You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1440 lines
52 KiB
1440 lines
52 KiB
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This module contains C code that generates VDBE code used to process
|
|
** the WHERE clause of SQL statements. This module is reponsible for
|
|
** generating the code that loops through a table looking for applicable
|
|
** rows. Indices are selected and used to speed the search when doing
|
|
** so is applicable. Because this module is responsible for selecting
|
|
** indices, you might also think of this module as the "query optimizer".
|
|
**
|
|
** $Id: where.c,v 1.1.1.1 2006/02/03 20:35:19 hoganrobert Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** The query generator uses an array of instances of this structure to
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
**
|
|
** The idxLeft and idxRight fields are the VDBE cursor numbers for the
|
|
** table that contains the column that appears on the left-hand and
|
|
** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
|
|
** something other than a simple column reference, then idxLeft or
|
|
** idxRight are -1.
|
|
**
|
|
** It is the VDBE cursor number is the value stored in Expr.iTable
|
|
** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
|
|
**
|
|
** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
|
|
** but they do so indirectly. A single ExprMaskSet structure translates
|
|
** cursor number into bits and the translated bit is stored in the prereq
|
|
** fields. The translation is used in order to maximize the number of
|
|
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
|
|
** spread out over the non-negative integers. For example, the cursor
|
|
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
|
|
** translates these sparse cursor numbers into consecutive integers
|
|
** beginning with 0 in order to make the best possible use of the available
|
|
** bits in the Bitmask. So, in the example above, the cursor numbers
|
|
** would be mapped into integers 0 through 7.
|
|
**
|
|
** prereqLeft tells us every VDBE cursor that is referenced on the
|
|
** left-hand side of ExprInfo.p. prereqRight does the same for the
|
|
** right-hand side of the expression. The following identity always
|
|
** holds:
|
|
**
|
|
** prereqAll = prereqLeft | prereqRight
|
|
**
|
|
** The ExprInfo.indexable field is true if the ExprInfo.p expression
|
|
** is of a form that might control an index. Indexable expressions
|
|
** look like this:
|
|
**
|
|
** <column> <op> <expr>
|
|
**
|
|
** Where <column> is a simple column name and <op> is on of the operators
|
|
** that allowedOp() recognizes.
|
|
*/
|
|
typedef struct ExprInfo ExprInfo;
|
|
struct ExprInfo {
|
|
Expr *p; /* Pointer to the subexpression */
|
|
u8 indexable; /* True if this subexprssion is usable by an index */
|
|
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
|
** p->pLeft is not the column of any table */
|
|
short int idxRight; /* p->pRight is a column in this table number. -1 if
|
|
** p->pRight is not the column of any table */
|
|
Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
|
Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
|
|
Bitmask prereqAll; /* Bitmask of tables referenced by p */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure keeps track of a mapping
|
|
** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
|
|
**
|
|
** The VDBE cursor numbers are small integers contained in
|
|
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
|
|
** clause, the cursor numbers might not begin with 0 and they might
|
|
** contain gaps in the numbering sequence. But we want to make maximum
|
|
** use of the bits in our bitmasks. This structure provides a mapping
|
|
** from the sparse cursor numbers into consecutive integers beginning
|
|
** with 0.
|
|
**
|
|
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
|
|
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
|
|
**
|
|
** For example, if the WHERE clause expression used these VDBE
|
|
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
|
|
** would map those cursor numbers into bits 0 through 5.
|
|
**
|
|
** Note that the mapping is not necessarily ordered. In the example
|
|
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
|
|
** 57->5, 73->4. Or one of 719 other combinations might be used. It
|
|
** does not really matter. What is important is that sparse cursor
|
|
** numbers all get mapped into bit numbers that begin with 0 and contain
|
|
** no gaps.
|
|
*/
|
|
typedef struct ExprMaskSet ExprMaskSet;
|
|
struct ExprMaskSet {
|
|
int n; /* Number of assigned cursor values */
|
|
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
|
|
};
|
|
|
|
/*
|
|
** Determine the number of elements in an array.
|
|
*/
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
/*
|
|
** This routine identifies subexpressions in the WHERE clause where
|
|
** each subexpression is separate by the AND operator. aSlot is
|
|
** filled with pointers to the subexpressions. For example:
|
|
**
|
|
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
|
** \________/ \_______________/ \________________/
|
|
** slot[0] slot[1] slot[2]
|
|
**
|
|
** The original WHERE clause in pExpr is unaltered. All this routine
|
|
** does is make aSlot[] entries point to substructure within pExpr.
|
|
**
|
|
** aSlot[] is an array of subexpressions structures. There are nSlot
|
|
** spaces left in this array. This routine finds as many AND-separated
|
|
** subexpressions as it can and puts pointers to those subexpressions
|
|
** into aSlot[] entries. The return value is the number of slots filled.
|
|
*/
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
int cnt = 0;
|
|
if( pExpr==0 || nSlot<1 ) return 0;
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
aSlot[0].p = pExpr;
|
|
return 1;
|
|
}
|
|
if( pExpr->pLeft->op!=TK_AND ){
|
|
aSlot[0].p = pExpr->pLeft;
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
}else{
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
** Initialize an expression mask set
|
|
*/
|
|
#define initMaskSet(P) memset(P, 0, sizeof(*P))
|
|
|
|
/*
|
|
** Return the bitmask for the given cursor number. Return 0 if
|
|
** iCursor is not in the set.
|
|
*/
|
|
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
int i;
|
|
for(i=0; i<pMaskSet->n; i++){
|
|
if( pMaskSet->ix[i]==iCursor ){
|
|
return ((Bitmask)1)<<i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Create a new mask for cursor iCursor.
|
|
*/
|
|
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
|
|
pMaskSet->ix[pMaskSet->n++] = iCursor;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Destroy an expression mask set
|
|
*/
|
|
#define freeMaskSet(P) /* NO-OP */
|
|
|
|
/*
|
|
** This routine walks (recursively) an expression tree and generates
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree.
