You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
k9copy/k9vamps/k9requant.cpp

2482 lines
58 KiB

//
// C++ Implementation: k9requant
//
// Description:
//
//
// Author: Jean-Michel PETIT <k9copy@free.fr>, (C) 2006
//
// Copyright: See COPYING file that comes with this distribution
//
//
#include "k9requant.h"
#include "getvlc.h"
#include "putvlc.h"
#include "ac.h"
// Code from libmpeg2 and mpeg2enc copyright by their respective owners
// New code and modifications copyright Antoine Missout
// Thanks to Sven Goethel for error resilience patches
// Released under GPL license, see gnu.org
// toggles:
#define THREAD
// #define LOG_RATE_CONTROL // some stats
// #define DEMO // demo mode
// #define STAT // print stats on exit
// #define USE_FD // use 2 lasts args for input/output paths
#define NDEBUG // turns off asserts
#define REMOVE_BYTE_STUFFING // removes series of 0x00
// #define USE_GLOBAL_REGISTER // assign registers to bit buffers
#define MAX_ERRORS 0 // if above copy slice
//#define CHANGE_BRIGHTNESS //add a param to command line, changing brightness: _will_not_recompress_, disables max_errors
//#define WIN // for windows fixes, use with USE_FD
// params:
// if not defined, non intra block in p frames are requantised
// if defined and >= 0, we keep coeff. in pos 0..n-1 in scan order
// and coeff which would have been non-null if requantised
// if defined and < 0 we drop max 1/x coeffs.
// experimental, looks better when undefined
// #define P_FRAME_NON_INTRA_DROP 8
// params for fact = 1.0, fact = 3.0 and fact = 10.0
// we'll make a linear interpolation between
static const int i_factors[3] = { 5, 15, 65 };
static const int p_factors[3] = { 5, 25, 85 };
static const int b_factors[3] = { 25, 45, 105 };
static const double i_min_stresses[3] = { 0.70, 0.40, 0.00 };
static const double p_min_stresses[3] = { 0.60, 0.35, 0.00 };
static const double b_min_stresses[3] = { 0.00, 0.00, 0.00 };
// factor up to which alt table will be used
// (though alt_table gives better psnr up to factor around ~2.5
// the result is less pleasing to watch than normal table
// so this is disabled)
static const double max_alt_table = 0.0;
// includes
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#ifndef USE_FD
#include <unistd.h>
#include <fcntl.h>
#endif
// quant table
#include "qTable.h"
// useful constants
#define I_TYPE 1
#define P_TYPE 2
#define B_TYPE 3
// gcc
#ifdef HAVE_BUILTIN_EXPECT
#define likely(x) __builtin_expect ((x) != 0, 1)
#define unlikely(x) __builtin_expect ((x) != 0, 0)
#else
#define likely(x) (x)
#define unlikely(x) (x)
#endif
#ifndef NDEBUG
#define DEB(msg) fprintf (stderr, "%s:%d " msg, __FILE__, __LINE__)
#define DEBF(format, args...) fprintf (stderr, "%s:%d " format, __FILE__, __LINE__, args)
#else
#define DEB(msg)
#ifdef WIN
#define DEBF(format, args)
#else
#define DEBF(format, args...)
#endif
#endif
#ifndef THREAD
#define LOG(msg) fprintf (stderr, msg)
#ifdef WIN
#define LOGF(format, arg1) fprintf (stderr, format, arg1)
#else
#define LOGF(format, args...) fprintf (stderr, format, args)
#endif
#endif
/*#define MOV_READ \
mloka1 = rbuf - cbuf; if (mloka1) memmove(orbuf, cbuf, mloka1);\
cbuf = rbuf = orbuf; rbuf += mloka1;
*/
#ifdef STAT
#define RETURN \
assert(rbuf >= cbuf);\
mloka1 = rbuf - cbuf;\
if (mloka1) { COPY(mloka1); }\
WRITE \
free(orbuf); \
free(owbuf); \
\
LOG("Stats:\n");\
\
LOGF("Wanted fact_x: %.1f\n", fact_x);\
\
LOGF("cnt_i: %.0f ", (float)cnt_i); \
if (cnt_i) LOGF("ori_i: %.0f new_i: %.0f fact_i: %.1f\n", (float)ori_i, (float)new_i, (float)ori_i/(float)new_i); \
else LOG("\n");\
\
LOGF("cnt_p: %.0f ", (float)cnt_p); \
if (cnt_p) LOGF("ori_p: %.0f new_p: %.0f fact_p: %.1f cnt_p_i: %.0f cnt_p_ni: %.0f propor: %.1f i\n", \
(float)ori_p, (float)new_p, (float)ori_p/(float)new_p, (float)cnt_p_i, (float)cnt_p_ni, (float)cnt_p_i/((float)cnt_p_i+(float)cnt_p_ni)); \
else LOG("\n");\
\
LOGF("cnt_b: %.0f ", (float)cnt_b); \
if (cnt_b) LOGF("ori_b: %.0f new_b: %.0f fact_b: %.1f cnt_b_i: %.0f cnt_b_ni: %.0f propor: %.1f i\n", \
(float)ori_b, (float)new_b, (float)ori_b/(float)new_b, (float)cnt_b_i, (float)cnt_b_ni, (float)cnt_b_i/((float)cnt_b_i+(float)cnt_b_ni)); \
else LOG("\n");\
\
LOGF("Final fact_x: %.1f\n", (float)inbytecnt/(float)outbytecnt);\
exit(0);
#else
#define RETURN \
assert(rbuf >= cbuf);\
mloka1 = rbuf - cbuf;\
if (mloka1) { COPY(mloka1); }\
WRITE \
free(orbuf); \
free(owbuf); \
exit(0);
#endif
#define MOTION_CALL(routine,direction) \
do { \
if ((direction) & MACROBLOCK_MOTION_FORWARD) \
routine (f_code[0]); \
if ((direction) & MACROBLOCK_MOTION_BACKWARD) \
routine (f_code[1]); \
} while (0)
#define NEXT_MACROBLOCK \
do { \
h_offset += 16; \
if (h_offset == horizontal_size_value) \
{ \
v_offset += 16; \
if (v_offset > (vertical_size_value - 16)) return; \
h_offset = 0; \
} \
} while (0)
#ifdef P_FRAME_NON_INTRA_DROP
#if (P_FRAME_NON_INTRA_DROP < 0)
#undef UPDATE_VAL
#define UPDATE_VAL
#define SAVE_VAL
#define WRITE_VAL \
blk->level = val; \
blk->run = i - li - 1; \
li = i; \
blk++;
#else
#define SAVE_VAL oval = val;
#define WRITE_VAL \
if ((val) || (i < P_FRAME_NON_INTRA_DROP)) \
{ \
blk->level = oval; \
blk->run = i - li - 1; \
li = i; \
blk++; \
}
#endif
#else
#define SAVE_VAL
#define WRITE_VAL \
if (val) \
{ \
blk->level = val; \
blk->run = i - li - 1; \
li = i; \
blk++; \
}
#endif
#define UPDATE_VAL \
val = curTable[val];
int quantisers[42] =
{
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 72, 80,
88, 96, 104, 112
};
int non_linear_quantizer_scale [] =
{
0, 1, 2, 3, 4, 5, 6, 7,
8, 10, 12, 14, 16, 18, 20, 22,
24, 28, 32, 36, 40, 44, 48, 52,
56, 64, 72, 80, 88, 96, 104, 112
};
const uint8 non_linear_mquant_table[32] =
{
0, 1, 2, 3, 4, 5, 6, 7,
8,10,12,14,16,18,20,22,
24,28,32,36,40,44,48,52,
56,64,72,80,88,96,104,112
};
const uint8 map_non_linear_mquant[113] =
{
0,1,2,3,4,5,6,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
16,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20,21,21,21,21,22,22,
22,22,23,23,23,23,24,24,24,24,24,24,24,25,25,25,25,25,25,25,26,26,
26,26,26,26,26,26,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,29,
29,29,29,29,29,29,29,29,29,30,30,30,30,30,30,30,31,31,31,31,31
};
k9requant::k9requant()
{
cbuf=rbuf=orbuf=wbuf=NULL;
quant_table_id = &quant_table_id_data[2048];
rqt_run=false;
initvar();
}
void k9requant::putbits(uint val, int n)
{
assert(n < 32);
assert(!(val & (0xffffffffU << n)));
