You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.1 KiB
158 lines
4.1 KiB
#ifndef GFXMAT3_INCLUDED // -*- C++ -*-
|
|
#define GFXMAT3_INCLUDED
|
|
#if !defined(__GNUC__)
|
|
# pragma once
|
|
#endif
|
|
|
|
/************************************************************************
|
|
|
|
3x3 Matrix class
|
|
|
|
$Id: mat3.h 427 2004-09-27 04:45:31Z garland $
|
|
|
|
************************************************************************/
|
|
|
|
#include "vec3.h"
|
|
|
|
namespace gfx
|
|
{
|
|
|
|
class Mat3
|
|
{
|
|
private:
|
|
Vec3 row[3];
|
|
|
|
public:
|
|
// Standard constructors
|
|
//
|
|
Mat3() { *this = 0.0; }
|
|
Mat3(const Vec3& r0,const Vec3& r1,const Vec3& r2)
|
|
{ row[0]=r0; row[1]=r1; row[2]=r2; }
|
|
Mat3(const Mat3& m) { *this = m; }
|
|
|
|
// Descriptive interface
|
|
//
|
|
typedef double value_type;
|
|
typedef Vec3 vector_type;
|
|
typedef Mat3 inverse_type;
|
|
static int dim() { return 3; }
|
|
|
|
// Access methods
|
|
//
|
|
double& operator()(int i, int j) { return row[i][j]; }
|
|
double operator()(int i, int j) const { return row[i][j]; }
|
|
Vec3& operator[](int i) { return row[i]; }
|
|
const Vec3& operator[](int i) const { return row[i]; }
|
|
inline Vec3 col(int i) const {return Vec3(row[0][i],row[1][i],row[2][i]);}
|
|
|
|
operator double*() { return row[0]; }
|
|
operator const double*() { return row[0]; }
|
|
operator const double*() const { return row[0]; }
|
|
|
|
|
|
// Assignment methods
|
|
//
|
|
inline Mat3& operator=(const Mat3& m);
|
|
inline Mat3& operator=(double s);
|
|
|
|
inline Mat3& operator+=(const Mat3& m);
|
|
inline Mat3& operator-=(const Mat3& m);
|
|
inline Mat3& operator*=(double s);
|
|
inline Mat3& operator/=(double s);
|
|
|
|
|
|
// Construction of standard matrices
|
|
//
|
|
static Mat3 I();
|
|
static Mat3 outer_product(const Vec3& u, const Vec3& v);
|
|
static Mat3 outer_product(const Vec3& v);
|
|
|
|
Mat3 &diag(double d);
|
|
Mat3 &ident() { return diag(1.0); }
|
|
|
|
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Methods definitions
|
|
//
|
|
|
|
inline Mat3& Mat3::operator=(const Mat3& m)
|
|
{ row[0] = m[0]; row[1] = m[1]; row[2] = m[2]; return *this; }
|
|
|
|
inline Mat3& Mat3::operator=(double s)
|
|
{ row[0]=s; row[1]=s; row[2]=s; return *this; }
|
|
|
|
inline Mat3& Mat3::operator+=(const Mat3& m)
|
|
{ row[0] += m[0]; row[1] += m[1]; row[2] += m[2]; return *this; }
|
|
|
|
inline Mat3& Mat3::operator-=(const Mat3& m)
|
|
{ row[0] -= m[0]; row[1] -= m[1]; row[2] -= m[2]; return *this; }
|
|
|
|
inline Mat3& Mat3::operator*=(double s)
|
|
{ row[0] *= s; row[1] *= s; row[2] *= s; return *this; }
|
|
|
|
inline Mat3& Mat3::operator/=(double s)
|
|
{ row[0] /= s; row[1] /= s; row[2] /= s; return *this; }
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Operator definitions
|
|
//
|
|
|
|
inline Mat3 operator+(const Mat3& n, const Mat3& m)
|
|
{ return Mat3(n[0]+m[0], n[1]+m[1], n[2]+m[2]); }
|
|
|
|
inline Mat3 operator-(const Mat3& n, const Mat3& m)
|
|
{ return Mat3(n[0]-m[0], n[1]-m[1], n[2]-m[2]); }
|
|
|
|
inline Mat3 operator-(const Mat3& m)
|
|
{ return Mat3(-m[0], -m[1], -m[2]); }
|
|
|
|
inline Mat3 operator*(double s, const Mat3& m)
|
|
{ return Mat3(m[0]*s, m[1]*s, m[2]*s); }
|
|
inline Mat3 operator*(const Mat3& m, double s)
|
|
{ return s*m; }
|
|
|
|
inline Mat3 operator/(const Mat3& m, double s)
|
|
{ return Mat3(m[0]/s, m[1]/s, m[2]/s); }
|
|
|
|
inline Vec3 operator*(const Mat3& m, const Vec3& v)
|
|
{ return Vec3(m[0]*v, m[1]*v, m[2]*v); }
|
|
|
|
extern Mat3 operator*(const Mat3& n, const Mat3& m);
|
|
|
|
inline std::ostream &operator<<(std::ostream &out, const Mat3& M)
|
|
{ return out << M[0] << std::endl << M[1] << std::endl << M[2]; }
|
|
|
|
inline std::istream &operator>>(std::istream &in, Mat3& M)
|
|
{ return in >> M[0] >> M[1] >> M[2]; }
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Misc. function definitions
|
|
//
|
|
|
|
inline double det(const Mat3& m) { return m[0] * (m[1] ^ m[2]); }
|
|
|
|
inline double trace(const Mat3& m) { return m(0,0) + m(1,1) + m(2,2); }
|
|
|
|
inline Mat3 transpose(const Mat3& m)
|
|
{ return Mat3(m.col(0), m.col(1), m.col(2)); }
|
|
|
|
extern Mat3 adjoint(const Mat3& m);
|
|
|
|
extern double invert(Mat3& m_inv, const Mat3& m);
|
|
|
|
inline Mat3 row_extend(const Vec3& v) { return Mat3(v, v, v); }
|
|
|
|
extern Mat3 diag(const Vec3& v);
|
|
|
|
extern bool eigen(const Mat3& m, Vec3& eig_vals, Vec3 eig_vecs[3]);
|
|
|
|
} // namespace gfx
|
|
|
|
// GFXMAT3_INCLUDED
|
|
#endif
|