You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
768 lines
20 KiB
768 lines
20 KiB
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains code that is specific to windows.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "os.h"
|
|
#if OS_WIN /* This file is used for windows only */
|
|
|
|
#include <winbase.h>
|
|
|
|
#ifdef __CYGWIN__
|
|
# include <sys/cygwin.h>
|
|
#endif
|
|
|
|
/*
|
|
** Macros used to determine whether or not to use threads.
|
|
*/
|
|
#if defined(THREADSAFE) && THREADSAFE
|
|
# define SQLITE_W32_THREADS 1
|
|
#endif
|
|
|
|
/*
|
|
** Include code that is common to all os_*.c files
|
|
*/
|
|
#include "os_common.h"
|
|
|
|
/*
|
|
** Do not include any of the File I/O interface procedures if the
|
|
** SQLITE_OMIT_DISKIO macro is defined (indicating that there database
|
|
** will be in-memory only)
|
|
*/
|
|
#ifndef SQLITE_OMIT_DISKIO
|
|
|
|
/*
|
|
** Delete the named file
|
|
*/
|
|
int sqlite3OsDelete(const char *zFilename){
|
|
DeleteFileA(zFilename);
|
|
TRACE2("DELETE \"%s\"\n", zFilename);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the named file exists.
|
|
*/
|
|
int sqlite3OsFileExists(const char *zFilename){
|
|
return GetFileAttributesA(zFilename) != 0xffffffff;
|
|
}
|
|
|
|
/*
|
|
** Attempt to open a file for both reading and writing. If that
|
|
** fails, try opening it read-only. If the file does not exist,
|
|
** try to create it.
|
|
**
|
|
** On success, a handle for the open file is written to *id
|
|
** and *pReadonly is set to 0 if the file was opened for reading and
|
|
** writing or 1 if the file was opened read-only. The function returns
|
|
** SQLITE_OK.
|
|
**
|
|
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
|
** *id and *pReadonly unchanged.
|
|
*/
|
|
int sqlite3OsOpenReadWrite(
|
|
const char *zFilename,
|
|
OsFile *id,
|
|
int *pReadonly
|
|
){
|
|
HANDLE h;
|
|
assert( !id->isOpen );
|
|
h = CreateFileA(zFilename,
|
|
GENERIC_READ | GENERIC_WRITE,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE,
|
|
NULL,
|
|
OPEN_ALWAYS,
|
|
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
NULL
|
|
);
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
h = CreateFileA(zFilename,
|
|
GENERIC_READ,
|
|
FILE_SHARE_READ,
|
|
NULL,
|
|
OPEN_ALWAYS,
|
|
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
NULL
|
|
);
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
*pReadonly = 1;
|
|
}else{
|
|
*pReadonly = 0;
|
|
}
|
|
id->h = h;
|
|
id->locktype = NO_LOCK;
|
|
id->sharedLockByte = 0;
|
|
id->isOpen = 1;
|
|
OpenCounter(+1);
|
|
TRACE3("OPEN R/W %d \"%s\"\n", h, zFilename);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Attempt to open a new file for exclusive access by this process.
|
|
** The file will be opened for both reading and writing. To avoid
|
|
** a potential security problem, we do not allow the file to have
|
|
** previously existed. Nor do we allow the file to be a symbolic
|
|
** link.
|
|
**
|
|
** If delFlag is true, then make arrangements to automatically delete
|
|
** the file when it is closed.
|
|
**
|
|
** On success, write the file handle into *id and return SQLITE_OK.
|
|
**
|
|
** On failure, return SQLITE_CANTOPEN.
|
|
*/
|
|
int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
|
|
HANDLE h;
|
|
int fileflags;
|
|
assert( !id->isOpen );
|
|
if( delFlag ){
|
|
fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
|
|
| FILE_FLAG_DELETE_ON_CLOSE;
|
|
}else{
|
|
fileflags = FILE_FLAG_RANDOM_ACCESS;
|
|
}
|
|
h = CreateFileA(zFilename,
|
|
GENERIC_READ | GENERIC_WRITE,
|
|
0,
|
|
NULL,
|
|
CREATE_ALWAYS,
|
|
fileflags,
|
|
NULL
|
|
);
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
id->h = h;
|
|
id->locktype = NO_LOCK;
|
|
id->sharedLockByte = 0;
|
|
id->isOpen = 1;
|
|
OpenCounter(+1);
|
|
TRACE3("OPEN EX %d \"%s\"\n", h, zFilename);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Attempt to open a new file for read-only access.