while (unlikely(n >= outbitcnt))
{
wbuf[0] = (outbitbuf << outbitcnt ) | (val >> (n - outbitcnt));
SEEKW(1);
n -= outbitcnt;
outbitbuf = 0;
val &= ~(0xffffffffU << n);
outbitcnt = BITS_IN_BUF;
}
if (likely(n))
{
outbitbuf = (outbitbuf << n) | val;
outbitcnt -= n;
}
assert(outbitcnt > 0);
assert(outbitcnt <= BITS_IN_BUF);
}
void k9requant::Refill_bits(void)
{
assert((rbuf - cbuf) >= 1);
inbitbuf |= cbuf[0] << (24 - inbitcnt);
inbitcnt += 8;
SEEKR(1)
}
void k9requant::Flush_Bits(uint n)
{
assert(inbitcnt >= n);
inbitbuf <<= n;
inbitcnt -= n;
assert( (!n) || ((n>0) && !(inbitbuf & 0x1)) );
while (unlikely(inbitcnt < 24)) Refill_bits();
}
uint k9requant::Show_Bits(uint n)
{
return ((unsigned int)inbitbuf) >> (32 - n);
}
uint k9requant::Get_Bits(uint n)
{
uint Val = Show_Bits(n);
Flush_Bits(n);
return Val;
}
uint k9requant::Copy_Bits(uint n)
{
uint Val = Get_Bits(n);
putbits(Val, n);
return Val;
}
void k9requant::flush_read_buffer()
{
int i = inbitcnt & 0x7;
if (i)
{
if (inbitbuf >> (32 - i))
{
DEBF("illegal inbitbuf: 0x%08X, %i, 0x%02X, %i\n", inbitbuf, inbitcnt, (inbitbuf >> (32 - i)), i);
sliceError++;
}
inbitbuf <<= i;
inbitcnt -= i;
}
SEEKR(-1 * (inbitcnt >> 3));
inbitcnt = 0;
}
void k9requant::flush_write_buffer()
{
if (outbitcnt != 8) putbits(0, outbitcnt);
}
/////---- begin ext mpeg code
int k9requant::scale_quant(double quant )
{
int iquant;
#ifdef DEMO
if ((gopCount & 0x7F) < 10) // gop is ~ 0.5 sec, so 5 sec every ~minute (127 * 0.5 = 63.5 sec)
{
if (q_scale_type) return 112;
else return 62;
}
#endif
if (q_scale_type)
{
iquant = (int) floor(quant+0.5);
/* clip mquant to legal (linear) range */
if (iquant<1) iquant = 1;
if (iquant>112) iquant = 112;
iquant = non_linear_mquant_table[map_non_linear_mquant[iquant]];
}
else
{
/* clip mquant to legal (linear) range */
iquant = (int)floor(quant+0.5);
if (iquant<2) iquant = 2;
if (iquant>62) iquant = 62;
iquant = (iquant/2)*2; // Must be *even*
}
return iquant;
}
int k9requant::increment_quant(int quant)
{
#ifdef DEMO
if ((gopCount & 0x7F) < 10)
{
if (q_scale_type) return 112;
else return 62;
}
#endif
if (q_scale_type)
{
if (quant < 1 || quant > 112)
{
DEBF("illegal quant: %d\n", quant);
if (quant > 112) quant = 112;
else if (quant < 1) quant = 1;
DEBF("illegal quant changed to : %d\n", quant);
sliceError++;
}
quant = map_non_linear_mquant[quant] + 1;
if (quant > 31) quant = 31;
quant = non_linear_mquant_table[quant];
}
else
{
if ((quant & 1) || (quant < 2) || (quant > 62))
{
DEBF("illegal quant: %d\n", quant);
if (quant & 1) quant--;
if (quant > 62) quant = 62;
else if (quant < 2) quant = 2;
DEBF("illegal quant changed to : %d\n", quant);
sliceError++;
}
quant += 2;
if (quant > 62) quant = 62;
}
return quant;
}
int k9requant::intmax( int x, int y )
{ return x < y ? y : x; }
int k9requant::intmin( int x, int y )
{ return x < y ? x : y; }
int k9requant::getNewQuant(int curQuant, int intra)
{
#ifdef CHANGE_BRIGHTNESS
return curQuant;
#else
int mquant = 0;
double cStress;
switch (picture_coding_type)
{
case I_TYPE:
cStress = (stress_factor - i_min_stress) / (1.0 - i_min_stress);
mquant = intmax(scale_quant(curQuant + i_factor*cStress), increment_quant(curQuant));
break;
case P_TYPE:
cStress = (stress_factor - p_min_stress) / (1.0 - p_min_stress);
if (intra) // since it might be used as a ref, treat it as an I frame block
mquant = intmax(scale_quant(curQuant + i_factor*cStress), increment_quant(curQuant));
else
mquant = intmax(scale_quant(curQuant + p_factor*cStress), increment_quant(curQuant));
break;
case B_TYPE:
cStress = (stress_factor - b_min_stress) / (1.0 - b_min_stress);
mquant = intmax(scale_quant(curQuant + b_factor*cStress), increment_quant(curQuant));
break;
default:
assert(0);
break;
}
assert(mquant >= curQuant);
return mquant;
#endif
}
int k9requant::isNotEmpty(RunLevel *blk)
{
return (blk->level);
}
// return != 0 if error
int k9requant::putAC(int run, int signed_level, int vlcformat)
{
int level, len;
const VLCtable *ptab = NULL;
level = (signed_level<0) ? -signed_level : signed_level; /* abs(signed_level) */
// assert(!(run<0 || run>63 || level==0 || level>2047));
if(run<0 || run>63)
{
DEBF("illegal run: %d\n", run);
sliceError++;
return 1;
}
if(level==0 || level>2047)
{
DEBF("illegal level: %d\n", level);
sliceError++;
return 1;
}
len = 0;
if (run<2 && level<41)
{
if (vlcformat) ptab = &dct_code_tab1a[run][level-1];
else ptab = &dct_code_tab1[run][level-1];
len = ptab->len;
}
else if (run<32 && level<6)
{
if (vlcformat) ptab = &dct_code_tab2a[run-2][level-1];
else ptab = &dct_code_tab2[run-2][level-1];
len = ptab->len;
}
if (len) /* a VLC code exists */
{
putbits(ptab->code, len);
putbits(signed_level<0, 1); /* sign */
}
else
{
putbits(1l, 6); /* Escape */
putbits(run, 6); /* 6 bit code for run */
putbits(((uint)signed_level) & 0xFFF, 12);
}
return 0;
}
// return != 0 if error
int k9requant::putACfirst(int run, int val)
{
if (run==0 && (val==1 || val==-1))
{
putbits(2|((val<0) ? 1 : 0), 2);
return 0;
}
else return putAC(run,val,0);
}
void k9requant::putnonintrablk(RunLevel *blk)
{
assert(blk->level);
if (putACfirst(blk->run, blk->level)) return;
blk++;
while(blk->level)
{
if (putAC(blk->run, blk->level, 0)) return;
blk++;
}
putbits(2,2);
}
void k9requant::putcbp(int cbp)
{
assert(cbp > 0 && cbp < 64);
putbits(cbptable[cbp].code,cbptable[cbp].len);
}
void k9requant::putmbtype(int mb_type)
{
putbits(mbtypetab[picture_coding_type-1][mb_type].code,
mbtypetab[picture_coding_type-1][mb_type].len);
}
int k9requant::get_macroblock_modes ()
{
int macroblock_modes;
const MBtab * tab;
switch (picture_coding_type)
{
case I_TYPE:
tab = MB_I + UBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if ((! (frame_pred_frame_dct)) && (picture_structure == FRAME_PICTURE))
{
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
case P_TYPE:
tab = MB_P + UBITS (bit_buf, 5);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if (picture_structure != FRAME_PICTURE)
{
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
{
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
return macroblock_modes;
}
else if (frame_pred_frame_dct)
{
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
macroblock_modes |= MC_FRAME;
return macroblock_modes;
}
else
{
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
{
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN))
{
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
