.
#include <cstdio>
// TQt includes.
#include <tqfile.h>
// Local includes.
#include "ddebug.h"
#include "dimg.h"
#include "dimgloaderobserver.h"
#include "dmetadata.h"
#include "tiffloader.h"
namespace Digikam
{
// To manage Errors/Warnings handling provide by libtiff
void TIFFLoader::dimg_tiff_warning(const char* module, const char* format, va_list warnings)
{
#ifdef ENABLE_DEBUG_MESSAGES
char message[4096];
vsnprintf(message, 4096, format, warnings);
DDebug() << module << "::" << message << endl;
#else
Q_UNUSED(module);
Q_UNUSED(format);
Q_UNUSED(warnings);
#endif
}
void TIFFLoader::dimg_tiff_error(const char* module, const char* format, va_list errors)
{
#ifdef ENABLE_DEBUG_MESSAGES
char message[4096];
vsnprintf(message, 4096, format, errors);
DDebug() << module << "::" << message << endl;
#else
Q_UNUSED(module);
Q_UNUSED(format);
Q_UNUSED(errors);
#endif
}
TIFFLoader::TIFFLoader(DImg* image)
: DImgLoader(image)
{
m_hasAlpha = false;
m_sixteenBit = false;
}
bool TIFFLoader::load(const TQString& filePath, DImgLoaderObserver *observer)
{
readMetadata(filePath, DImg::TIFF);
// -------------------------------------------------------------------
// TIFF error handling. If an errors/warnings occurs during reading,
// libtiff will call these methods
TIFFSetWarningHandler(dimg_tiff_warning);
TIFFSetErrorHandler(dimg_tiff_error);
// -------------------------------------------------------------------
// Open the file
TIFF* tif = TIFFOpen(TQFile::encodeName(filePath), "r");
if (!tif)
{
DDebug() << k_funcinfo << "Cannot open image file." << endl;
return false;
}
#ifdef ENABLE_DEBUG_MESSAGES
TIFFPrintDirectory(tif, stdout, 0);
#endif
// -------------------------------------------------------------------
// Get image information.
uint32 w, h;
uint16 bits_per_sample;
uint16 samples_per_pixel;
uint16 photometric;
uint32 rows_per_strip;
tsize_t strip_size;
tstrip_t num_of_strips;
TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGEWIDTH, &w);
TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGELENGTH, &h);
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bits_per_sample);
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &samples_per_pixel);
if (TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rows_per_strip) == 0 ||
rows_per_strip == 0 || rows_per_strip == (unsigned int)-1)
{
DWarning() << "TIFF loader: Cannot handle non-stripped images. Loading file " << filePath << endl;
TIFFClose(tif);
return false;
}
if (bits_per_sample == 0 || samples_per_pixel == 0 ||
rows_per_strip == 0 || rows_per_strip > h)
{
DWarning() << "TIFF loader: Encountered invalid value 0 in image."
<< " bits_per_sample " << bits_per_sample
<< " samples_per_pixel " << samples_per_pixel
<< " rows_per_strip " << rows_per_strip
<< " Loading file " << filePath << endl;
TIFFClose(tif);
return false;
}
// TODO: check others TIFF color-spaces here. Actually, only RGB and MINISBLACK
// have been tested.
// Complete description of TIFFTAG_PHOTOMETRIC tag can be found at this url:
// http://www.awaresystems.be/imaging/tiff/tifftags/photometricinterpretation.html
TIFFGetFieldDefaulted(tif, TIFFTAG_PHOTOMETRIC, &photometric);
if (photometric != PHOTOMETRIC_RGB &&
photometric != PHOTOMETRIC_MINISBLACK)
{
DWarning() << "Can't handle image without RGB color-space: "
<< photometric << endl;
TIFFClose(tif);
return false;
}
if (samples_per_pixel == 4)
m_hasAlpha = true;
else
m_hasAlpha = false;
if (bits_per_sample == 16)
m_sixteenBit = true;
else
m_sixteenBit = false;
// -------------------------------------------------------------------
// Read image ICC profile
TQMap<int, TQByteArray>& metaData = imageMetaData();
uchar *profile_data=0;
uint32 profile_size;
if (TIFFGetField (tif, TIFFTAG_ICCPROFILE, &profile_size, &profile_data))
{
TQByteArray profile_rawdata(profile_size);
memcpy(profile_rawdata.data(), profile_data, profile_size);
metaData.insert(DImg::ICC, profile_rawdata);
}
else
{
// If ICC profile is null, check Exif metadata.
checkExifWorkingColorSpace();
}
// -------------------------------------------------------------------
// Get image data.
if (observer)
observer->progressInfo(m_image, 0.1);
uchar* data = 0;
strip_size = TIFFStripSize(tif);
num_of_strips = TIFFNumberOfStrips(tif);
if (bits_per_sample == 16) // 16 bits image.