|
|
**
|
|
** In order for this routine to work, the calling function must have
|
|
** previously invoked sqlite3ExprResolveNames() on the expression. See
|
|
** the header comment on that routine for additional information.
|
|
** The sqlite3ExprResolveNames() routines looks for column names and
|
|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
|
** the VDBE cursor number of the table.
|
|
*/
|
|
static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
|
|
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
|
Bitmask mask = 0;
|
|
if( p==0 ) return 0;
|
|
if( p->op==TK_COLUMN ){
|
|
mask = getMask(pMaskSet, p->iTable);
|
|
return mask;
|
|
}
|
|
mask = exprTableUsage(pMaskSet, p->pRight);
|
|
mask |= exprTableUsage(pMaskSet, p->pLeft);
|
|
mask |= exprListTableUsage(pMaskSet, p->pList);
|
|
if( p->pSelect ){
|
|
Select *pS = p->pSelect;
|
|
mask |= exprListTableUsage(pMaskSet, pS->pEList);
|
|
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
|
|
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
|
|
mask |= exprTableUsage(pMaskSet, pS->pWhere);
|
|
mask |= exprTableUsage(pMaskSet, pS->pHaving);
|
|
}
|
|
return mask;
|
|
}
|
|
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
|
|
int i;
|
|
Bitmask mask = 0;
|
|
if( pList ){
|
|
for(i=0; i<pList->nExpr; i++){
|
|
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
** allowed for an indexable WHERE clause term. The allowed operators are
|
|
** "=", "<", ">", "<=", ">=", and "IN".
|
|
*/
|
|
static int allowedOp(int op){
|
|
assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
|
|
return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
|
|
}
|
|
|
|
/*
|
|
** Swap two objects of type T.
|
|
*/
|
|
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
|
|
|
|
/*
|
|
** Return the index in the SrcList that uses cursor iCur. If iCur is
|
|
** used by the first entry in SrcList return 0. If iCur is used by
|
|
** the second entry return 1. And so forth.
|
|
**
|
|
** SrcList is the set of tables in the FROM clause in the order that
|
|
** they will be processed. The value returned here gives us an index
|
|
** of which tables will be processed first.
|
|
*/
|
|
static int tableOrder(SrcList *pList, int iCur){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
if( pItem->iCursor==iCur ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** The input to this routine is an ExprInfo structure with only the
|
|
** "p" field filled in. The job of this routine is to analyze the
|
|
** subexpression and populate all the other fields of the ExprInfo
|
|
** structure.
|
|
*/
|
|
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
|
|
Expr *pExpr = pInfo->p;
|
|
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
|
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
|
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
|
|
pInfo->indexable = 0;
|
|
pInfo->idxLeft = -1;
|
|
pInfo->idxRight = -1;
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
|
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
|
pInfo->idxRight = pExpr->pRight->iTable;
|
|
pInfo->indexable = 1;
|
|
}
|
|
if( pExpr->pLeft->op==TK_COLUMN ){
|
|
pInfo->idxLeft = pExpr->pLeft->iTable;
|
|
pInfo->indexable = 1;
|
|
}
|
|
}
|
|
if( pInfo->indexable ){
|
|
assert( pInfo->idxLeft!=pInfo->idxRight );
|
|
|
|
/* We want the expression to be of the form "X = expr", not "expr = X".
|
|
** So flip it over if necessary. If the expression is "X = Y", then
|
|
** we want Y to come from an earlier table than X.
|
|
**
|
|
** The collating sequence rule is to always choose the left expression.
|
|
** So if we do a flip, we also have to move the collating sequence.
|
|
*/
|
|
if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
|
|
assert( pExpr->op!=TK_IN );
|
|
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
|
|
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
|
if( pExpr->op>=TK_GT ){
|
|
assert( TK_LT==TK_GT+2 );
|
|
assert( TK_GE==TK_LE+2 );
|
|
assert( TK_GT>TK_EQ );
|
|
assert( TK_GT<TK_LE );
|
|
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
|
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
|
}
|
|
SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
|
|
SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
** This routine decides if pIdx can be used to satisfy the ORDER BY
|
|
** clause. If it can, it returns 1. If pIdx cannot satisfy the
|
|
** ORDER BY clause, this routine returns 0.
|
|
**
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
** left-most table in the FROM clause of that same SELECT statement and
|
|
** the table has a cursor number of "base". pIdx is an index on pTab.
|
|
**
|
|
** nEqCol is the number of columns of pIdx that are used as equality
|
|
** constraints. Any of these columns may be missing from the ORDER BY
|
|
** clause and the match can still be a success.
|
|
**
|
|
** If the index is UNIQUE, then the ORDER BY clause is allowed to have
|
|
** additional terms past the end of the index and the match will still
|
|
** be a success.
|
|
**
|
|
** All terms of the ORDER BY that match against the index must be either
|
|
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
|
|
** index do not need to satisfy this constraint.) The *pbRev value is
|
|
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
|
|
** the ORDER BY clause is all ASC.
|
|
*/
|
|
static int isSortingIndex(
|
|
Parse *pParse, /* Parsing context */
|
|
Index *pIdx, /* The index we are testing */
|
|
Table *pTab, /* The table to be sorted */
|
|
int base, /* Cursor number for pTab */
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
int nEqCol, /* Number of index columns with == constraints */
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
int sortOrder; /* Which direction we are sorting */
|
|
int nTerm; /* Number of ORDER BY terms */
|
|
struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
|
|
sqlite3 *db = pParse->db;
|
|
|
|
assert( pOrderBy!=0 );
|
|
nTerm = pOrderBy->nExpr;
|
|
assert( nTerm>0 );