|
|
**
|
|
** On success, write the file handle into *id and return SQLITE_OK.
|
|
**
|
|
** On failure, return SQLITE_CANTOPEN.
|
|
*/
|
|
int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
|
|
HANDLE h;
|
|
assert( !id->isOpen );
|
|
h = CreateFileA(zFilename,
|
|
GENERIC_READ,
|
|
0,
|
|
NULL,
|
|
OPEN_EXISTING,
|
|
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
NULL
|
|
);
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
id->h = h;
|
|
id->locktype = NO_LOCK;
|
|
id->sharedLockByte = 0;
|
|
id->isOpen = 1;
|
|
OpenCounter(+1);
|
|
TRACE3("OPEN RO %d \"%s\"\n", h, zFilename);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Attempt to open a file descriptor for the directory that contains a
|
|
** file. This file descriptor can be used to fsync() the directory
|
|
** in order to make sure the creation of a new file is actually written
|
|
** to disk.
|
|
**
|
|
** This routine is only meaningful for Unix. It is a no-op under
|
|
** windows since windows does not support hard links.
|
|
**
|
|
** On success, a handle for a previously open file is at *id is
|
|
** updated with the new directory file descriptor and SQLITE_OK is
|
|
** returned.
|
|
**
|
|
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
|
** *id unchanged.
|
|
*/
|
|
int sqlite3OsOpenDirectory(
|
|
const char *zDirname,
|
|
OsFile *id
|
|
){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the following global variable points to a string which is the
|
|
** name of a directory, then that directory will be used to store
|
|
** temporary files.
|
|
*/
|
|
char *sqlite3_temp_directory = 0;
|
|
|
|
/*
|
|
** Create a temporary file name in zBuf. zBuf must be big enough to
|
|
** hold at least SQLITE_TEMPNAME_SIZE characters.
|
|
*/
|
|
int sqlite3OsTempFileName(char *zBuf){
|
|
static char zChars[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789";
|
|
int i, j;
|
|
char zTempPath[SQLITE_TEMPNAME_SIZE];
|
|
if( sqlite3_temp_directory ){
|
|
strncpy(zTempPath, sqlite3_temp_directory, SQLITE_TEMPNAME_SIZE-30);
|
|
zTempPath[SQLITE_TEMPNAME_SIZE-30] = 0;
|
|
}else{
|
|
GetTempPathA(SQLITE_TEMPNAME_SIZE-30, zTempPath);
|
|
}
|
|
for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
|
|
zTempPath[i] = 0;
|
|
for(;;){
|
|
sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath);
|
|
j = strlen(zBuf);
|
|
sqlite3Randomness(15, &zBuf[j]);
|
|
for(i=0; i<15; i++, j++){
|
|
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
}
|
|
zBuf[j] = 0;
|
|
if( !sqlite3OsFileExists(zBuf) ) break;
|
|
}
|
|
TRACE2("TEMP FILENAME: %s\n", zBuf);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
int sqlite3OsClose(OsFile *id){
|
|
if( id->isOpen ){
|
|
TRACE2("CLOSE %d\n", id->h);
|
|
CloseHandle(id->h);
|
|
OpenCounter(-1);
