You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

195 lines
5.0 KiB

#ifndef GFXMAT4_INCLUDED // -*- C++ -*-
#define GFXMAT4_INCLUDED
#if !defined(__GNUC__)
# pragma once
#endif
/************************************************************************
4x4 Matrix class
$Id: mat4.h 427 2004-09-27 04:45:31Z garland $
************************************************************************/
#include "vec4.h"
namespace gfx
{
class Mat4
{
private:
Vec4 row[4];
public:
// Standard constructors
//
Mat4() { *this = 0.0; }
Mat4(const Vec4& r0,const Vec4& r1,const Vec4& r2,const Vec4& r3)
{ row[0]=r0; row[1]=r1; row[2]=r2; row[3]=r3; }
Mat4(const Mat4& m) { *this = m; }
// Descriptive interface
//
typedef double value_type;
typedef Vec4 vector_type;
typedef Mat4 inverse_type;
static int dim() { return 4; }
// Access methods
//
double& operator()(int i, int j) { return row[i][j]; }
double operator()(int i, int j) const { return row[i][j]; }
Vec4& operator[](int i) { return row[i]; }
const Vec4& operator[](int i) const { return row[i]; }
inline Vec4 col(int i) const
{ return Vec4(row[0][i],row[1][i],row[2][i],row[3][i]); }
operator double*() { return row[0]; }
operator const double*() { return row[0]; }
operator const double*() const { return row[0]; }
// Assignment methods
//
inline Mat4& operator=(const Mat4& m);
inline Mat4& operator=(double s);
inline Mat4& operator+=(const Mat4& m);
inline Mat4& operator-=(const Mat4& m);
inline Mat4& operator*=(double s);
inline Mat4& operator/=(double s);
static Mat4 I();
};
////////////////////////////////////////////////////////////////////////
//
// Method definitions
//
inline Mat4& Mat4::operator=(const Mat4& m)
{
row[0] = m[0]; row[1] = m[1]; row[2] = m[2]; row[3] = m[3];
return *this;
}
inline Mat4& Mat4::operator=(double s)
{
row[0]=s; row[1]=s; row[2]=s; row[3]=s;
return *this;
}
inline Mat4& Mat4::operator+=(const Mat4& m)
{
row[0] += m[0]; row[1] += m[1]; row[2] += m[2]; row[3] += m[3];
return *this;
}
inline Mat4& Mat4::operator-=(const Mat4& m)
{
row[0] -= m[0]; row[1] -= m[1]; row[2] -= m[2]; row[3] -= m[3];
return *this;
}
inline Mat4& Mat4::operator*=(double s)
{
row[0] *= s; row[1] *= s; row[2] *= s; row[3] *= s;
return *this;
}
inline Mat4& Mat4::operator/=(double s)
{
row[0] /= s; row[1] /= s; row[2] /= s; row[3] /= s;
return *this;
}
////////////////////////////////////////////////////////////////////////
//
// Operator definitions
//
inline Mat4 operator+(const Mat4& n, const Mat4& m)
{ return Mat4(n[0]+m[0], n[1]+m[1], n[2]+m[2], n[3]+m[3]); }
inline Mat4 operator-(const Mat4& n, const Mat4& m)
{ return Mat4(n[0]-m[0], n[1]-m[1], n[2]-m[2], n[3]-m[3]); }
inline Mat4 operator-(const Mat4& n)
{ return Mat4(-n[0], -n[1], -n[2], -n[3]); }
inline Mat4 operator*(double s, const Mat4& m)
{ return Mat4(m[0]*s, m[1]*s, m[2]*s, m[3]*s); }
inline Mat4 operator*(const Mat4& m, double s)
{ return s*m; }
inline Mat4 operator/(const Mat4& m, double s)
{ return Mat4(m[0]/s, m[1]/s, m[2]/s, m[3]/s); }
inline Vec4 operator*(const Mat4& m, const Vec4& v)
{ return Vec4(m[0]*v, m[1]*v, m[2]*v, m[3]*v); }
extern Mat4 operator*(const Mat4& n, const Mat4& m);
//
// Transform a homogeneous 3-vector and reproject into normal 3-space
//
inline Vec3 operator*(const Mat4& m, const Vec3& v)
{
Vec4 u=Vec4(v,1);
double w=m[3]*u;
if(w==0.0) return Vec3(m[0]*u, m[1]*u, m[2]*u);
else return Vec3(m[0]*u/w, m[1]*u/w, m[2]*u/w);
}
inline std::ostream &operator<<(std::ostream &out, const Mat4& M)
{ return out<<M[0]<<std::endl<<M[1]<<std::endl<<M[2]<<std::endl<<M[3]; }
inline std::istream &operator>>(std::istream &in, Mat4& M)
{ return in >> M[0] >> M[1] >> M[2] >> M[3]; }
////////////////////////////////////////////////////////////////////////
//
// Transformations
//
extern Mat4 translation_matrix(const Vec3& delta);
extern Mat4 scaling_matrix(const Vec3& scale);
extern Mat4 rotation_matrix_rad(double theta, const Vec3& axis);
inline Mat4 rotation_matrix_deg(double theta, const Vec3& axis)
{ return rotation_matrix_rad(theta*M_PI/180.0, axis); }
extern Mat4 perspective_matrix(double fovy, double aspect,
double zmin=0.0, double zmax=0.0);
extern Mat4 lookat_matrix(const Vec3& from, const Vec3& at, const Vec3& up);
extern Mat4 viewport_matrix(double w, double h);
////////////////////////////////////////////////////////////////////////
//
// Misc. function definitions
//
inline double det(const Mat4& m) { return m[0] * cross(m[1], m[2], m[3]); }
inline double trace(const Mat4& m) { return m(0,0)+m(1,1)+m(2,2)+m(3,3); }
inline Mat4 transpose(const Mat4& m)
{ return Mat4(m.col(0), m.col(1), m.col(2), m.col(3)); }
extern Mat4 adjoint(const Mat4& m);
extern double invert(Mat4& m_inv, const Mat4& m);
extern double invert_cramer(Mat4& m_inv, const Mat4& m);
extern bool eigen(const Mat4& m, Vec4& eig_vals, Vec4 eig_vecs[4]);
} // namespace gfx
// GFXMAT4_INCLUDED
#endif