|
|
|
|
/* Match terms of the ORDER BY clause against columns of
|
|
** the index.
|
|
*/
|
|
for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
|
|
Expr *pExpr; /* The expression of the ORDER BY pTerm */
|
|
CollSeq *pColl; /* The collating sequence of pExpr */
|
|
|
|
pExpr = pTerm->pExpr;
|
|
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
|
|
/* Can not use an index sort on anything that is not a column in the
|
|
** left-most table of the FROM clause */
|
|
return 0;
|
|
}
|
|
pColl = sqlite3ExprCollSeq(pParse, pExpr);
|
|
if( !pColl ) pColl = db->pDfltColl;
|
|
if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
|
|
/* Term j of the ORDER BY clause does not match column i of the index */
|
|
if( i<nEqCol ){
|
|
/* If an index column that is constrained by == fails to match an
|
|
** ORDER BY term, that is OK. Just ignore that column of the index
|
|
*/
|
|
continue;
|
|
}else{
|
|
/* If an index column fails to match and is not constrained by ==
|
|
** then the index cannot satisfy the ORDER BY constraint.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
if( i>nEqCol ){
|
|
if( pTerm->sortOrder!=sortOrder ){
|
|
/* Indices can only be used if all ORDER BY terms past the
|
|
** equality constraints are all either DESC or ASC. */
|
|
return 0;
|
|
}
|
|
}else{
|
|
sortOrder = pTerm->sortOrder;
|
|
}
|
|
j++;
|
|
pTerm++;
|
|
}
|
|
|
|
/* The index can be used for sorting if all terms of the ORDER BY clause
|
|
** or covered or if we ran out of index columns and the it is a UNIQUE
|
|
** index.
|
|
*/
|
|
if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
|
|
*pbRev = sortOrder==SQLITE_SO_DESC;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
|
|
** by sorting in order of ROWID. Return true if so and set *pbRev to be
|
|
** true for reverse ROWID and false for forward ROWID order.
|
|
*/
|
|
static int sortableByRowid(
|
|
int base, /* Cursor number for table to be sorted */
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
){
|
|
Expr *p;
|
|
|
|
assert( pOrderBy!=0 );
|
|
assert( pOrderBy->nExpr>0 );
|
|
p = pOrderBy->a[0].pExpr;
|
|
if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
|
|
*pbRev = pOrderBy->a[0].sortOrder;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Disable a term in the WHERE clause. Except, do not disable the term
|
|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
|
** or USING clause of that join.
|
|
**
|
|
** Consider the term t2.z='ok' in the following queries:
|
|
**
|
|
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
|
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
|
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
|
**
|
|
** The t2.z='ok' is disabled in the in (2) because it originates
|
|
** in the ON clause. The term is disabled in (3) because it is not part
|
|
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
|
**
|
|
** Disabling a term causes that term to not be tested in the inner loop
|
|
** of the join. Disabling is an optimization. We would get the correct
|
|
** results if nothing were ever disabled, but joins might run a little
|
|
** slower. The trick is to disable as much as we can without disabling
|
|
** too much. If we disabled in (1), we'd get the wrong answer.
|
|
** See ticket #813.
|
|
*/
|
|
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
|
|
Expr *pExpr = *ppExpr;
|
|
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
*ppExpr = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that builds a probe for an index. Details:
|
|
**
|
|
** * Check the top nColumn entries on the stack. If any
|
|
** of those entries are NULL, jump immediately to brk,
|
|
** which is the loop exit, since no index entry will match
|
|
** if any part of the key is NULL.
|
|
**
|
|
** * Construct a probe entry from the top nColumn entries in
|
|
** the stack with affinities appropriate for index pIdx.
|
|
*/
|
|
static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
|
|
sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
}
|
|
|
|
/*
|
|
** Generate code for an equality term of the WHERE clause. An equality
|
|
** term can be either X=expr or X IN (...). pTerm is the X.
|
|
*/
|
|
static void codeEqualityTerm(
|
|
Parse *pParse, /* The parsing context */
|
|
ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
|
|
int brk, /* Jump here to abandon the loop */
|
|
WhereLevel *pLevel /* When level of the FROM clause we are working on */
|
|
){
|
|
Expr *pX = pTerm->p;
|
|
if( pX->op!=TK_IN ){
|
|
assert( pX->op==TK_EQ );
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
}else{
|
|
int iTab;
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
sqlite3CodeSubselect(pParse, pX);
|
|
iTab = pX->iTable;
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
|
|
VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
|
|
pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
|
|
pLevel->inOp = OP_Next;
|
|
pLevel->inP1 = iTab;
|
|
#endif
|
|
}
|
|
disableTerm(pLevel, &pTerm->p);
|
|
}
|
|
|
|
/*
|
|
** The number of bits in a Bitmask
|
|
*/
|
|
#define BMS (sizeof(Bitmask)*8-1)