|
|
id->isOpen = 0;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
** wrong.
|
|
*/
|
|
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
|
|
DWORD got;
|
|
assert( id->isOpen );
|
|
SimulateIOError(SQLITE_IOERR);
|
|
TRACE3("READ %d lock=%d\n", id->h, id->locktype);
|
|
if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
|
|
got = 0;
|
|
}
|
|
if( got==(DWORD)amt ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_IOERR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
** or some other error code on failure.
|
|
*/
|
|
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
|
|
int rc = 0;
|
|
DWORD wrote;
|
|
assert( id->isOpen );
|
|
SimulateIOError(SQLITE_IOERR);
|
|
SimulateDiskfullError;
|
|
TRACE3("WRITE %d lock=%d\n", id->h, id->locktype);
|
|
assert( amt>0 );
|
|
while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
|
|
amt -= wrote;
|
|
pBuf = &((char*)pBuf)[wrote];
|
|
}
|
|
if( !rc || amt>(int)wrote ){
|
|
return SQLITE_FULL;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Move the read/write pointer in a file.
|
|
*/
|
|
int sqlite3OsSeek(OsFile *id, i64 offset){
|
|
LONG upperBits = offset>>32;
|
|
LONG lowerBits = offset & 0xffffffff;
|
|
DWORD rc;
|
|
assert( id->isOpen );
|
|
SEEK(offset/1024 + 1);
|
|
rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
TRACE3("SEEK %d %lld\n", id->h, offset);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Make sure all writes to a particular file are committed to disk.
|
|
*/
|
|
int sqlite3OsSync(OsFile *id){
|
|
assert( id->isOpen );
|
|
TRACE3("SYNC %d lock=%d\n", id->h, id->locktype);
|
|
if( FlushFileBuffers(id->h) ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_IOERR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Sync the directory zDirname. This is a no-op on operating systems other
|
|
** than UNIX.
|
|
*/
|
|
int sqlite3OsSyncDirectory(const char *zDirname){
|
|
SimulateIOError(SQLITE_IOERR);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate an open file to a specified size
|
|
*/
|
|
int sqlite3OsTruncate(OsFile *id, i64 nByte){
|
|
LONG upperBits = nByte>>32;
|
|
assert( id->isOpen );
|
|
TRACE3("TRUNCATE %d %lld\n", id->h, nByte);
|
|
SimulateIOError(SQLITE_IOERR);
|
|
SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
|
|
SetEndOfFile(id->h);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Determine the current size of a file in bytes
|
|
*/
|
|
int sqlite3OsFileSize(OsFile *id, i64 *pSize){
|
|
DWORD upperBits, lowerBits;
|
|
assert( id->isOpen );
|
|
SimulateIOError(SQLITE_IOERR);
|
|
lowerBits = GetFileSize(id->h, &upperBits);
|
|
*pSize = (((i64)upperBits)<<32) + lowerBits;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
|
|
** Return false (zero) for Win95, Win98, or WinME.
|
|
**
|
|
** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
** the LockFileEx() API. But we can still statically link against that
|
|
** API as long as we don't call it win running Win95/98/ME. A call to
|
|
** this routine is used to determine if the host is Win95/98/ME or
|
|
** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
** the LockFileEx() API.
|
|
*/
|
|
static int isNT(void){
|
|
static int osType = 0; /* 0=unknown 1=win95 2=winNT */
|
|
if( osType==0 ){
|
|
OSVERSIONINFO sInfo;
|
|
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
GetVersionEx(&sInfo);
|
|
osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
}
|
|
return osType==2;