{
data = new uchar[w*h*8];
uchar* strip = new uchar[strip_size];
long offset = 0;
long bytesRead = 0;
uint checkpoint = 0;
for (tstrip_t st=0; st < num_of_strips; st++)
{
if (observer && st == checkpoint)
{
checkpoint += granularity(observer, num_of_strips, 0.8);
if (!observer->continueQuery(m_image))
{
delete [] data;
delete [] strip;
TIFFClose(tif);
return false;
}
observer->progressInfo(m_image, 0.1 + (0.8 * ( ((float)st)/((float)num_of_strips) )));
}
bytesRead = TIFFReadEncodedStrip(tif, st, strip, strip_size);
if (bytesRead == -1)
{
DDebug() << k_funcinfo << "Failed to read strip" << endl;
delete [] data;
TIFFClose(tif);
return false;
}
ushort *stripPtr = (ushort*)(strip);
ushort *dataPtr = (ushort*)(data + offset);
ushort *p;
// tiff data is read as BGR or ABGR or Greyscale
if (samples_per_pixel == 3)
{
for (int i=0; i < bytesRead/6; i++)
{
p = dataPtr;
// See B.K.O #148037 : take a care about byte order with Motorola computers.
if (TQImage::systemByteOrder() == TQImage::BigEndian) // PPC
{
p[3] = *stripPtr++;
p[0] = *stripPtr++;
p[1] = *stripPtr++;
p[2] = 0xFFFF;
}
else
{
p[2] = *stripPtr++;
p[1] = *stripPtr++;
p[0] = *stripPtr++;
p[3] = 0xFFFF;
}
dataPtr += 4;
}
offset += bytesRead/6 * 8;
}
else if (samples_per_pixel == 1) // See B.K.O #148400: Greyscale pictures only have _one_ sample per pixel
{
for (int i=0; i < bytesRead/2; i++)
{
// We have to read two bytes for one pixel
p = dataPtr;
// See B.K.O #148037 : take a care about byte order with Motorola computers.
if (TQImage::systemByteOrder() == TQImage::BigEndian) // PPC
{
p[3] = 0xFFFF;
p[0] = *stripPtr;
p[1] = *stripPtr;
p[2] = *stripPtr++;
}
else
{
p[0] = *stripPtr; // RGB have to be set to the _same_ value
p[1] = *stripPtr;
p[2] = *stripPtr++;
p[3] = 0xFFFF; // set alpha to 100%
}
dataPtr += 4;
}
offset += bytesRead*4; // The _byte_offset in the data array is, of course, four times bytesRead
}
else // ABGR
{
for (int i=0; i < bytesRead/8; i++)
{
p = dataPtr;
// See B.K.O #148037 : take a care about byte order with Motorola computers.
if (TQImage::systemByteOrder() == TQImage::BigEndian) // PPC
{
p[3] = *stripPtr++;
p[0] = *stripPtr++;
p[1] = *stripPtr++;
p[2] = *stripPtr++;
}
else
{
p[2] = *stripPtr++;
p[1] = *stripPtr++;
p[0] = *stripPtr++;
p[3] = *stripPtr++;
}
dataPtr += 4;
}
offset += bytesRead;
}
}
delete [] strip;
}
else // Non 16 bits images ==> get it on BGRA 8 bits.