|
|
|
|
|
|
/*
|
|
** Generate the beginning of the loop used for WHERE clause processing.
|
|
** The return value is a pointer to an opaque structure that contains
|
|
** information needed to terminate the loop. Later, the calling routine
|
|
** should invoke sqlite3WhereEnd() with the return value of this function
|
|
** in order to complete the WHERE clause processing.
|
|
**
|
|
** If an error occurs, this routine returns NULL.
|
|
**
|
|
** The basic idea is to do a nested loop, one loop for each table in
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
** same as a SELECT with only a single table in the FROM clause.) For
|
|
** example, if the SQL is this:
|
|
**
|
|
** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
**
|
|
** Then the code generated is conceptually like the following:
|
|
**
|
|
** foreach row1 in t1 do \ Code generated
|
|
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
|
|
** foreach row3 in t3 do /
|
|
** ...
|
|
** end \ Code generated
|
|
** end |-- by sqlite3WhereEnd()
|
|
** end /
|
|
**
|
|
** There are Btree cursors associated with each table. t1 uses cursor
|
|
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
|
** And so forth. This routine generates code to open those VDBE cursors
|
|
** and sqlite3WhereEnd() generates the code to close them.
|
|
**
|
|
** The code that sqlite3WhereBegin() generates leaves the cursors named
|
|
** in pTabList pointing at their appropriate entries. The [...] code
|
|
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
|
|
** data from the various tables of the loop.
|
|
**
|
|
** If the WHERE clause is empty, the foreach loops must each scan their
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
** the tables have indices and there are terms in the WHERE clause that
|
|
** refer to those indices, a complete table scan can be avoided and the
|
|
** code will run much faster. Most of the work of this routine is checking
|
|
** to see if there are indices that can be used to speed up the loop.
|
|
**
|
|
** Terms of the WHERE clause are also used to limit which rows actually
|
|
** make it to the "..." in the middle of the loop. After each "foreach",
|
|
** terms of the WHERE clause that use only terms in that loop and outer
|
|
** loops are evaluated and if false a jump is made around all subsequent
|
|
** inner loops (or around the "..." if the test occurs within the inner-
|
|
** most loop)
|
|
**
|
|
** OUTER JOINS
|
|
**
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
**
|
|
** foreach row1 in t1 do
|
|
** flag = 0
|
|
** foreach row2 in t2 do
|
|
** start:
|
|
** ...
|
|
** flag = 1
|
|
** end
|
|
** if flag==0 then
|
|
** move the row2 cursor to a null row
|
|
** goto start
|
|
** fi
|
|
** end
|
|
**
|
|
** ORDER BY CLAUSE PROCESSING
|
|
**
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
** if there is one. If there is no ORDER BY clause or if this routine
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
**
|
|
** If an index can be used so that the natural output order of the table
|
|
** scan is correct for the ORDER BY clause, then that index is used and
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
** unnecessary sort of the result set if an index appropriate for the
|
|
** ORDER BY clause already exists.
|
|
**
|
|
** If the where clause loops cannot be arranged to provide the correct
|
|
** output order, then the *ppOrderBy is unchanged.
|
|
*/
|
|
WhereInfo *sqlite3WhereBegin(
|
|
Parse *pParse, /* The parser context */
|
|
SrcList *pTabList, /* A list of all tables to be scanned */
|
|
Expr *pWhere, /* The WHERE clause */
|
|
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
|
){
|
|
int i; /* Loop counter */
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
int brk, cont = 0; /* Addresses used during code generation */
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
Bitmask loopMask; /* One bit set for each outer loop */
|
|
ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
|
|
ExprMaskSet maskSet; /* The expression mask set */
|
|
int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
|
|
int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
|
|
int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
|
|
ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
|
|
struct SrcList_item *pTabItem; /* A single entry from pTabList */
|
|
WhereLevel *pLevel; /* A single level in the pWInfo list */
|
|
|
|
/* The number of terms in the FROM clause is limited by the number of
|
|
** bits in a Bitmask
|
|
*/
|
|
if( pTabList->nSrc>sizeof(Bitmask)*8 ){
|
|
sqlite3ErrorMsg(pParse, "at most %d tables in a join",
|
|
sizeof(Bitmask)*8);
|
|
return 0;
|
|
}
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each
|
|
** subexpression is separated by an AND operator. If the aExpr[]
|
|
** array fills up, the last entry might point to an expression which
|
|
** contains additional unfactored AND operators.
|
|
*/
|
|
initMaskSet(&maskSet);
|
|
memset(aExpr, 0, sizeof(aExpr));
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
if( nExpr==ARRAYSIZE(aExpr) ){
|
|
sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
|
|
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
** return value.
|
|
*/
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
|
if( sqlite3_malloc_failed ){
|
|
sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
|
|
return 0;
|
|
}
|
|
pWInfo->pParse = pParse;
|
|
pWInfo->pTabList = pTabList;
|
|
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the
|
|
** expression and either jump over all of the code or fall thru.
|
|
*/
|
|
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
|
|
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
|
pWhere = 0;
|
|
}
|
|
|
|
/* Analyze all of the subexpressions.
|
|
*/
|
|
for(i=0; i<pTabList->nSrc; i++){
|
|
createMask(&maskSet, pTabList->a[i].iCursor);
|
|
}
|
|
for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
|
|
exprAnalyze(pTabList, &maskSet, pTerm);
|
|
}
|
|
|
|
/* Figure out what index to use (if any) for each nested loop.
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
|
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
|
** loop.
|
|
**
|
|
** If terms exist that use the ROWID of any table, then set the
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
|
** to the index of the term containing the ROWID. We always prefer
|
|
** to use a ROWID which can directly access a table rather than an
|
|
** index which requires reading an index first to get the rowid then
|
|
** doing a second read of the actual database table.
|
|
**
|
|
** Actually, if there are more than 32 tables in the join, only the
|
|
** first 32 tables are candidates for indices. This is (again) due
|
|
** to the limit of 32 bits in an integer bitmask.
|
|
*/
|
|
loopMask = 0;
|
|
pTabItem = pTabList->a;
|
|
pLevel = pWInfo->a;
|
|
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
|
|
int j;
|
|
int iCur = pTabItem->iCursor; /* The cursor for this table */
|
|
Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
|
|
Table *pTab = pTabItem->pTab;
|
|
Index *pIdx;
|
|
Index *pBestIdx = 0;
|
|
int bestScore = 0;
|
|
int bestRev = 0;
|
|
|
|
/* Check to see if there is an expression that uses only the
|
|
** ROWID field of this table. For terms of the form ROWID==expr
|
|
** set iDirectEq[i] to the index of the term. For terms of the
|
|
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
|
**
|
|
** (Added:) Treat ROWID IN expr like ROWID=expr.
|
|
*/
|
|
pLevel->iIdxCur = -1;
|
|
iDirectEq[i] = -1;
|
|
iDirectLt[i] = -1;
|
|
iDirectGt[i] = -1;
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
|
|
switch( pX->op ){
|
|
case TK_IN:
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
case TK_LE:
|
|
case TK_LT: iDirectLt[i] = j; break;
|
|
case TK_GE:
|
|
case TK_GT: iDirectGt[i] = j; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we found a term that tests ROWID with == or IN, that term