}
case B_TYPE:
tab = MB_B + UBITS (bit_buf, 6);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if (picture_structure != FRAME_PICTURE)
{
if (! (macroblock_modes & MACROBLOCK_INTRA))
{
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
return macroblock_modes;
}
else if (frame_pred_frame_dct)
{
/* if (! (macroblock_modes & MACROBLOCK_INTRA)) */
macroblock_modes |= MC_FRAME;
return macroblock_modes;
}
else
{
if (macroblock_modes & MACROBLOCK_INTRA) goto intra;
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN))
{
intra:
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
}
default:
return 0;
}
}
int k9requant::get_quantizer_scale ()
{
int quantizer_scale_code;
quantizer_scale_code = UBITS (bit_buf, 5);
DUMPBITS (bit_buf, bits, 5);
if (!quantizer_scale_code)
{
DEBF("illegal quant scale code: %d\n", quantizer_scale_code);
sliceError++;
quantizer_scale_code++;
}
if (q_scale_type) return non_linear_quantizer_scale[quantizer_scale_code];
else return quantizer_scale_code << 1;
}
void k9requant::get_motion_delta (const int f_code)
{
#define bit_buf (inbitbuf)
const MVtab * tab;
if (bit_buf & 0x80000000)
{
COPYBITS (bit_buf, bits, 1);
return;
}
else if (bit_buf >= 0x0c000000)
{
tab = MV_4 + UBITS (bit_buf, 4);
COPYBITS (bit_buf, bits, tab->len + 1);
if (f_code) COPYBITS (bit_buf, bits, f_code);
return;
}
else
{
tab = MV_10 + UBITS (bit_buf, 10);
COPYBITS (bit_buf, bits, tab->len + 1);
if (f_code) COPYBITS (bit_buf, bits, f_code);
return;
}
}
void k9requant::get_dmv ()
{
const DMVtab * tab;
tab = DMV_2 + UBITS (bit_buf, 2);
COPYBITS (bit_buf, bits, tab->len);
return;
}
int k9requant::get_coded_block_pattern ()
{
#define bit_buf (inbitbuf)
const CBPtab * tab;
if (bit_buf >= 0x20000000)
{
tab = CBP_7 + (UBITS (bit_buf, 7) - 16);
DUMPBITS (bit_buf, bits, tab->len);
return tab->cbp;
}
else
{
tab = CBP_9 + UBITS (bit_buf, 9);
DUMPBITS (bit_buf, bits, tab->len);
return tab->cbp;
}
}
int k9requant::get_luma_dc_dct_diff ()
{
#define bit_buf (inbitbuf)
#ifdef CHANGE_BRIGHTNESS
#define DOBITS(x, y, z) DUMPBITS(x, y, z)
#else
#define DOBITS(x, y, z) COPYBITS(x, y, z)
#endif
const DCtab * tab;
int size;
int dc_diff;
if (bit_buf < 0xf8000000)
{
tab = DC_lum_5 + UBITS (bit_buf, 5);
size = tab->size;
if (size)
{
DOBITS (bit_buf, bits, tab->len);
//dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
dc_diff = UBITS (bit_buf, size); if (!(dc_diff >> (size - 1))) dc_diff = (dc_diff + 1) - (1 << size);
DOBITS (bit_buf, bits, size);
return dc_diff;
}
else
{
DOBITS (bit_buf, bits, 3);
return 0;
}
}
else
{
tab = DC_long + (UBITS (bit_buf, 9) - 0x1e0);
size = tab->size;
DOBITS (bit_buf, bits, tab->len);
//dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
dc_diff = UBITS (bit_buf, size); if (!(dc_diff >> (size - 1))) dc_diff = (dc_diff + 1) - (1 << size);
DOBITS (bit_buf, bits, size);
return dc_diff;
}
}
int k9requant::get_chroma_dc_dct_diff ()
{
#define bit_buf (inbitbuf)
const DCtab * tab;
int size;
int dc_diff;
if (bit_buf < 0xf8000000)
{
tab = DC_chrom_5 + UBITS (bit_buf, 5);
size = tab->size;
if (size)
{
COPYBITS (bit_buf, bits, tab->len);
//dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
dc_diff = UBITS (bit_buf, size); if (!(dc_diff >> (size - 1))) dc_diff = (dc_diff + 1) - (1 << size);
COPYBITS (bit_buf, bits, size);
return dc_diff;
}
else
{
COPYBITS (bit_buf, bits, 2);
return 0;
}
}
else
{
tab = DC_long + (UBITS (bit_buf, 10) - 0x3e0);
size = tab->size;
COPYBITS (bit_buf, bits, tab->len + 1);
//dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
dc_diff = UBITS (bit_buf, size); if (!(dc_diff >> (size - 1))) dc_diff = (dc_diff + 1) - (1 << size);
COPYBITS (bit_buf, bits, size);
return dc_diff;
}
}
void k9requant::get_intra_block_B14 ()
{
#define bit_buf (inbitbuf)
int i, li;
int val;
const DCTtab * tab;
li = i = 0;
while (1)
{
if (bit_buf >= 0x28000000)
{
tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5);
i += tab->run;
if (i >= 64) break; /* end of block */
normal_code:
DUMPBITS (bit_buf, bits, tab->len);
val = tab->level;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
UPDATE_VAL
if (val)
{
if (putAC(i - li - 1, val, 0)) break;
li = i;
}
DUMPBITS (bit_buf, bits, 1);
continue;
}
else if (bit_buf >= 0x04000000)
{
tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4);
i += tab->run;
if (i < 64) goto normal_code;
/* escape code */
i += (UBITS (bit_buf, 12) & 0x3F) - 64;
if (i >= 64)
{
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 12);
val = SBITS (bit_buf, 12);
UPDATE_VAL
if (val)
{
if (putAC(i - li - 1, val, 0)) break;
li = i;
}
DUMPBITS (bit_buf, bits, 12);
continue;
}
else if (bit_buf >= 0x02000000)
{
tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00800000)
{
tab = DCT_13 + (UBITS (bit_buf, 13) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00200000)
{
tab = DCT_15 + (UBITS (bit_buf, 15) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else
{
tab = DCT_16 + UBITS (bit_buf, 16);
DUMPBITS (bit_buf, bits, 16);
i += tab->run;
if (i < 64) goto normal_code;
}
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
COPYBITS (bit_buf, bits, 2); /* end of block code */
}
void k9requant::get_intra_block_B15 ()
{
#define bit_buf (inbitbuf)
int i, li;
int val;
const DCTtab * tab;
li = i = 0;
while (1)
{
if (bit_buf >= 0x04000000)
{
tab = DCT_B15_8 + (UBITS (bit_buf, 8) - 4);
i += tab->run;
if (i < 64)
{
normal_code:
DUMPBITS (bit_buf, bits, tab->len);
val = tab->level;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
UPDATE_VAL
if (val)
{
if (putAC(i - li - 1, val, 1)) break;
li = i;
}
DUMPBITS (bit_buf, bits, 1);
continue;
}
else
{
if (i >= 128) break; /* end of block */
i += (UBITS (bit_buf, 12) & 0x3F) - 64;
if (i >= 64)
{
sliceError++;
break; /* illegal, check against buffer overflow */
}
DUMPBITS (bit_buf, bits, 12);
val = SBITS (bit_buf, 12);
UPDATE_VAL
if (val)
{
if (putAC(i - li - 1, val, 1)) break;
li = i;
}
DUMPBITS (bit_buf, bits, 12);
continue;
}
}
else if (bit_buf >= 0x02000000)
{
tab = DCT_B15_10 + (UBITS (bit_buf, 10) - 8);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00800000)
{
tab = DCT_13 + (UBITS (bit_buf, 13) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00200000)
{
tab = DCT_15 + (UBITS (bit_buf, 15) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else
{
tab = DCT_16 + UBITS (bit_buf, 16);
DUMPBITS (bit_buf, bits, 16);
i += tab->run;
if (i < 64) goto normal_code;
}