|
|
}
|
|
|
|
/*
|
|
** Acquire a reader lock.
|
|
** Different API routines are called depending on whether or not this
|
|
** is Win95 or WinNT.
|
|
*/
|
|
static int getReadLock(OsFile *id){
|
|
int res;
|
|
if( isNT() ){
|
|
OVERLAPPED ovlp;
|
|
ovlp.Offset = SHARED_FIRST;
|
|
ovlp.OffsetHigh = 0;
|
|
ovlp.hEvent = 0;
|
|
res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY, 0, SHARED_SIZE,0,&ovlp);
|
|
}else{
|
|
int lk;
|
|
sqlite3Randomness(sizeof(lk), &lk);
|
|
id->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
|
|
res = LockFile(id->h, SHARED_FIRST+id->sharedLockByte, 0, 1, 0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Undo a readlock
|
|
*/
|
|
static int unlockReadLock(OsFile *id){
|
|
int res;
|
|
if( isNT() ){
|
|
res = UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
}else{
|
|
res = UnlockFile(id->h, SHARED_FIRST + id->sharedLockByte, 0, 1, 0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** Check that a given pathname is a directory and is writable
|
|
**
|
|
*/
|
|
int sqlite3OsIsDirWritable(char *zBuf){
|
|
int fileAttr;
|
|
if(! zBuf ) return 0;
|
|
if(! isNT() && strlen(zBuf) > MAX_PATH ) return 0;
|
|
fileAttr = GetFileAttributesA(zBuf);
|
|
if( fileAttr == 0xffffffff ) return 0;
|
|
if( (fileAttr & FILE_ATTRIBUTE_DIRECTORY) != FILE_ATTRIBUTE_DIRECTORY ){
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
|
|
|
/*
|
|
** Lock the file with the lock specified by parameter locktype - one
|
|
** of the following:
|
|
**
|
|
** (1) SHARED_LOCK
|
|
** (2) RESERVED_LOCK
|
|
** (3) PENDING_LOCK
|
|
** (4) EXCLUSIVE_LOCK
|
|
**
|
|
** Sometimes when requesting one lock state, additional lock states
|
|
** are inserted in between. The locking might fail on one of the later
|
|
** transitions leaving the lock state different from what it started but
|
|
** still short of its goal. The following chart shows the allowed
|
|
** transitions and the inserted intermediate states:
|
|
**
|
|
** UNLOCKED -> SHARED
|
|
** SHARED -> RESERVED
|
|
** SHARED -> (PENDING) -> EXCLUSIVE
|
|
** RESERVED -> (PENDING) -> EXCLUSIVE
|
|
** PENDING -> EXCLUSIVE
|
|
**
|
|
** This routine will only increase a lock. The sqlite3OsUnlock() routine
|
|
** erases all locks at once and returns us immediately to locking level 0.
|
|
** It is not possible to lower the locking level one step at a time. You
|
|
** must go straight to locking level 0.
|
|
*/
|
|
int sqlite3OsLock(OsFile *id, int locktype){
|
|
int rc = SQLITE_OK; /* Return code from subroutines */
|
|
int res = 1; /* Result of a windows lock call */
|
|
int newLocktype; /* Set id->locktype to this value before exiting */
|
|
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
|
|
|
|
assert( id->isOpen );
|
|
TRACE5("LOCK %d %d was %d(%d)\n",
|
|
id->h, locktype, id->locktype, id->sharedLockByte);
|
|
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** OsFile, do nothing. Don't use the end_lock: exit path, as
|
|
** sqlite3OsEnterMutex() hasn't been called yet.
|
|
*/
|
|
if( id->locktype>=locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( id->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || id->locktype==SHARED_LOCK );
|
|
|
|
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
|
|
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
|
|
** the PENDING_LOCK byte is temporary.
|
|
*/
|
|
newLocktype = id->locktype;
|
|
if( id->locktype==NO_LOCK
|
|
|| (locktype==EXCLUSIVE_LOCK && id->locktype==RESERVED_LOCK)
|
|
){
|
|
int cnt = 3;
