You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/kspread/digest.cc

854 lines
22 KiB

/*************************************************************************
* This implementation has been taken from the OpenOffice 1.0 and modified
* to use KSpread data types.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Sun has made the contents of this file available subject to the
* terms of GNU Lesser General Public License Version 2.1 as
* specified in sal/rtl/source/digest.c in the OpenOffice package.
*
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA
*
* All Rights Reserved.
*
* Contributor(s): Matthias Huetsch <matthias.huetsch@sun.com>
*
*
************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "../config.h"
#include "digest.h"
#include <kdebug.h>
#include <kmdcodec.h>
typedef unsigned char sal_uInt8;
typedef unsigned short sal_uInt16;
#if SIZEOF_INT == 4
typedef unsigned int sal_uInt32;
#else
typedef unsigned long sal_uInt32;
#endif
void rtl_freeZeroMemory(void * p, sal_uInt32 n);
void rtl_freeMemory(void * p);
void rtl_zeroMemory(void * Ptr, sal_uInt32 Bytes);
void rtl_copyMemory(void *Dst, const void *Src, sal_uInt32 Bytes);
#ifndef OSL_LOBYTE
# define OSL_LOBYTE(w) ((sal_uInt8)((sal_uInt16)(w) & 0xFF))
#endif
#ifndef OSL_HIBYTE
# define OSL_HIBYTE(w) ((sal_uInt8)(((sal_uInt16)(w) >> 8) & 0xFF))
#endif
#ifndef OSL_MAKEWORD
# define OSL_MAKEWORD(bl, bh) ((sal_uInt16)((bl) & 0xFF) | (((sal_uInt16)(bh) & 0xFF) << 8))
#endif
#ifndef OSL_MAKEDWORD
# define OSL_MAKEDWORD(wl, wh) ((sal_uInt32)((wl) & 0xFFFF) | (((sal_uInt32)(wh) & 0xFFFF) << 16))
#endif
#ifndef OSL_LOWORD
# define OSL_LOWORD(d) ((sal_uInt16)((sal_uInt32)(d) & 0xFFFF))
#endif
#ifndef OSL_HIWORD
# define OSL_HIWORD(d) ((sal_uInt16)(((sal_uInt32)(d) >> 16) & 0xFFFF))
#endif
/** Define macros for swapping between byte orders.
*/
#ifndef OSL_SWAPWORD
# define OSL_SWAPWORD(w) OSL_MAKEWORD(OSL_HIBYTE(w),OSL_LOBYTE(w))
#endif
#ifndef OSL_SWAPDWORD
# define OSL_SWAPDWORD(d) OSL_MAKEDWORD(OSL_SWAPWORD(OSL_HIWORD(d)),OSL_SWAPWORD(OSL_LOWORD(d)))
#endif
/*========================================================================
*
* rtlDigest.
*
*======================================================================*/
/** Digest Handle opaque type.
*/
typedef void* rtlDigest;
/** Digest Algorithm enumeration.
@see rtl_digest_create()
*/
enum __rtl_DigestAlgorithm
{
rtl_Digest_AlgorithmMD2,
rtl_Digest_AlgorithmMD5,
rtl_Digest_AlgorithmSHA,
rtl_Digest_AlgorithmSHA1,
rtl_Digest_AlgorithmHMAC_MD5,
rtl_Digest_AlgorithmHMAC_SHA1,
rtl_Digest_AlgorithmInvalid,
rtl_Digest_Algorithm_FORCE_EQUAL_SIZE
};
/** Digest Algorithm type.
*/
typedef enum __rtl_DigestAlgorithm rtlDigestAlgorithm;
/** Error Code enumeration.
*/
enum __rtl_DigestError
{
rtl_Digest_E_None,
rtl_Digest_E_Argument,
rtl_Digest_E_Algorithm,
rtl_Digest_E_BufferSize,
rtl_Digest_E_Memory,
rtl_Digest_E_Unknown,
rtl_Digest_E_FORCE_EQUAL_SIZE
};
/** Error Code type.
*/
typedef enum __rtl_DigestError rtlDigestError;
typedef rtlDigestError Digest_init_t( void * ctx, const sal_uInt8 * Data, sal_uInt32 DatLen );
typedef void Digest_delete_t( void *ctx );
typedef rtlDigestError Digest_update_t( void * ctx, const void * Data, sal_uInt32 DatLen );
typedef rtlDigestError Digest_get_t( void * ctx, sal_uInt8 * Buffer, sal_uInt32 BufLen );
/*========================================================================
*
* rtl_digest_SHA1 interface.
*
*======================================================================*/
#define RTL_DIGEST_LENGTH_SHA1 20
/** Create a SHA1 digest handle.
@descr The SHA1 digest algorithm is specified in
FIPS PUB 180-1 (Supersedes FIPS PUB 180)
Secure Hash Standard
@see rtl_digest_create()
*/
rtlDigest rtl_digest_createSHA1 (void);
/** Destroy a SHA1 digest handle.