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
COPYBITS (bit_buf, bits, 4); /* end of block code */
}
int k9requant::get_non_intra_block_rq (RunLevel *blk)
{
#define bit_buf (inbitbuf)
//int q = quantizer_scale;
//int nq = new_quantizer_scale, tst = (nq / q) + ((nq % q) ? 1 : 0);
int i, li;
int val;
const DCTtab * tab;
li = i = -1;
if (bit_buf >= 0x28000000)
{
tab = DCT_B14DC_5 + (UBITS (bit_buf, 5) - 5);
goto entry_1;
}
else goto entry_2;
while (1)
{
if (bit_buf >= 0x28000000)
{
tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5);
entry_1:
i += tab->run;
if (i >= 64)
break; /* end of block */
normal_code:
DUMPBITS (bit_buf, bits, tab->len);
val = tab->level;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
UPDATE_VAL
if (val)
{
blk->level = val;
blk->run = i - li - 1;
li = i;
blk++;
}
DUMPBITS (bit_buf, bits, 1);
continue;
}
entry_2:
if (bit_buf >= 0x04000000)
{
tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4);
i += tab->run;
if (i < 64) goto normal_code;
/* escape code */
i += (UBITS (bit_buf, 12) & 0x3F) - 64;
if (i >= 64)
{
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 12);
val = SBITS (bit_buf, 12);
UPDATE_VAL
if (val)
{
blk->level = val;
blk->run = i - li - 1;
li = i;
blk++;
}
DUMPBITS (bit_buf, bits, 12);
continue;
}
else if (bit_buf >= 0x02000000)
{
tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00800000)
{
tab = DCT_13 + (UBITS (bit_buf, 13) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00200000)
{
tab = DCT_15 + (UBITS (bit_buf, 15) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else
{
tab = DCT_16 + UBITS (bit_buf, 16);
DUMPBITS (bit_buf, bits, 16);
i += tab->run;
if (i < 64) goto normal_code;
}
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 2); /* dump end of block code */
blk->level = 0;
return i;
}
int k9requant::get_non_intra_block_sav (RunLevel *blk, int cc)
{
#define bit_buf (inbitbuf)
int i, li;
int val;
const DCTtab * tab;
#ifdef P_FRAME_NON_INTRA_DROP
#if (P_FRAME_NON_INTRA_DROP < 0)
RunLevel *oblk = blk;
#else
int oval;
#endif
#endif
li = i = -1;
if (bit_buf >= 0x28000000)
{
tab = DCT_B14DC_5 + (UBITS (bit_buf, 5) - 5);
goto entry_1;
}
else goto entry_2;
while (1)
{
if (bit_buf >= 0x28000000)
{
tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5);
entry_1:
i += tab->run;
if (i >= 64)
break; /* end of block */
normal_code:
DUMPBITS (bit_buf, bits, tab->len);
val = tab->level;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SAVE_VAL
if (li == -1)
{
if (abs(val) < abs(mb_sav_lev))
{
mb_sav_c = cc;
mb_sav_lev = val;
mb_sav_run = i - li - 1;
}
}
UPDATE_VAL
WRITE_VAL
DUMPBITS (bit_buf, bits, 1);
continue;
}
entry_2:
if (bit_buf >= 0x04000000)
{
tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4);
i += tab->run;
if (i < 64) goto normal_code;
/* escape code */
i += (UBITS (bit_buf, 12) & 0x3F) - 64;
if (i >= 64)
{
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 12);
val = SBITS (bit_buf, 12);
SAVE_VAL
if (li == -1)
{
if (abs(val) < abs(mb_sav_lev))
{
mb_sav_c = cc;
mb_sav_lev = val;
mb_sav_run = i - li - 1;
}
}
UPDATE_VAL
WRITE_VAL
DUMPBITS (bit_buf, bits, 12);
continue;
}
else if (bit_buf >= 0x02000000)
{
tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00800000)
{
tab = DCT_13 + (UBITS (bit_buf, 13) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00200000)
{
tab = DCT_15 + (UBITS (bit_buf, 15) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else
{
tab = DCT_16 + UBITS (bit_buf, 16);
DUMPBITS (bit_buf, bits, 16);
i += tab->run;
if (i < 64) goto normal_code;
}
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 2); /* dump end of block code */
#ifdef P_FRAME_NON_INTRA_DROP
#if (P_FRAME_NON_INTRA_DROP < 0)
blk -= (int)((blk - oblk) * (stress_factor / P_FRAME_NON_INTRA_DROP));
#ifdef DEMO
if ((gopCount & 0x7F) < 10) blk = oblk;
#endif
#endif
#endif
blk->level = 0;
return i;
}
#ifdef P_FRAME_NON_INTRA_DROP
int k9requant::get_non_intra_block_drop (RunLevel *blk, int cc)
{
#define bit_buf (inbitbuf)
int i, li;
int val;
const DCTtab * tab;
#if (P_FRAME_NON_INTRA_DROP < 0)
RunLevel *oblk = blk;
#else
int oval;
#endif
li = i = -1;
if (bit_buf >= 0x28000000)
{
tab = DCT_B14DC_5 + (UBITS (bit_buf, 5) - 5);
goto entry_1;
}
else goto entry_2;
while (1)
{
if (bit_buf >= 0x28000000)
{
tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5);
entry_1:
i += tab->run;
if (i >= 64)
break; /* end of block */
normal_code:
DUMPBITS (bit_buf, bits, tab->len);
val = tab->level;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SAVE_VAL
UPDATE_VAL
WRITE_VAL
DUMPBITS (bit_buf, bits, 1);
continue;
}
entry_2:
if (bit_buf >= 0x04000000)
{
tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4);
i += tab->run;
if (i < 64) goto normal_code;
/* escape code */
i += (UBITS (bit_buf, 12) & 0x3F) - 64;
if (i >= 64)
{
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 12);
val = SBITS (bit_buf, 12);
SAVE_VAL
UPDATE_VAL
WRITE_VAL
DUMPBITS (bit_buf, bits, 12);
continue;
}
else if (bit_buf >= 0x02000000)
{
tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00800000)
{
tab = DCT_13 + (UBITS (bit_buf, 13) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else if (bit_buf >= 0x00200000)
{
tab = DCT_15 + (UBITS (bit_buf, 15) - 16);
i += tab->run;
if (i < 64) goto normal_code;
}
else
{
tab = DCT_16 + UBITS (bit_buf, 16);
DUMPBITS (bit_buf, bits, 16);
i += tab->run;
if (i < 64) goto normal_code;
}
sliceError++;
break; /* illegal, check needed to avoid buffer overflow */
}
DUMPBITS (bit_buf, bits, 2); /* dump end of block code */
#if (P_FRAME_NON_INTRA_DROP < 0)
blk -= (int)((blk - oblk) * (stress_factor / P_FRAME_NON_INTRA_DROP));
#ifdef DEMO
if ((gopCount & 0x7F) < 10) blk = oblk;
#endif
#endif
blk->level = 0;
return i;
}
#endif
#ifdef CHANGE_BRIGHTNESS
void k9requant::putDC(const sVLCtable *tab, int val)
{
int absval, size;
absval = abs(val);
size = 0;
while (absval)
{
absval >>= 1;
size++;
}
putbits(tab[size].code,tab[size].len);
if (size!=0)
{
if (val>=0) absval = val;
else absval = val + (1<<size) - 1; /* val + (2 ^ size) - 1 */
putbits(absval,size);
}
}
#endif
void k9requant::slice_intra_DCT (const int cc)
{
#ifdef CHANGE_BRIGHTNESS
if (cc == 0)
{
int val;
int bri = get_luma_dc_dct_diff();
if (dc_reset)
{
val = bri + (128 << intra_dc_precision);
old_dc_pred = val;
val += delta_bright << intra_dc_precision;
if (val > (255 << intra_dc_precision)) val = 255 << intra_dc_precision;
else if (val < 0) val = 0;