|
|
while( cnt-->0 && (res = LockFile(id->h, PENDING_BYTE, 0, 1, 0))==0 ){
|
|
/* Try 3 times to get the pending lock. The pending lock might be
|
|
** held by another reader process who will release it momentarily.
|
|
*/
|
|
TRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
|
|
Sleep(1);
|
|
}
|
|
gotPendingLock = res;
|
|
}
|
|
|
|
/* Acquire a shared lock
|
|
*/
|
|
if( locktype==SHARED_LOCK && res ){
|
|
assert( id->locktype==NO_LOCK );
|
|
res = getReadLock(id);
|
|
if( res ){
|
|
newLocktype = SHARED_LOCK;
|
|
}
|
|
}
|
|
|
|
/* Acquire a RESERVED lock
|
|
*/
|
|
if( locktype==RESERVED_LOCK && res ){
|
|
assert( id->locktype==SHARED_LOCK );
|
|
res = LockFile(id->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( res ){
|
|
newLocktype = RESERVED_LOCK;
|
|
}
|
|
}
|
|
|
|
/* Acquire a PENDING lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
newLocktype = PENDING_LOCK;
|
|
gotPendingLock = 0;
|
|
}
|
|
|
|
/* Acquire an EXCLUSIVE lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
assert( id->locktype>=SHARED_LOCK );
|
|
res = unlockReadLock(id);
|
|
TRACE2("unreadlock = %d\n", res);
|
|
res = LockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( res ){
|
|
newLocktype = EXCLUSIVE_LOCK;
|
|
}else{
|
|
TRACE2("error-code = %d\n", GetLastError());
|
|
}
|
|
}
|
|
|
|
/* If we are holding a PENDING lock that ought to be released, then
|
|
** release it now.
|
|
*/
|
|
if( gotPendingLock && locktype==SHARED_LOCK ){
|
|
UnlockFile(id->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
|
|
/* Update the state of the lock has held in the file descriptor then
|
|
** return the appropriate result code.
|
|
*/
|
|
if( res ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
TRACE4("LOCK FAILED %d trying for %d but got %d\n", id->h,
|
|
locktype, newLocktype);
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
id->locktype = newLocktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero, otherwise zero.
|
|
*/
|
|
int sqlite3OsCheckReservedLock(OsFile *id){
|
|
int rc;
|
|
assert( id->isOpen );
|
|
if( id->locktype>=RESERVED_LOCK ){
|
|
rc = 1;
|
|
TRACE3("TEST WR-LOCK %d %d (local)\n", id->h, rc);
|
|
}else{
|
|
rc = LockFile(id->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( rc ){
|
|
UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
rc = !rc;
|
|
TRACE3("TEST WR-LOCK %d %d (remote)\n", id->h, rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor id to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
**
|
|
** It is not possible for this routine to fail if the second argument
|
|
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
|
|
** might return SQLITE_IOERR;
|
|
*/
|
|
int sqlite3OsUnlock(OsFile *id, int locktype){
|
|
int type;
|
|
int rc = SQLITE_OK;
|
|
assert( id->isOpen );
|
|
assert( locktype<=SHARED_LOCK );
|
|
TRACE5("UNLOCK %d to %d was %d(%d)\n", id->h, locktype,
|
|
id->locktype, id->sharedLockByte);
|
|
type = id->locktype;
|
|
if( type>=EXCLUSIVE_LOCK ){
|
|
UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( locktype==SHARED_LOCK && !getReadLock(id) ){
|
|
/* This should never happen. We should always be able to
|
|
** reacquire the read lock */
|
|
rc = SQLITE_IOERR;
|
|
}
|
|
}
|
|
if( type>=RESERVED_LOCK ){
|
|
UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
|
|
unlockReadLock(id);
|
|
}
|
|
if( type>=PENDING_LOCK ){
|
|
UnlockFile(id->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
id->locktype = locktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Turn a relative pathname into a full pathname. Return a pointer