{
data = new uchar[w*h*4];
uchar* strip = new uchar[w*rows_per_strip*4];
long offset = 0;
long pixelsRead = 0;
// this is inspired by TIFFReadRGBAStrip, tif_getimage.c
char emsg[1024] = "";
TIFFRGBAImage img;
uint32 rows_to_read;
uint checkpoint = 0;
// test whether libtiff can read format and initiate reading
if (!TIFFRGBAImageOK(tif, emsg) || !TIFFRGBAImageBegin(&img, tif, 0, emsg))
{
DDebug() << k_funcinfo << "Failed to set up RGBA reading of image, filename "
<< TIFFFileName(tif) << " error message from Libtiff: " << emsg << endl;
delete [] data;
delete [] strip;
TIFFClose(tif);
return false;
}
img.req_orientation = ORIENTATION_TOPLEFT;
// read strips from image: read rows_per_strip, so always start at beginning of a strip
for (uint row = 0; row < h; row += rows_per_strip)
{
if (observer && row >= checkpoint)
{
checkpoint += granularity(observer, h, 0.8);
if (!observer->continueQuery(m_image))
{
delete [] data;
delete [] strip;
TIFFClose(tif);
return false;
}
observer->progressInfo(m_image, 0.1 + (0.8 * ( ((float)row)/((float)h) )));
}
img.row_offset = row;
img.col_offset = 0;
if( row + rows_per_strip > img.height )
rows_to_read = img.height - row;
else
rows_to_read = rows_per_strip;
// Read data
if (TIFFRGBAImageGet(&img, (uint32*)strip, img.width, rows_to_read ) == -1)
{
DDebug() << k_funcinfo << "Failed to read image data" << endl;
delete [] data;
delete [] strip;
TIFFClose(tif);
return false;
}
pixelsRead = rows_to_read * img.width;
uchar *stripPtr = (uchar*)(strip);
uchar *dataPtr = (uchar*)(data + offset);
uchar *p;
// Reverse red and blue
for (int i=0; i < pixelsRead; i++)
{
p = dataPtr;
// See B.K.O #148037 : take a care about byte order with Motorola computers.
if (TQImage::systemByteOrder() == TQImage::BigEndian) // PPC
{
p[3] = *stripPtr++;
p[0] = *stripPtr++;
p[1] = *stripPtr++;
p[2] = *stripPtr++;
}
else
{
p[2] = *stripPtr++;
p[1] = *stripPtr++;
p[0] = *stripPtr++;
p[3] = *stripPtr++;
}
dataPtr += 4;
}
offset += pixelsRead * 4;
}
TIFFRGBAImageEnd(&img);
delete [] strip;
}
// -------------------------------------------------------------------
TIFFClose(tif);
if (observer)
observer->progressInfo(m_image, 1.0);
imageWidth() = w;
imageHeight() = h;
imageData() = data;
imageSetAttribute("format", "TIFF");
return true;
}
bool TIFFLoader::save(const TQString& filePath, DImgLoaderObserver *observer)
{
TIFF *tif;
uchar *data;
uint32 w, h;
w = imageWidth();
h = imageHeight();
data = imageData();
// -------------------------------------------------------------------
// TIFF error handling. If an errors/warnings occurs during reading,
// libtiff will call these methods
TIFFSetWarningHandler(dimg_tiff_warning);
TIFFSetErrorHandler(dimg_tiff_error);
// -------------------------------------------------------------------
// Open the file
tif = TIFFOpen(TQFile::encodeName(filePath), "w");
if (!tif)
{
DDebug() << k_funcinfo << "Cannot open target image file." << endl;
return false;
}
// -------------------------------------------------------------------
// Set image properties
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, w);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, h);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField(tif, TIFFTAG_RESOLUTIONUNIT, RESUNIT_NONE);
// Image must be compressed using deflate algorithm ?
TQVariant compressAttr = imageGetAttribute("compress");
bool compress = compressAttr.isValid() ? compressAttr.toBool() : false;
if (compress)
{
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_ADOBE_DEFLATE);
TIFFSetField(tif, TIFFTAG_ZIPQUALITY, 9);
// NOTE : this tag values aren't defined in libtiff 3.6.1. '2' is PREDICTOR_HORIZONTAL.
// Use horizontal differencing for images which are
// likely to be continuous tone. The TIFF spec says that this
// usually leads to better compression.
// See this url for more details:
// http://www.awaresystems.be/imaging/tiff/tifftags/predictor.html
TIFFSetField(tif, TIFFTAG_PREDICTOR, 2);
}
else
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
// Image has an alpha channel ?
if (imageHasAlpha())
{
uint16 sampleinfo[1] = { EXTRASAMPLE_UNASSALPHA };
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 4);
TIFFSetField(tif, TIFFTAG_EXTRASAMPLES, EXTRASAMPLE_ASSOCALPHA, sampleinfo);
}
else
{
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
}
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, (uint16)imageBitsDepth());
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, 0));
// -------------------------------------------------------------------
// Write meta-data Tags contents.