bri = val - (128 << intra_dc_precision);
new_dc_pred = val;
dc_reset = 0;
}
else
{
val = bri + old_dc_pred;
old_dc_pred = val;
val += delta_bright << intra_dc_precision;
if (val > (255 << intra_dc_precision)) val = 255 << intra_dc_precision;
else if (val < 0) val = 0;
bri = val - new_dc_pred;
new_dc_pred = val;
}
putDC(DClumtab, bri);
}
#else
if (cc == 0) get_luma_dc_dct_diff ();
#endif
else get_chroma_dc_dct_diff ();
if (intra_vlc_format) get_intra_block_B15 ();
else get_intra_block_B14 ();
}
void k9requant::slice_non_intra_DCT (int cur_block)
{
#ifdef P_FRAME_NON_INTRA_DROP
if (picture_coding_type == P_TYPE)
{
if ((h_offset == 0) || (h_offset == horizontal_size_value - 16))
get_non_intra_block_sav(block[cur_block], cur_block);
else
get_non_intra_block_drop(block[cur_block], cur_block);
}
else
get_non_intra_block_rq(block[cur_block]);
#else
if ((picture_coding_type == P_TYPE) && ((h_offset == 0) || (h_offset == horizontal_size_value - 16)))
get_non_intra_block_sav(block[cur_block], cur_block);
else
get_non_intra_block_rq(block[cur_block]);
#endif
}
void k9requant::motion_fr_frame ( uint f_code[2] )
{
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
}
void k9requant::motion_fr_field ( uint f_code[2] )
{
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
}
void k9requant::motion_fr_dmv ( uint f_code[2] )
{
get_motion_delta (f_code[0]);
get_dmv ();
get_motion_delta (f_code[1]);
get_dmv ();
}
void k9requant::motion_fr_conceal ( )
{
get_motion_delta (f_code[0][0]);
get_motion_delta (f_code[0][1]);
COPYBITS (bit_buf, bits, 1);
}
void k9requant::motion_fi_field ( uint f_code[2] )
{
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
}
void k9requant::motion_fi_16x8 ( uint f_code[2] )
{
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0]);
get_motion_delta (f_code[1]);
}
void k9requant::motion_fi_dmv ( uint f_code[2] )
{
get_motion_delta (f_code[0]);
get_dmv ();
get_motion_delta (f_code[1]);
get_dmv ();
}
void k9requant::motion_fi_conceal ()
{
COPYBITS (bit_buf, bits, 1);
get_motion_delta (f_code[0][0]);
get_motion_delta (f_code[0][1]);
COPYBITS (bit_buf, bits, 1);
}
void k9requant::putmbdata(int macroblock_modes)
{
putmbtype(macroblock_modes & 0x1F);
/*switch (picture_coding_type)
{
case I_TYPE:
if ((! (frame_pred_frame_dct)) && (picture_structure == FRAME_PICTURE))
putbits(macroblock_modes & DCT_TYPE_INTERLACED ? 1 : 0, 1);
break;
case P_TYPE:
if (picture_structure != FRAME_PICTURE)
{
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
break;
}
else if (frame_pred_frame_dct) break;
else
{
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN))
putbits(macroblock_modes & DCT_TYPE_INTERLACED ? 1 : 0, 1);
break;
}
case B_TYPE:
if (picture_structure != FRAME_PICTURE)
{
if (! (macroblock_modes & MACROBLOCK_INTRA))
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
break;
}
else if (frame_pred_frame_dct) break;
else
{
if (macroblock_modes & MACROBLOCK_INTRA) goto intra;
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN))
{
intra:
putbits(macroblock_modes & DCT_TYPE_INTERLACED ? 1 : 0, 1);
}
break;
}
}*/
if (macroblock_modes & (MACROBLOCK_MOTION_FORWARD | MACROBLOCK_MOTION_BACKWARD))
{
if (picture_structure == FRAME_PICTURE)
{
if (frame_pred_frame_dct == 0)
{
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
}
}
else
{
putbits((macroblock_modes & MOTION_TYPE_MASK) / MOTION_TYPE_BASE, 2);
}
}
if ((picture_structure == FRAME_PICTURE) && (frame_pred_frame_dct == 0) && (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)))
{
putbits(macroblock_modes & DCT_TYPE_INTERLACED ? 1 : 0, 1);
}
}
void k9requant::put_quantiser(int quantiser)
{
putbits(q_scale_type ? map_non_linear_mquant[quantiser] : quantiser >> 1, 5);
last_coded_scale = quantiser;
}
void k9requant::putaddrinc(int addrinc)
{
mb_out += addrinc;
//LOGF("mb_out: %i\n", mb_out);
if (mb_out > (horizontal_size_value >> 4))
{
sliceError++;
//LOGF("mb_out: %i, hsv: %i, curo: %i\n", mb_out, horizontal_size_value, (int)outbytecnt + (wbuf - owbuf));
}
while (addrinc>33)
{
putbits(0x08,11); /* macroblock_escape */
addrinc-= 33;
}
assert( addrinc >= 1 && addrinc <= 33 );
putbits(addrinctab[addrinc-1].code,addrinctab[addrinc-1].len);
}
int k9requant::slice_init (int code)
{
#define bit_buf (inbitbuf)
int offset;
const MBAtab * mba;
mb_out = 0;
v_offset = (code - 1) * 16;
quantizer_scale = get_quantizer_scale ();
new_quantizer_scale = getNewQuant(quantizer_scale, 0);
put_quantiser(new_quantizer_scale);
/* ignore intra_slice and all the extra data */
while (bit_buf & 0x80000000)
{
DUMPBITS (bit_buf, bits, 9);
}
/* decode initial macroblock address increment */
offset = 0;
while (1)
{
if (bit_buf >= 0x08000000)
{
mba = MBA_5 + (UBITS (bit_buf, 6) - 2);
break;
}
else if (bit_buf >= 0x01800000)
{
mba = MBA_11 + (UBITS (bit_buf, 12) - 24);
break;
}
else switch (UBITS (bit_buf, 12))
{
case 8: /* macroblock_escape */
offset += 33;
DUMPBITS (bit_buf, bits, 11);
continue;
default: /* error */
sliceError++;
return 1;
}
}
mb_add = offset + mba->mba + 1;
mb_skip = 0;
COPYBITS (bit_buf, bits, 1);
DUMPBITS(bit_buf, bits, mba->len);
h_offset = (offset + mba->mba) << 4;
while (h_offset - (int)horizontal_size_value >= 0)
{
h_offset -= horizontal_size_value;
v_offset += 16;
}
if (v_offset > (vertical_size_value - 16)) return 1;
return 0;
}
void k9requant::mpeg2_slice ( const int code )
{
#define bit_buf (inbitbuf)
#ifdef CHANGE_BRIGHTNESS
dc_reset = 1;
#endif
if (slice_init (code)) return;
while (1)
{
int macroblock_modes;
int mba_inc;
const MBAtab * mba;
macroblock_modes = get_macroblock_modes ();
if (macroblock_modes & MACROBLOCK_QUANT) quantizer_scale = get_quantizer_scale ();
if (macroblock_modes & MACROBLOCK_INTRA)
{
#ifdef STAT
if (picture_coding_type == P_TYPE) cnt_p_i++;
else if (picture_coding_type == B_TYPE) cnt_b_i++;
#endif
new_quantizer_scale = getNewQuant(quantizer_scale, 1);
if (last_coded_scale == new_quantizer_scale) macroblock_modes &= 0xFFFFFFEF; // remove MACROBLOCK_QUANT
else macroblock_modes |= MACROBLOCK_QUANT; //add MACROBLOCK_QUANT
putaddrinc(mb_add + mb_skip); mb_skip = 0;
putmbdata(macroblock_modes);
if (macroblock_modes & MACROBLOCK_QUANT) put_quantiser(new_quantizer_scale);
if (concealment_motion_vectors)
{
if (picture_structure == FRAME_PICTURE) motion_fr_conceal ();
else motion_fi_conceal ();
}
curTable = quant_tables[quant_equ[quantizer_scale]][quant_equ[new_quantizer_scale]];
if (!curTable)