|
|
** will be used to locate the rows in the database table. There
|
|
** is not need to continue into the code below that looks for
|
|
** an index. We will always use the ROWID over an index.
|
|
*/
|
|
if( iDirectEq[i]>=0 ){
|
|
loopMask |= mask;
|
|
pLevel->pIdx = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to
|
|
** the "best" index. pBestIdx is left set to NULL if no indices
|
|
** are usable.
|
|
**
|
|
** The best index is the one with the highest score. The score
|
|
** for the index is determined as follows. For each of the
|
|
** left-most terms that is fixed by an equality operator, add
|
|
** 32 to the score. The right-most term of the index may be
|
|
** constrained by an inequality. Add 4 if for an "x<..." constraint
|
|
** and add 8 for an "x>..." constraint. If both constraints
|
|
** are present, add 12.
|
|
**
|
|
** If the left-most term of the index uses an IN operator
|
|
** (ex: "x IN (...)") then add 16 to the score.
|
|
**
|
|
** If an index can be used for sorting, add 2 to the score.
|
|
** If an index contains all the terms of a table that are ever
|
|
** used by any expression in the SQL statement, then add 1 to
|
|
** the score.
|
|
**
|
|
** This scoring system is designed so that the score can later be
|
|
** used to determine how the index is used. If the score&0x1c is 0
|
|
** then all constraints are equalities. If score&0x4 is not 0 then
|
|
** there is an inequality used as a termination key. (ex: "x<...")
|
|
** If score&0x8 is not 0 then there is an inequality used as the
|
|
** start key. (ex: "x>..."). A score or 0x10 is the special case
|
|
** of an IN operator constraint. (ex: "x IN ...").
|
|
**
|
|
** The IN operator (as in "<expr> IN (...)") is treated the same as
|
|
** an equality comparison except that it can only be used on the
|
|
** left-most column of an index and other terms of the WHERE clause
|
|
** cannot be used in conjunction with the IN operator to help satisfy
|
|
** other columns of the index.
|
|
*/
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
Bitmask eqMask = 0; /* Index columns covered by an x=... term */
|
|
Bitmask ltMask = 0; /* Index columns covered by an x<... term */
|
|
Bitmask gtMask = 0; /* Index columns covered by an x>... term */
|
|
Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
|
|
Bitmask m;
|
|
int nEq, score, bRev = 0;
|
|
|
|
if( pIdx->nColumn>sizeof(eqMask)*8 ){
|
|
continue; /* Ignore indices with too many columns to analyze */
|
|
}
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
|
|
if( !pColl && pX->pRight ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
|
|
}
|
|
if( !pColl ){
|
|
pColl = pParse->db->pDfltColl;
|
|
}
|
|
if( pTerm->idxLeft==iCur
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
|
|
int iColumn = pX->pLeft->iColumn;
|
|
int k;
|
|
char idxaff = iColumn>=0 ? pIdx->pTable->aCol[iColumn].affinity : 0;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
/* If the collating sequences or affinities don't match,
|
|
** ignore this index. */
|
|
if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
|
|
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
|
switch( pX->op ){
|
|
case TK_IN: {
|
|
if( k==0 ) inMask |= 1;
|
|
break;
|
|
}
|
|
case TK_EQ: {
|
|
eqMask |= ((Bitmask)1)<<k;
|
|
break;
|
|
}
|
|
case TK_LE:
|
|
case TK_LT: {
|
|
ltMask |= ((Bitmask)1)<<k;
|
|
break;
|
|
}
|
|
case TK_GE:
|
|
case TK_GT: {
|
|
gtMask |= ((Bitmask)1)<<k;
|
|
break;
|
|
}
|
|
default: {
|
|
/* CANT_HAPPEN */
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The following loop ends with nEq set to the number of columns
|
|
** on the left of the index with == constraints.
|
|
*/
|
|
for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
|
m = (((Bitmask)1)<<(nEq+1))-1;
|
|
if( (m & eqMask)!=m ) break;
|
|
}
|
|
|
|
/* Begin assemblying the score
|
|
*/
|
|
score = nEq*32; /* Base score is 32 times number of == constraints */
|
|
m = ((Bitmask)1)<<nEq;
|
|
if( m & ltMask ) score+=4; /* Increase score for a < constraint */
|
|
if( m & gtMask ) score+=8; /* Increase score for a > constraint */
|
|
if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
|
|
|
|
/* Give bonus points if this index can be used for sorting
|
|
*/
|
|
if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
|
|
int base = pTabList->a[0].iCursor;
|
|
if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
|
|
score += 2;
|
|
}
|
|
}
|
|
|
|
/* Check to see if we can get away with using just the index without
|
|
** ever reading the table. If that is the case, then add one bonus
|
|
** point to the score.
|
|
*/
|
|
if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
|
|
for(m=0, j=0; j<pIdx->nColumn; j++){
|
|
int x = pIdx->aiColumn[j];
|
|
if( x<BMS-1 ){
|
|
m |= ((Bitmask)1)<<x;
|
|
}
|
|
}
|
|
if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
|
|
score++;
|
|
}
|
|
}
|
|
|
|
/* If the score for this index is the best we have seen so far, then
|
|
** save it
|
|
*/
|
|
if( score>bestScore ){
|
|
pBestIdx = pIdx;
|
|
bestScore = score;
|
|
bestRev = bRev;
|
|
}
|
|
}
|
|
pLevel->pIdx = pBestIdx;
|
|
pLevel->score = bestScore;
|
|
pLevel->bRev = bestRev;
|
|
loopMask |= mask;
|
|
if( pBestIdx ){
|
|
pLevel->iIdxCur = pParse->nTab++;