DMetadata metaData;
metaData.setExif(m_image->getExif());
metaData.setIptc(m_image->getIptc());
// Standard IPTC tag (available with libtiff 3.6.1)
TQByteArray ba = metaData.getIptc(true);
if (!ba.isEmpty())
{
#if defined(TIFFTAG_PHOTOSHOP)
TIFFSetField (tif, TIFFTAG_PHOTOSHOP, (uint32)ba.size(), (uchar *)ba.data());
#endif
}
// Standard XMP tag (available with libtiff 3.6.1)
#if defined(TIFFTAG_XMLPACKET)
tiffSetExifDataTag(tif, TIFFTAG_XMLPACKET, &metaData, "Exif.Image.XMLPacket");
#endif
// Standard Exif Ascii tags (available with libtiff 3.6.1)
tiffSetExifAsciiTag(tif, TIFFTAG_DOCUMENTNAME, &metaData, "Exif.Image.DocumentName");
tiffSetExifAsciiTag(tif, TIFFTAG_IMAGEDESCRIPTION, &metaData, "Exif.Image.ImageDescription");
tiffSetExifAsciiTag(tif, TIFFTAG_MAKE, &metaData, "Exif.Image.Make");
tiffSetExifAsciiTag(tif, TIFFTAG_MODEL, &metaData, "Exif.Image.Model");
tiffSetExifAsciiTag(tif, TIFFTAG_DATETIME, &metaData, "Exif.Image.DateTime");
tiffSetExifAsciiTag(tif, TIFFTAG_ARTIST, &metaData, "Exif.Image.Artist");
tiffSetExifAsciiTag(tif, TIFFTAG_COPYRIGHT, &metaData, "Exif.Image.Copyright");
TQString soft = metaData.getExifTagString("Exif.Image.Software");
TQString libtiffver(TIFFLIB_VERSION_STR);
libtiffver.replace('\n', ' ');
soft.append(TQString(" ( %1 )").arg(libtiffver));
TIFFSetField(tif, TIFFTAG_SOFTWARE, (const char*)soft.ascii());
// NOTE: All others Exif tags will be written by Exiv2 (<= 0.18)
// -------------------------------------------------------------------
// Write ICC profil.
TQByteArray profile_rawdata = m_image->getICCProfil();
if (!profile_rawdata.isEmpty())
{
#if defined(TIFFTAG_ICCPROFILE)
TIFFSetField(tif, TIFFTAG_ICCPROFILE, (uint32)profile_rawdata.size(), (uchar *)profile_rawdata.data());
#endif
}
// -------------------------------------------------------------------
// Write full image data in tiff directory IFD0
if (observer)
observer->progressInfo(m_image, 0.1);
uint8 *buf=0;
uchar *pixel;
double alpha_factor;
uint32 x, y;
uint8 r8, g8, b8, a8=0;
uint16 r16, g16, b16, a16=0;
int i=0;
buf = (uint8 *) _TIFFmalloc(TIFFScanlineSize(tif));
if (!buf)
{
DDebug() << k_funcinfo << "Cannot allocate memory buffer for main image." << endl;
TIFFClose(tif);
return false;
}
uint checkpoint = 0;
for (y = 0; y < h; y++)
{
if (observer && y == checkpoint)
{
checkpoint += granularity(observer, h, 0.8);
if (!observer->continueQuery(m_image))
{
_TIFFfree(buf);
TIFFClose(tif);
return false;
}
observer->progressInfo(m_image, 0.1 + (0.8 * ( ((float)y)/((float)h) )));
}
i = 0;
for (x = 0; x < w; x++)
{
pixel = &data[((y * w) + x) * imageBytesDepth()];
if ( imageSixteenBit() ) // 16 bits image.