{
/*DEBF("Inv. curTable: qs: %i nqs: %i qe_qs: %i qe_nqs: %i\n",
quantizer_scale, new_quantizer_scale,
quant_equ[quantizer_scale], quant_equ[new_quantizer_scale]);*/
curTable = quant_table_id;
}
slice_intra_DCT ( 0);
slice_intra_DCT ( 0);
slice_intra_DCT ( 0);
slice_intra_DCT ( 0);
slice_intra_DCT ( 1);
slice_intra_DCT ( 2);
}
else
{
int new_coded_block_pattern = 0;
// begin saving data
int batb;
uint8 n_owbuf[32], *n_wbuf, *o_owbuf, *o_wbuf;
uint32 n_outbitcnt, n_outbitbuf, o_outbitcnt, o_outbitbuf;
#ifdef CHANGE_BRIGHTNESS
dc_reset = 1;
#endif
#define PUSH_BIT_IO \
o_owbuf = owbuf; o_wbuf = wbuf; \
o_outbitcnt = outbitcnt; o_outbitbuf = outbitbuf; \
owbuf = wbuf = n_owbuf; \
outbitcnt = BITS_IN_BUF; outbitbuf = 0;
#define POP_BIT_IO \
n_wbuf = wbuf; \
n_outbitcnt = outbitcnt; n_outbitbuf = outbitbuf; \
owbuf = o_owbuf; wbuf = o_wbuf; \
outbitcnt = o_outbitcnt; outbitbuf = o_outbitbuf;
PUSH_BIT_IO
if (picture_structure == FRAME_PICTURE)
switch (macroblock_modes & MOTION_TYPE_MASK)
{
case MC_FRAME: MOTION_CALL (motion_fr_frame, macroblock_modes); break;
case MC_FIELD: MOTION_CALL (motion_fr_field, macroblock_modes); break;
case MC_DMV: MOTION_CALL (motion_fr_dmv, MACROBLOCK_MOTION_FORWARD); break;
}
else
switch (macroblock_modes & MOTION_TYPE_MASK)
{
case MC_FIELD: MOTION_CALL (motion_fi_field, macroblock_modes); break;
case MC_16X8: MOTION_CALL (motion_fi_16x8, macroblock_modes); break;
case MC_DMV: MOTION_CALL (motion_fi_dmv, MACROBLOCK_MOTION_FORWARD); break;
}
POP_BIT_IO
// end saving data
#ifdef STAT
if (picture_coding_type == P_TYPE) cnt_p_ni++;
else if (picture_coding_type == B_TYPE) cnt_b_ni++;
#endif
new_quantizer_scale = getNewQuant(quantizer_scale, 0);
if (macroblock_modes & MACROBLOCK_PATTERN)
{
int coded_block_pattern = get_coded_block_pattern ();
mb_sav_lev = 0xFFFF;
curTable = quant_tables[quant_equ[quantizer_scale]][quant_equ[new_quantizer_scale]];
if (!curTable)
{
/*DEBF("Inv. curTable: qs: %i nqs: %i qe_qs: %i qe_nqs: %i\n",
quantizer_scale, new_quantizer_scale,
quant_equ[quantizer_scale], quant_equ[new_quantizer_scale]);*/
curTable = quant_table_id;
}
if (coded_block_pattern & 0x20) { slice_non_intra_DCT(0); if (isNotEmpty(block[0])) new_coded_block_pattern |= 0x20; }
if (coded_block_pattern & 0x10) { slice_non_intra_DCT(1); if (isNotEmpty(block[1])) new_coded_block_pattern |= 0x10; }
if (coded_block_pattern & 0x08) { slice_non_intra_DCT(2); if (isNotEmpty(block[2])) new_coded_block_pattern |= 0x08; }
if (coded_block_pattern & 0x04) { slice_non_intra_DCT(3); if (isNotEmpty(block[3])) new_coded_block_pattern |= 0x04; }
if (coded_block_pattern & 0x02) { slice_non_intra_DCT(4); if (isNotEmpty(block[4])) new_coded_block_pattern |= 0x02; }
if (coded_block_pattern & 0x01) { slice_non_intra_DCT(5); if (isNotEmpty(block[5])) new_coded_block_pattern |= 0x01; }
#ifdef P_FRAME_NON_INTRA_DROP
if (picture_coding_type == P_TYPE) new_quantizer_scale = quantizer_scale;
#endif
if (!new_coded_block_pattern)
{
macroblock_modes &= 0xFFFFFFED; // remove MACROBLOCK_PATTERN and MACROBLOCK_QUANT flag
if ( (picture_coding_type == P_TYPE)
&& !(macroblock_modes & MACROBLOCK_MOTION_FORWARD))
{
assert(n_wbuf == n_owbuf);
assert(n_outbitcnt == BITS_IN_BUF);
if ((h_offset == 0) || (h_offset == horizontal_size_value - 16)) // can't skip last mb
{
// we can't transmit mv (0,0) since PMV could be different than 0 for last block
// so we transmit the single smallest coeff. instead unrequantised
// anyway this is likely to take no more bit than transmiting a null mv....
assert((mb_sav_lev) && (mb_sav_lev != 0xFFFF));
new_coded_block_pattern = 1 << (5 - mb_sav_c);
macroblock_modes |= MACROBLOCK_PATTERN;
new_quantizer_scale = quantizer_scale;
block[mb_sav_c][0].run = mb_sav_run; block[mb_sav_c][0].level = mb_sav_lev;
block[mb_sav_c][1].run = 0; block[mb_sav_c][1].level = 0;
}
else
{
mb_skip += mb_add;
goto skip_mb;
}
}
}
}
if (last_coded_scale == new_quantizer_scale) macroblock_modes &= 0xFFFFFFEF; // remove MACROBLOCK_QUANT
else if (macroblock_modes & MACROBLOCK_PATTERN) macroblock_modes |= MACROBLOCK_QUANT; //add MACROBLOCK_QUANT
assert( (macroblock_modes & MACROBLOCK_PATTERN) || !(macroblock_modes & MACROBLOCK_QUANT) );
putaddrinc(mb_add + mb_skip); mb_skip = 0;
putmbdata(macroblock_modes);
if (macroblock_modes & MACROBLOCK_QUANT) put_quantiser(new_quantizer_scale);
// put saved motion data...
for (batb = 0; batb < (n_wbuf - n_owbuf); batb++) putbits(n_owbuf[batb], 8);
putbits(n_outbitbuf, BITS_IN_BUF - n_outbitcnt);
// end saved motion data...
if (macroblock_modes & MACROBLOCK_PATTERN)
{
putcbp(new_coded_block_pattern);
if (new_coded_block_pattern & 0x20) putnonintrablk(block[0]);
if (new_coded_block_pattern & 0x10) putnonintrablk(block[1]);
if (new_coded_block_pattern & 0x08) putnonintrablk(block[2]);
if (new_coded_block_pattern & 0x04) putnonintrablk(block[3]);
if (new_coded_block_pattern & 0x02) putnonintrablk(block[4]);
if (new_coded_block_pattern & 0x01) putnonintrablk(block[5]);
}
}
skip_mb:
NEXT_MACROBLOCK;
mba_inc = 0;
while (1)
{
if (bit_buf >= 0x10000000)
{
mba = MBA_5 + (UBITS (bit_buf, 5) - 2);
break;
}
else if (bit_buf >= 0x03000000)
{
mba = MBA_11 + (UBITS (bit_buf, 11) - 24);
break;
}
else
switch (UBITS (bit_buf, 11))
{
case 8: /* macroblock_escape */
mba_inc += 33;
DUMPBITS (bit_buf, bits, 11);
continue;
default: /* end of slice, or error */
//LOGF("hoffset: %i, hsv: %i, curo: %i\n", h_offset, horizontal_size_value, (int)outbytecnt + (wbuf - owbuf));
if (h_offset != 0)
sliceError++;
return;
}
}
DUMPBITS (bit_buf, bits, mba->len); //PPP
mba_inc += mba->mba;
mb_add = mba_inc + 1;
#ifdef CHANGE_BRIGHTNESS
if (mba_inc) dc_reset = 1;
#endif
if (mba_inc) do { NEXT_MACROBLOCK; }
while (--mba_inc);
}
}
/////---- end ext mpeg code
void k9requant::run ()
{
uint8 ID, found;
int64 greedyFactor, greedyFactor2;
int i;
#ifdef DEMO
gopCount = 0;
#endif
#ifdef LOG_RATE_CONTROL
LOG_FILE = fopen("Logfile.txt", "w");
#endif
#ifdef STAT
ori_i = ori_p = ori_b = 0;
new_i = new_p = new_b = 0;
cnt_i = cnt_p = cnt_b = 0;
cnt_p_i = cnt_p_ni = 0;
cnt_b_i = cnt_b_ni = 0;
#endif
#ifdef USE_FD
if (argc < 3) { USAGE }
ifd = fopen(argv[argc - 2], "rb");
ofd = fopen(argv[argc - 1], "wb");
if (!ifd)
{
LOGF("Bad input path! (%s)\n", argv[argc - 2]);
return 2;
}
if (!ofd)
{
LOGF("Bad output path! (%s)\n", argv[argc - 1]);
return 2;
}
argc -= 2;
#endif
#ifndef THREAD
rbuf = cbuf = orbuf = malloc(BUF_SIZE);