|
|
}
|
|
}
|
|
|
|
/* Check to see if the ORDER BY clause is or can be satisfied by the
|
|
** use of an index on the first table.
|
|
*/
|
|
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
|
Index *pIdx; /* Index derived from the WHERE clause */
|
|
Table *pTab; /* Left-most table in the FROM clause */
|
|
int bRev = 0; /* True to reverse the output order */
|
|
int iCur; /* Btree-cursor that will be used by pTab */
|
|
WhereLevel *pLevel0 = &pWInfo->a[0];
|
|
|
|
pTab = pTabList->a[0].pTab;
|
|
pIdx = pLevel0->pIdx;
|
|
iCur = pTabList->a[0].iCursor;
|
|
if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
|
|
/* The ORDER BY clause specifies ROWID order, which is what we
|
|
** were going to be doing anyway...
|
|
*/
|
|
*ppOrderBy = 0;
|
|
pLevel0->bRev = bRev;
|
|
}else if( pLevel0->score==16 ){
|
|
/* If there is already an IN index on the left-most table,
|
|
** it will not give the correct sort order.
|
|
** So, pretend that no suitable index is found.
|
|
*/
|
|
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
|
/* If the left-most column is accessed using its ROWID, then do
|
|
** not try to sort by index. But do delete the ORDER BY clause
|
|
** if it is redundant.
|
|
*/
|
|
}else if( (pLevel0->score&2)!=0 ){
|
|
/* The index that was selected for searching will cause rows to
|
|
** appear in sorted order.
|
|
*/
|
|
*ppOrderBy = 0;
|
|
}
|
|
}
|
|
|
|
/* Open all tables in the pTabList and any indices selected for
|
|
** searching those tables.
|
|
*/
|
|
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
|
|
pLevel = pWInfo->a;
|
|
for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
|
|
Table *pTab;
|
|
Index *pIx;
|
|
int iIdxCur = pLevel->iIdxCur;
|
|
|
|
pTab = pTabItem->pTab;
|
|
if( pTab->isTransient || pTab->pSelect ) continue;
|
|
if( (pLevel->score & 1)==0 ){
|
|
sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
|
|
}
|
|
pLevel->iTabCur = pTabItem->iCursor;
|
|
if( (pIx = pLevel->pIdx)!=0 ){
|
|
sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
|
|
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
|
|
(char*)&pIx->keyInfo, P3_KEYINFO);
|
|
}
|
|
if( (pLevel->score & 1)!=0 ){
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
|
|
}
|
|
sqlite3CodeVerifySchema(pParse, pTab->iDb);
|
|
}
|
|
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
|
|
|
|
/* Generate the code to do the search
|
|
*/
|
|
loopMask = 0;
|
|
pLevel = pWInfo->a;
|
|
pTabItem = pTabList->a;
|
|
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
|
|
int j, k;
|
|
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
|
|
Index *pIdx; /* The index we will be using */
|
|
int iIdxCur; /* The VDBE cursor for the index */
|
|
int omitTable; /* True if we use the index only */
|
|
|
|
pIdx = pLevel->pIdx;
|
|
iIdxCur = pLevel->iIdxCur;
|
|
pLevel->inOp = OP_Noop;
|
|
|
|
/* Check to see if it is appropriate to omit the use of the table
|
|
** here and use its index instead.
|
|
*/
|
|
omitTable = (pLevel->score&1)!=0;
|
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and
|
|
** initialize a memory cell that records if this table matches any
|
|
** row of the left table of the join.
|
|
*/
|
|
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
|
if( !pParse->nMem ) pParse->nMem++;
|
|
pLevel->iLeftJoin = pParse->nMem++;
|
|
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
|
VdbeComment((v, "# init LEFT JOIN no-match flag"));
|
|
}
|
|
|
|
if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
|
|
/* Case 1: We can directly reference a single row using an
|
|
** equality comparison against the ROWID field. Or
|
|
** we reference multiple rows using a "rowid IN (...)"
|
|
** construct.
|
|
*/
|
|
assert( k<nExpr );
|
|
pTerm = &aExpr[k];
|
|
assert( pTerm->p!=0 );
|
|
assert( pTerm->idxLeft==iCur );
|
|
assert( omitTable==0 );
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
codeEqualityTerm(pParse, pTerm, brk, pLevel);
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
|
|
sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
|
|
VdbeComment((v, "pk"));
|
|
pLevel->op = OP_Noop;
|
|
}else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
|
|
/* Case 2: There is an index and all terms of the WHERE clause that
|
|
** refer to the index using the "==" or "IN" operators.
|
|
*/
|
|
int start;
|
|
int nColumn = (pLevel->score+16)/32;
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* For each column of the index, find the term of the WHERE clause that
|
|
** constraints that column. If the WHERE clause term is X=expr, then
|
|
** evaluation expr and leave the result on the stack */
|
|
for(j=0; j<nColumn; j++){
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
if( pX==0 ) continue;
|
|
if( pTerm->idxLeft==iCur
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
|
&& (pX->op==TK_EQ || pX->op==TK_IN)
|
|
){
|
|
char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
|
|
if( sqlite3IndexAffinityOk(pX, idxaff) ){
|
|
codeEqualityTerm(pParse, pTerm, brk, pLevel);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
pLevel->iMem = pParse->nMem++;
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
buildIndexProbe(v, nColumn, brk, pIdx);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
|
|
/* Generate code (1) to move to the first matching element of the table.
|
|
** Then generate code (2) that jumps to "brk" after the cursor is past
|
|
** the last matching element of the table. The code (1) is executed
|
|
** once to initialize the search, the code (2) is executed before each
|
|
** iteration of the scan to see if the scan has finished. */
|
|
if( pLevel->bRev ){
|
|
/* Scan in reverse order */
|
|
sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
|
|
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
|
|
pLevel->op = OP_Prev;
|
|
}else{
|
|
/* Scan in the forward order */
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
|
|
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
|
|
pLevel->op = OP_Next;
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
|
|
if( !omitTable ){
|
|
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
|
}
|
|
pLevel->p1 = iIdxCur;
|
|
pLevel->p2 = start;
|
|
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
|
/* Case 3: We have an inequality comparison against the ROWID field.