|
|
** to the full pathname stored in space obtained from sqliteMalloc().
|
|
** The calling function is responsible for freeing this space once it
|
|
** is no longer needed.
|
|
*/
|
|
char *sqlite3OsFullPathname(const char *zRelative){
|
|
char *zNotUsed;
|
|
char *zFull;
|
|
int nByte;
|
|
#ifdef __CYGWIN__
|
|
nByte = strlen(zRelative) + MAX_PATH + 1001;
|
|
zFull = sqliteMalloc( nByte );
|
|
if( zFull==0 ) return 0;
|
|
if( cygwin_conv_to_full_win32_path(zRelative, zFull) ) return 0;
|
|
#else
|
|
nByte = GetFullPathNameA(zRelative, 0, 0, &zNotUsed) + 1;
|
|
zFull = sqliteMalloc( nByte );
|
|
if( zFull==0 ) return 0;
|
|
GetFullPathNameA(zRelative, nByte, zFull, &zNotUsed);
|
|
#endif
|
|
return zFull;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_DISKIO */
|
|
/***************************************************************************
|
|
** Everything above deals with file I/O. Everything that follows deals
|
|
** with other miscellanous aspects of the operating system interface
|
|
****************************************************************************/
|
|
|
|
/*
|
|
** Get information to seed the random number generator. The seed
|
|
** is written into the buffer zBuf[256]. The calling function must
|
|
** supply a sufficiently large buffer.
|
|
*/
|
|
int sqlite3OsRandomSeed(char *zBuf){
|
|
/* We have to initialize zBuf to prevent valgrind from reporting
|
|
** errors. The reports issued by valgrind are incorrect - we would
|
|
** prefer that the randomness be increased by making use of the
|
|
** uninitialized space in zBuf - but valgrind errors tend to worry
|
|
** some users. Rather than argue, it seems easier just to initialize
|
|
** the whole array and silence valgrind, even if that means less randomness
|
|
** in the random seed.
|
|
**
|
|
** When testing, initializing zBuf[] to zero is all we do. That means
|
|
** that we always use the same random number sequence.* This makes the
|
|
** tests repeatable.
|
|
*/
|
|
memset(zBuf, 0, 256);
|
|
GetSystemTime((LPSYSTEMTIME)zBuf);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
*/
|
|
int sqlite3OsSleep(int ms){
|
|
Sleep(ms);
|
|
return ms;
|
|
}
|
|
|
|
/*
|
|
** Static variables used for thread synchronization
|
|
*/
|
|
static int inMutex = 0;
|
|
#ifdef SQLITE_W32_THREADS
|
|
static CRITICAL_SECTION cs;
|
|
#endif
|
|
|
|
/*
|
|
** The following pair of routine implement mutual exclusion for
|
|
** multi-threaded processes. Only a single thread is allowed to
|
|
** executed code that is surrounded by EnterMutex() and LeaveMutex().
|
|
**
|
|
** SQLite uses only a single Mutex. There is not much critical
|
|
** code and what little there is executes quickly and without blocking.
|
|
*/
|
|
void sqlite3OsEnterMutex(){
|
|
#ifdef SQLITE_W32_THREADS
|
|
static int isInit = 0;
|
|
while( !isInit ){
|
|
static long lock = 0;
|
|
if( InterlockedIncrement(&lock)==1 ){
|
|
InitializeCriticalSection(&cs);
|
|
isInit = 1;
|
|
}else{
|
|
Sleep(1);
|
|
}
|
|
}
|
|
EnterCriticalSection(&cs);
|
|
#endif
|
|
assert( !inMutex );
|
|
inMutex = 1;
|
|
}
|
|
void sqlite3OsLeaveMutex(){
|
|
assert( inMutex );
|
|
inMutex = 0;
|
|
#ifdef SQLITE_W32_THREADS
|
|
LeaveCriticalSection(&cs);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** The following variable, if set to a non-zero value, becomes the result
|
|
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_current_time = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write the
|
|
** current time and date as a Julian Day number into *prNow and
|
|
** return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
int sqlite3OsCurrentTime(double *prNow){
|
|
FILETIME ft;
|
|
/* FILETIME structure is a 64-bit value representing the number of
|
|
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
|
|
*/
|
|
double now;
|
|
GetSystemTimeAsFileTime( &ft );
|
|
now = ((double)ft.dwHighDateTime) * 4294967296.0;
|
|
*prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_current_time ){
|
|
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#endif /* OS_WIN */
|