wbuf = owbuf = malloc(BUF_SIZE);
inbytecnt = outbytecnt = 0;
eof = 0;
#endif
validPicHeader = 0;
validSeqHeader = 0;
validExtHeader = 0;
#ifndef THREAD
// argument parsing
#ifdef CHANGE_BRIGHTNESS
if (argc < 5) { USAGE }
delta_bright = atoi(argv[4]);
#else
if (argc < 4) { USAGE }
#endif
fact_x = atof(argv[1]);
sscanf(argv[3], "%lld", &orim2vsize);
#endif
#ifdef THREAD
orim2vsize=rqt_visize;
fact_x = rqt_fact;
#endif
greedyFactor = orim2vsize / 100;
greedyFactor2 = orim2vsize / 50;
#ifndef THREAD
if (fact_x <= 1.0)
{
unsigned char buf[4096];
while(1)
{
int i = read(0, buf, 4096);
if (i > 0) write(1, buf, i);
else return 0;
}
}
#endif
if (fact_x > 10.0) fact_x = 10.0;
// factor and stresses setting
initRequant();
// fill quant table
// id table
for (i = -2048; i <= 2047; i++) quant_table_id[i] = i;
// other tables
for (i = 0; i < 42; i++)
{
int q = quantisers[i];
int j;
for (j = i + 1; j < 42; j++)
{
int nq = quantisers[j];
int k;
short *cTab = quant_tables[quant_equ[q]][quant_equ[nq]];
for (k = -2048; k <= 2047; k++)
{
int ov = k*q;
int t = ov / nq;
if (fact_x <= max_alt_table)
{
int t2, t3;
int d, d2, d3;
int nv, nv2, nv3;
t2 = t + 1;
t3 = t - 1;
nv = t * nq;
nv2 = t2 * nq;
nv3 = t3 * nq;
d = abs(nv - ov);
d2 = abs(nv2 - ov);
d3 = abs(nv3 - ov);
if (d2 < d) { d = d2; t = t2; }
if (d3 < d) t = t3;
}
if (t > 2047) t = 2047;
else if (t < -2048) t = -2048;
cTab[k] = t;
}
}
}
#ifndef THREAD
LOG("M2VRequantiser by Makira.\n");
#ifdef WIN
fprintf(stderr, "Using %f as factor, %lld as m2v size.\n", fact_x, orim2vsize);
#else
LOGF("Using %f as factor, %lld as m2v size.\n", fact_x, orim2vsize);
#endif
#endif
// recoding
while(1)
{
// get next start code prefix
found = 0;
while (!found)
{
#ifndef REMOVE_BYTE_STUFFING
LOCK(3)
#else
LOCK(8)
if ( (cbuf[7] == 0) && (cbuf[6] == 0) && (cbuf[5] == 0) && (cbuf[4] == 0)
&& (cbuf[3] == 0) && (cbuf[2] == 0) && (cbuf[1] == 0) && (cbuf[0] == 0) ) { SEEKR(1) }
else
#endif
if ( (cbuf[0] == 0) && (cbuf[1] == 0) && (cbuf[2] == 1) ) found = 1; // start code !
else { COPY(1) } // continue search
}
COPY(3)
// get start code
LOCK(1)
ID = cbuf[0];
COPY(1)
if (ID == 0x00) // pic header
{
LOCK(4)
picture_coding_type = (cbuf[1] >> 3) & 0x7;
if (picture_coding_type < 1 || picture_coding_type > 3)
{
DEBF("illegal picture_coding_type: %i\n", picture_coding_type);
validPicHeader = 0;
}
else
{
validPicHeader = 1;
cbuf[1] |= 0x7; cbuf[2] = 0xFF; cbuf[3] |= 0xF8; // vbv_delay is now 0xFFFF
}
validExtHeader = 0;
COPY(4)
}
else if (ID == 0xB3) // seq header
{
LOCK(8)
horizontal_size_value = (cbuf[0] << 4) | (cbuf[1] >> 4);
vertical_size_value = ((cbuf[1] & 0xF) << 8) | cbuf[2];
if ( horizontal_size_value > 720 || horizontal_size_value < 352
|| vertical_size_value > 576 || vertical_size_value < 480
|| (horizontal_size_value & 0xF) || (vertical_size_value & 0xF))
{
DEBF("illegal size, hori: %i verti: %i\n", horizontal_size_value, vertical_size_value);
validSeqHeader = 0;
}
else
validSeqHeader = 1;
validPicHeader = 0;
validExtHeader = 0;
COPY(8)
}
else if (ID == 0xB5) // extension
{
LOCK(1)
if ((cbuf[0] >> 4) == 0x8) // pic coding ext
{
LOCK(5)
f_code[0][0] = (cbuf[0] & 0xF) - 1;
f_code[0][1] = (cbuf[1] >> 4) - 1;
f_code[1][0] = (cbuf[1] & 0xF) - 1;
f_code[1][1] = (cbuf[2] >> 4) - 1;
intra_dc_precision = (cbuf[2] >> 2) & 0x3;
picture_structure = cbuf[2] & 0x3;
frame_pred_frame_dct = (cbuf[3] >> 6) & 0x1;
concealment_motion_vectors = (cbuf[3] >> 5) & 0x1;
q_scale_type = (cbuf[3] >> 4) & 0x1;
intra_vlc_format = (cbuf[3] >> 3) & 0x1;
alternate_scan = (cbuf[3] >> 2) & 0x1;
if ( (f_code[0][0] > 8 && f_code[0][0] < 14)
|| (f_code[0][1] > 8 && f_code[0][1] < 14)
|| (f_code[1][0] > 8 && f_code[1][0] < 14)
|| (f_code[1][1] > 8 && f_code[1][1] < 14)
|| picture_structure == 0)
{
DEBF("illegal ext, f_code[0][0]: %i f_code[0][1]: %i f_code[1][0]: %i f_code[1][1]: %i picture_structure:%i\n",
f_code[0][0], f_code[0][1], f_code[1][0], f_code[1][1], picture_structure);
validExtHeader = 0;
}
else
validExtHeader = 1;
COPY(5)
}
else
{
COPY(1)
}
}
else if (ID == 0xB8) // gop header
{
LOCK(4)
COPY(4)
#ifdef DEMO
gopCount++;
#endif
}
else if ((ID >= 0x01) && (ID <= 0xAF) && validPicHeader && validSeqHeader && validExtHeader) // slice
{
uint8 *outTemp = wbuf, *inTemp = cbuf;
int64 threshold;
bytediff = (outbytecnt + (wbuf - owbuf)) - ((inbytecnt - (rbuf - cbuf)) / fact_x);
if (inbytecnt < greedyFactor2) threshold = inbytecnt >> 1;
else if (orim2vsize - inbytecnt < greedyFactor2) threshold = (orim2vsize - inbytecnt) >> 1;
else threshold = greedyFactor;
if (threshold < 1024) threshold = 1024;
stress_factor = (float)(bytediff + threshold) / (float)(threshold << 1);
if (stress_factor > 1.0f) stress_factor = 1.0f;
else if (stress_factor < 0.0f) stress_factor = 0.0f;
#ifdef LOG_RATE_CONTROL
/*fprintf(LOG_FILE, "%f%%: Requested: %f Current: %f Delta: %lld Threshold: %f Stress: %f\n",
(float)(100.0f*inbytecnt)/orim2vsize, // percent
(float)fact_x, // requested
(float)(inbytecnt - (rbuf - cbuf))/(float)(outbytecnt + (wbuf - owbuf)), // current
(long long)bytediff, // delta
(float)threshold, // threshold
stress_factor // Stress
);*/
fprintf(LOG_FILE, "inb: %.0f inb_c: %.0f oub: %.0f oub_c: %.0f cur: %.3f dif: %.0f thr: %.0f str: %.03f\n",
(float)inbytecnt,
(float)(inbytecnt - (rbuf - cbuf)),
(float)outbytecnt,
(float)(outbytecnt + (wbuf - owbuf)),
(float)(inbytecnt - (rbuf - cbuf))/(float)(outbytecnt + (wbuf - owbuf)),
(float)bytediff,
(float)threshold,
(float)stress_factor );
#endif
#ifndef CHANGE_BRIGHTNESS
if ( ((picture_coding_type == I_TYPE) && ( stress_factor > i_min_stress))
|| ((picture_coding_type == P_TYPE) && ( stress_factor > p_min_stress))
|| ((picture_coding_type == B_TYPE) && ( stress_factor > b_min_stress))
#ifdef DEMO
|| ((gopCount & 0x7F) < 10)
#endif
)
#endif
{
// init error
sliceError = 0;
// init bit buffer
inbitbuf = 0; inbitcnt = 0;
outbitbuf = 0; outbitcnt = BITS_IN_BUF;
// get 32 bits
Refill_bits();
Refill_bits();
Refill_bits();
Refill_bits();
// begin bit level recoding
mpeg2_slice(ID);
flush_read_buffer();
flush_write_buffer();
// end bit level recoding
#ifndef CHANGE_BRIGHTNESS
if ((wbuf - outTemp > cbuf - inTemp) || (sliceError > MAX_ERRORS)) // yes that might happen, rarely
{
#ifndef NDEBUG
if (sliceError > MAX_ERRORS)
{
DEBF("sliceError (%i) > MAX_ERRORS (%i)\n", sliceError, MAX_ERRORS);
}
#endif
// in this case, we'll just use the original slice !