|
|
*/
|
|
int testOp = OP_Noop;
|
|
int start;
|
|
int bRev = pLevel->bRev;
|
|
|
|
assert( omitTable==0 );
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
if( bRev ){
|
|
int t = iDirectGt[i];
|
|
iDirectGt[i] = iDirectLt[i];
|
|
iDirectLt[i] = t;
|
|
}
|
|
if( iDirectGt[i]>=0 ){
|
|
Expr *pX;
|
|
k = iDirectGt[i];
|
|
assert( k<nExpr );
|
|
pTerm = &aExpr[k];
|
|
pX = pTerm->p;
|
|
assert( pX!=0 );
|
|
assert( pTerm->idxLeft==iCur );
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
|
|
sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
|
|
VdbeComment((v, "pk"));
|
|
disableTerm(pLevel, &pTerm->p);
|
|
}else{
|
|
sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
|
|
}
|
|
if( iDirectLt[i]>=0 ){
|
|
Expr *pX;
|
|
k = iDirectLt[i];
|
|
assert( k<nExpr );
|
|
pTerm = &aExpr[k];
|
|
pX = pTerm->p;
|
|
assert( pX!=0 );
|
|
assert( pTerm->idxLeft==iCur );
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
pLevel->iMem = pParse->nMem++;
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
if( pX->op==TK_LT || pX->op==TK_GT ){
|
|
testOp = bRev ? OP_Le : OP_Ge;
|
|
}else{
|
|
testOp = bRev ? OP_Lt : OP_Gt;
|
|
}
|
|
disableTerm(pLevel, &pTerm->p);
|
|
}
|
|
start = sqlite3VdbeCurrentAddr(v);
|
|
pLevel->op = bRev ? OP_Prev : OP_Next;
|
|
pLevel->p1 = iCur;
|
|
pLevel->p2 = start;
|
|
if( testOp!=OP_Noop ){
|
|
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqlite3VdbeAddOp(v, testOp, 'n', brk);
|
|
}
|
|
}else if( pIdx==0 ){
|
|
/* Case 4: There is no usable index. We must do a complete
|
|
** scan of the entire database table.
|
|
*/
|
|
int start;
|
|
int opRewind;
|
|
|
|
assert( omitTable==0 );
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
if( pLevel->bRev ){
|
|
opRewind = OP_Last;
|
|
pLevel->op = OP_Prev;
|
|
}else{
|
|
opRewind = OP_Rewind;
|
|
pLevel->op = OP_Next;
|
|
}
|
|
sqlite3VdbeAddOp(v, opRewind, iCur, brk);
|
|
start = sqlite3VdbeCurrentAddr(v);
|
|
pLevel->p1 = iCur;
|
|
pLevel->p2 = start;
|
|
}else{
|
|
/* Case 5: The WHERE clause term that refers to the right-most
|
|
** column of the index is an inequality. For example, if
|
|
** the index is on (x,y,z) and the WHERE clause is of the
|
|
** form "x=5 AND y<10" then this case is used. Only the
|
|
** right-most column can be an inequality - the rest must
|
|
** use the "==" operator.
|
|
**
|
|
** This case is also used when there are no WHERE clause
|
|
** constraints but an index is selected anyway, in order
|
|
** to force the output order to conform to an ORDER BY.
|
|
*/
|
|
int score = pLevel->score;
|
|
int nEqColumn = score/32;
|
|
int start;
|
|
int leFlag=0, geFlag=0;
|
|
int testOp;
|
|
|
|
/* Evaluate the equality constraints
|
|
*/
|
|
for(j=0; j<nEqColumn; j++){
|
|
int iIdxCol = pIdx->aiColumn[j];
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
if( pX==0 ) continue;
|
|
if( pTerm->idxLeft==iCur
|
|
&& pX->op==TK_EQ
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
|
&& pX->pLeft->iColumn==iIdxCol
|
|
){
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
disableTerm(pLevel, &pTerm->p);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Duplicate the equality term values because they will all be
|
|
** used twice: once to make the termination key and once to make the
|
|
** start key.
|
|
*/
|
|
for(j=0; j<nEqColumn; j++){
|
|
sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
|
}
|
|
|
|
/* Labels for the beginning and end of the loop
|
|
*/
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Generate the termination key. This is the key value that
|
|
** will end the search. There is no termination key if there
|
|
** are no equality terms and no "X<..." term.
|
|
**
|
|
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
|
** key computed here really ends up being the start key.
|
|
*/
|
|
if( (score & 4)!=0 ){
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
if( pX==0 ) continue;
|
|
if( pTerm->idxLeft==iCur
|
|
&& (pX->op==TK_LT || pX->op==TK_LE)
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
leFlag = pX->op==TK_LE;
|
|
disableTerm(pLevel, &pTerm->p);
|
|
break;
|
|
}
|
|
}
|
|
testOp = OP_IdxGE;
|
|
}else{
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
|
leFlag = 1;
|
|
}
|
|
if( testOp!=OP_Noop ){
|
|
int nCol = nEqColumn + ((score & 4)!=0);
|
|
pLevel->iMem = pParse->nMem++;
|
|
buildIndexProbe(v, nCol, brk, pIdx);
|
|
if( pLevel->bRev ){
|
|
int op = leFlag ? OP_MoveLe : OP_MoveLt;