{
b16 = (uint16)(pixel[0]+256*pixel[1]);
g16 = (uint16)(pixel[2]+256*pixel[3]);
r16 = (uint16)(pixel[4]+256*pixel[5]);
if (imageHasAlpha())
{
// TIFF makes you pre-mutiply the rgb components by alpha
a16 = (uint16)(pixel[6]+256*pixel[7]);
alpha_factor = ((double)a16 / 65535.0);
r16 = (uint16)(r16*alpha_factor);
g16 = (uint16)(g16*alpha_factor);
b16 = (uint16)(b16*alpha_factor);
}
// This might be endian dependent
buf[i++] = (uint8)(r16);
buf[i++] = (uint8)(r16 >> 8);
buf[i++] = (uint8)(g16);
buf[i++] = (uint8)(g16 >> 8);
buf[i++] = (uint8)(b16);
buf[i++] = (uint8)(b16 >> 8);
if (imageHasAlpha())
{
buf[i++] = (uint8)(a16) ;
buf[i++] = (uint8)(a16 >> 8) ;
}
}
else // 8 bits image.
{
b8 = (uint8)pixel[0];
g8 = (uint8)pixel[1];
r8 = (uint8)pixel[2];
if (imageHasAlpha())
{
// TIFF makes you pre-mutiply the rgb components by alpha
a8 = (uint8)(pixel[3]);
alpha_factor = ((double)a8 / 255.0);
r8 = (uint8)(r8*alpha_factor);
g8 = (uint8)(g8*alpha_factor);
b8 = (uint8)(b8*alpha_factor);
}
// This might be endian dependent
buf[i++] = r8;
buf[i++] = g8;
buf[i++] = b8;
if (imageHasAlpha())
buf[i++] = a8;
}
}
if (!TIFFWriteScanline(tif, buf, y, 0))
{
DDebug() << k_funcinfo << "Cannot write main image to target file." << endl;
_TIFFfree(buf);
TIFFClose(tif);
return false;
}
}
_TIFFfree(buf);
TIFFWriteDirectory(tif);
// -------------------------------------------------------------------
// Write thumbnail in tiff directory IFD1
TQImage thumb = m_image->smoothScale(160, 120, TQSize::ScaleMin).copyTQImage();
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, (uint32)thumb.width());
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, (uint32)thumb.height());
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField(tif, TIFFTAG_RESOLUTIONUNIT, RESUNIT_NONE);
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, 0));
uchar *pixelThumb;
uchar *dataThumb = thumb.bits();
uint8 *bufThumb = (uint8 *) _TIFFmalloc(TIFFScanlineSize(tif));
if (!bufThumb)
{
DDebug() << k_funcinfo << "Cannot allocate memory buffer for thumbnail." << endl;
TIFFClose(tif);
return false;
}
for (y = 0 ; y < uint32(thumb.height()) ; y++)
{
i = 0;
for (x = 0 ; x < uint32(thumb.width()) ; x++)
{
pixelThumb = &dataThumb[((y * thumb.width()) + x) * 4];
// This might be endian dependent
bufThumb[i++] = (uint8)pixelThumb[2];
bufThumb[i++] = (uint8)pixelThumb[1];
bufThumb[i++] = (uint8)pixelThumb[0];
}
if (!TIFFWriteScanline(tif, bufThumb, y, 0))
{
DDebug() << k_funcinfo << "Cannot write thumbnail to target file." << endl;
_TIFFfree(bufThumb);
TIFFClose(tif);
return false;
}
}
_TIFFfree(bufThumb);
TIFFClose(tif);
// -------------------------------------------------------------------
if (observer)
observer->progressInfo(m_image, 1.0);
imageSetAttribute("savedformat", "TIFF");
saveMetadata(filePath);
return true;
}
bool TIFFLoader::hasAlpha() const
{
return m_hasAlpha;
}
bool TIFFLoader::sixteenBit() const
{
return m_sixteenBit;
}
void TIFFLoader::tiffSetExifAsciiTag(TIFF* tif, ttag_t tiffTag,
const DMetadata *metaData, const char* exifTagName)
{
TQByteArray tag = metaData->getExifTagData(exifTagName);
if (!tag.isEmpty())
{
TQCString str(tag.data(), tag.size());
TIFFSetField(tif, tiffTag, (const char*)str);
}
}
void TIFFLoader::tiffSetExifDataTag(TIFF* tif, ttag_t tiffTag,
const DMetadata *metaData, const char* exifTagName)
{
TQByteArray tag = metaData->getExifTagData(exifTagName);
if (!tag.isEmpty())
{
TIFFSetField (tif, tiffTag, (uint32)tag.size(), (char *)tag.data());
}
}
} // NameSpace Digikam