tc_memcpy(outTemp, inTemp, cbuf - inTemp);
wbuf = outTemp + (cbuf - inTemp);
// adjust outbytecnt
outbytecnt -= (wbuf - outTemp) - (cbuf - inTemp);
}
#endif
#ifdef STAT
#ifdef LOG_RATE_CONTROL
if (picture_coding_type == I_TYPE) fprintf(LOG_FILE, "-I-\n");
#endif
switch(picture_coding_type)
{
case I_TYPE:
ori_i += cbuf - inTemp;
new_i += (wbuf - outTemp > cbuf - inTemp) ? (cbuf - inTemp) : (wbuf - outTemp);
cnt_i ++;
break;
case P_TYPE:
ori_p += cbuf - inTemp;
new_p += (wbuf - outTemp > cbuf - inTemp) ? (cbuf - inTemp) : (wbuf - outTemp);
cnt_p ++;
break;
case B_TYPE:
ori_b += cbuf - inTemp;
new_b += (wbuf - outTemp > cbuf - inTemp) ? (cbuf - inTemp) : (wbuf - outTemp);
cnt_b ++;
break;
default:
assert(0);
break;
}
#endif
}
}
#ifndef NDEBUG
if ((ID >= 0x01) && (ID <= 0xAF) && (!validPicHeader || !validSeqHeader || !validExtHeader))
{
if (!validPicHeader) DEBF("missing pic header (%02X)\n", ID);
if (!validSeqHeader) DEBF("missing seq header (%02X)\n", ID);
if (!validExtHeader) DEBF("missing ext header (%02X)\n", ID);
}
#endif
if (rbuf - orbuf > MAX_READ) { MOV_READ }
if (wbuf - owbuf > MIN_WRITE) { WRITE }
}
#ifdef LOG_RATE_CONTROL
fclose(LOG_FILE);
#endif
rqt_run=false;
// keeps gcc happy
return ;
}
void k9requant::initvar()
{
cbuf = NULL;
rbuf = NULL;
wbuf = NULL;
orbuf = NULL;
owbuf = NULL;
inbitcnt = outbitcnt = 0;
inbitbuf = outbitbuf = 0;
inbytecnt = outbytecnt = 0;
fact_x = 0;
mloka1 = mloka2 = eof = 0;
orim2vsize = 0;
bytediff = 0;
stress_factor = 0;
i_factor = 0;
p_factor = 0;
b_factor = 0;
i_min_stress = 0;
p_min_stress = 0;
b_min_stress = 0;
quant_table_id = &quant_table_id_data[2048];
horizontal_size_value = 0;
vertical_size_value = 0;
picture_coding_type = 0;
memset( f_code,0 , sizeof(f_code));
intra_dc_precision = 0;
picture_structure = 0;
frame_pred_frame_dct = 0;
concealment_motion_vectors = 0;
q_scale_type = 0;
intra_vlc_format = 0;
alternate_scan = 0;
validPicHeader = 0;
validSeqHeader = 0;
validExtHeader = 0;
sliceError = 0;
quantizer_scale = 0;
new_quantizer_scale = 0;
last_coded_scale = 0;
h_offset = v_offset = 0;
mb_skip = mb_add = 0;
mb_out = 0;
mb_sav_run = mb_sav_lev = mb_sav_c = 0;
curTable = NULL;
memset( block, 0, sizeof(block));
}
void k9requant::initRequant() {
int i;
if (fact_x <= 1.0)
{
i_factor = i_factors[0];
p_factor = p_factors[0];
b_factor = b_factors[0];
i_min_stress = i_min_stresses[0];
p_min_stress = p_min_stresses[0];
b_min_stress = b_min_stresses[0];
}
else if (fact_x >= 10.0)
{
i_factor = i_factors[2];
p_factor = p_factors[2];
b_factor = b_factors[2];
i_min_stress = i_min_stresses[2];
p_min_stress = p_min_stresses[2];
b_min_stress = b_min_stresses[2];
}
else if (fact_x <= 3.0) // 1.0 .. 3.0
{
double inter = (fact_x - 1.0)/(3.0 - 1.0);
i_factor = i_factors[0] + inter * (i_factors[1] - i_factors[0]);
p_factor = p_factors[0] + inter * (p_factors[1] - p_factors[0]);
b_factor = b_factors[0] + inter * (b_factors[1] - b_factors[0]);
i_min_stress = i_min_stresses[0] + inter * (i_min_stresses[1] - i_min_stresses[0]);
p_min_stress = p_min_stresses[0] + inter * (p_min_stresses[1] - p_min_stresses[0]);
b_min_stress = b_min_stresses[0] + inter * (b_min_stresses[1] - b_min_stresses[0]);
}
else // 3.0 .. 10.0
{
double inter = (fact_x - 3.0)/(10.0 - 3.0);
i_factor = i_factors[1] + inter * (i_factors[2] - i_factors[1]);
p_factor = p_factors[1] + inter * (p_factors[2] - p_factors[1]);
b_factor = b_factors[1] + inter * (b_factors[2] - b_factors[1]);
i_min_stress = i_min_stresses[1] + inter * (i_min_stresses[2] - i_min_stresses[1]);
p_min_stress = p_min_stresses[1] + inter * (p_min_stresses[2] - p_min_stresses[1]);
b_min_stress = b_min_stresses[1] + inter * (b_min_stresses[2] - b_min_stresses[1]);
}
/*LOGF( "i_factor: %i p_factor: %i b_factor: %i\n"
"i_min_stress: %.02f p_min_stress: %.02f b_min_stress: %.02f\n",
i_factor, p_factor, b_factor,
i_min_stress, p_min_stress, b_min_stress);*/
}
bool k9requant::lock( int64 x) {
if (unlikely ((x) > (rbuf - cbuf)))
{
if (likely (wbuf))
{
TQMutexLocker locker( &mutw );
//mutw.lock();
rqt_wcnt = wbuf - owbuf;
condw.wakeAll();
//mutw.unlock();
}
//mutr.lock();
TQMutexLocker locker( &mutr );
while (!rqt_rcnt)
{
condr.wait( &mutr);
if (rqt_stop==true) {
//mutr.unlock();
return false;
}
}
cbuf = rqt_rptr; //src buffer
rbuf =orbuf = cbuf;
rbuf += rqt_rcnt + 3; // end of src buffer
rqt_rcnt = 0;
owbuf = rqt_wptr; // dest buffer
inbytecnt = rqt_inbytes;
outbytecnt = rqt_outbytes;
orim2vsize = rqt_visize;
//mutr.unlock();
wbuf = owbuf;
if ( fact_x < rqt_fact) {
fact_x=rqt_fact;
initRequant();
}
fact_x=rqt_fact;
}
return true;
}