|
|
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
|
|
}else{
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
}
|
|
}else if( pLevel->bRev ){
|
|
sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
|
|
}
|
|
|
|
/* Generate the start key. This is the key that defines the lower
|
|
** bound on the search. There is no start key if there are no
|
|
** equality terms and if there is no "X>..." term. In
|
|
** that case, generate a "Rewind" instruction in place of the
|
|
** start key search.
|
|
**
|
|
** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
|
** "start" key really ends up being used as the termination key.
|
|
*/
|
|
if( (score & 8)!=0 ){
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
|
Expr *pX = pTerm->p;
|
|
if( pX==0 ) continue;
|
|
if( pTerm->idxLeft==iCur
|
|
&& (pX->op==TK_GT || pX->op==TK_GE)
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
geFlag = pX->op==TK_GE;
|
|
disableTerm(pLevel, &pTerm->p);
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
geFlag = 1;
|
|
}
|
|
if( nEqColumn>0 || (score&8)!=0 ){
|
|
int nCol = nEqColumn + ((score&8)!=0);
|
|
buildIndexProbe(v, nCol, brk, pIdx);
|
|
if( pLevel->bRev ){
|
|
pLevel->iMem = pParse->nMem++;
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
testOp = OP_IdxLT;
|
|
}else{
|
|
int op = geFlag ? OP_MoveGe : OP_MoveGt;
|
|
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
|
|
}
|
|
}else if( pLevel->bRev ){
|
|
testOp = OP_Noop;
|
|
}else{
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
|
|
}
|
|
|
|
/* Generate the the top of the loop. If there is a termination
|
|
** key we have to test for that key and abort at the top of the
|
|
** loop.
|
|
*/
|
|
start = sqlite3VdbeCurrentAddr(v);
|
|
if( testOp!=OP_Noop ){
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
|
|
if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
|
|
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
|
|
if( !omitTable ){
|
|
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
|
}
|
|
|
|
/* Record the instruction used to terminate the loop.
|
|
*/
|
|
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
|
|
pLevel->p1 = iIdxCur;
|
|
pLevel->p2 = start;
|
|
}
|
|
loopMask |= getMask(&maskSet, iCur);
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
** computed using the current set of tables.
|
|
*/
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
if( pTerm->p==0 ) continue;
|
|
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
|
|
if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
|
|
continue;
|
|
}
|
|
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
|
|
pTerm->p = 0;
|
|
}
|
|
brk = cont;
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
** at least one row of the right table has matched the left table.
|
|
*/
|
|
if( pLevel->iLeftJoin ){
|
|
pLevel->top = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
|
VdbeComment((v, "# record LEFT JOIN hit"));
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
if( pTerm->p==0 ) continue;
|
|
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
|
|
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
|
|
pTerm->p = 0;
|
|
}
|
|
}
|
|
}
|
|
pWInfo->iContinue = cont;
|
|
freeMaskSet(&maskSet);
|
|
return pWInfo;
|
|
}
|
|
|
|
/*
|
|
** Generate the end of the WHERE loop. See comments on
|
|
** sqlite3WhereBegin() for additional information.
|
|
*/
|
|
void sqlite3WhereEnd(WhereInfo *pWInfo){
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
|
int i;
|
|
WhereLevel *pLevel;
|
|
SrcList *pTabList = pWInfo->pTabList;
|
|
struct SrcList_item *pTabItem;
|
|
|
|
/* Generate loop termination code.
|
|
*/
|
|
for(i=pTabList->nSrc-1; i>=0; i--){
|
|
pLevel = &pWInfo->a[i];
|
|
sqlite3VdbeResolveLabel(v, pLevel->cont);
|
|
if( pLevel->op!=OP_Noop ){
|
|
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, pLevel->brk);
|
|
if( pLevel->inOp!=OP_Noop ){
|
|
sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
|
}
|
|
if( pLevel->iLeftJoin ){
|
|
int addr;
|
|
addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
|
sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
|
|
sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
|
if( pLevel->iIdxCur>=0 ){
|
|
sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
|
}
|
|
}
|
|
|
|
/* The "break" point is here, just past the end of the outer loop.
|
|
** Set it.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
|
|
|
|
/* Close all of the cursors that were opend by sqlite3WhereBegin.
|
|
*/
|
|
pLevel = pWInfo->a;
|
|
pTabItem = pTabList->a;
|
|
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
|
|
Table *pTab = pTabItem->pTab;
|
|
assert( pTab!=0 );
|
|
if( pTab->isTransient || pTab->pSelect ) continue;
|
|
if( (pLevel->score & 1)==0 ){
|
|
sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
|
|
}
|
|
if( pLevel->pIdx!=0 ){
|
|
sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
|
|
}
|
|
|
|
/* Make cursor substitutions for cases where we want to use
|
|
** just the index and never reference the table.
|
|
**
|
|
** Calls to the code generator in between sqlite3WhereBegin and
|
|
** sqlite3WhereEnd will have created code that references the table
|
|
** directly. This loop scans all that code looking for opcodes
|
|
** that reference the table and converts them into opcodes that
|
|
** reference the index.
|
|
*/
|
|
if( pLevel->score & 1 ){
|
|
int i, j, last;
|
|
VdbeOp *pOp;
|
|
Index *pIdx = pLevel->pIdx;
|
|
|
|
assert( pIdx!=0 );
|
|
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
|
|
last = sqlite3VdbeCurrentAddr(v);
|
|
for(i=pWInfo->iTop; i<last; i++, pOp++){
|
|
if( pOp->p1!=pLevel->iTabCur ) continue;
|
|
if( pOp->opcode==OP_Column ){
|
|
pOp->p1 = pLevel->iIdxCur;
|
|
for(j=0; j<pIdx->nColumn; j++){
|
|
if( pOp->p2==pIdx->aiColumn[j] ){
|
|
pOp->p2 = j;
|
|
break;
|
|
}
|
|
}
|
|
}else if( pOp->opcode==OP_Rowid ){
|
|
pOp->p1 = pLevel->iIdxCur;
|
|
pOp->opcode = OP_IdxRowid;
|
|
}else if( pOp->opcode==OP_NullRow ){
|
|
pOp->opcode = OP_Noop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Final cleanup
|
|
*/
|
|
sqliteFree(pWInfo);
|
|
return;
|
|
}
|