@see rtl_digest_destroy()
*/
void rtl_digest_destroySHA1( rtlDigest Digest );
/** Update a SHA1 digest with given data.
@see rtl_digest_update()
*/
rtlDigestError rtl_digest_updateSHA1( rtlDigest Digest, const void * pData, uint nDatLen );
/** Finalize a SHA1 digest and retrieve the digest value.
@see rtl_digest_get()
*/
rtlDigestError rtl_digest_getSHA1( rtlDigest Digest, sal_uInt8 * pBuffer, uint nBufLen );
/** Evaluate a SHA1 digest value from given data.
@descr This function performs an optimized call sequence on a
single data buffer, avoiding digest creation and destruction.
@see rtl_digest_updateSHA1()
@see rtl_digest_getSHA1()
@param pData [in] data buffer.
@param nDatLen [in] data length.
@param pBuffer [in] digest value buffer.
@param nBufLen [in] digest value length.
@return rtl_Digest_E_None upon success.
*/
rtlDigestError rtl_digest_SHA1( const void * pData, uint nDatLen,
unsigned char * pBuffer, uint nBufLen );
/*========================================================================
*
* rtlDigest internals.
*
*======================================================================*/
void rtl_zeroMemory(void * Ptr, sal_uInt32 Bytes)
{
memset(Ptr, 0, Bytes);
}
void rtl_copyMemory(void *Dst, const void *Src, sal_uInt32 Bytes)
{
memcpy(Dst, Src, Bytes);
}
void rtl_freeMemory (void * p)
{
free(p);
}
void rtl_freeZeroMemory (void * p, sal_uInt32 n)
{
if (p)
{
memset(p, 0, n);
free(p);
}
}
#define RTL_DIGEST_CREATE(T) ((T*)(malloc(sizeof(T))))
#define RTL_DIGEST_ROTL(a,n) (((a) << (n)) | ((a) >> (32 - (n))))
#define RTL_DIGEST_HTONL(l,c) \
(*((c)++) = (sal_uInt8)(((l) >> 24L) & 0xff), \
*((c)++) = (sal_uInt8)(((l) >> 16L) & 0xff), \
*((c)++) = (sal_uInt8)(((l) >> 8L) & 0xff), \
*((c)++) = (sal_uInt8)(((l) ) & 0xff))
#define RTL_DIGEST_LTOC(l,c) \
(*((c)++) = (sal_uInt8)(((l) ) & 0xff), \
*((c)++) = (sal_uInt8)(((l) >> 8L) & 0xff), \
*((c)++) = (sal_uInt8)(((l) >> 16L) & 0xff), \
*((c)++) = (sal_uInt8)(((l) >> 24L) & 0xff))
typedef struct digest_impl_st
{
rtlDigestAlgorithm m_algorithm;
sal_uInt32 m_length;
Digest_init_t *m_init;
Digest_delete_t *m_delete;
Digest_update_t *m_update;
Digest_get_t *m_get;
} Digest_Impl;
/*
* __rtl_digest_swapLong.
*/
static void __rtl_digest_swapLong (sal_uInt32 *pData, sal_uInt32 nDatLen)
{
register sal_uInt32 *X;
register int i, n;
X = pData;
n = nDatLen;
for (i = 0; i < n; i++)
X[i] = OSL_SWAPDWORD(X[i]);
}
/*========================================================================
*
* rtlDigest implementation.
*
*======================================================================*/
/*
* rtl_digest_create.
rtlDigest rtl_digest_create (rtlDigestAlgorithm Algorithm)
{
rtlDigest Digest = (rtlDigest)NULL;
switch (Algorithm)
{
case rtl_Digest_AlgorithmMD2:
Digest = rtl_digest_createMD2();
break;
case rtl_Digest_AlgorithmMD5:
Digest = rtl_digest_createMD5();
break;
case rtl_Digest_AlgorithmSHA:
Digest = rtl_digest_createSHA();
break;
case rtl_Digest_AlgorithmSHA1:
Digest = rtl_digest_createSHA1();
break;
case rtl_Digest_AlgorithmHMAC_MD5:
Digest = rtl_digest_createHMAC_MD5();
break;
case rtl_Digest_AlgorithmHMAC_SHA1:
Digest = rtl_digest_createHMAC_SHA1();
break;
default: // rtl_Digest_AlgorithmInvalid
break;
}
return Digest;
}
// rtl_digest_queryAlgorithm.
rtlDigestAlgorithm rtl_digest_queryAlgorithm (rtlDigest Digest)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl)
return pImpl->m_algorithm;
else
return rtl_Digest_AlgorithmInvalid;
}
// rtl_digest_queryLength.
sal_uInt32 rtl_digest_queryLength (rtlDigest Digest)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl)
return pImpl->m_length;
else
return 0;
}
// * rtl_digest_init.
rtlDigestError rtl_digest_init (
rtlDigest Digest, const sal_uInt8 *pData, sal_uInt32 nDatLen)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl)
{
if (pImpl->m_init)
return pImpl->m_init (Digest, pData, nDatLen);
else
return rtl_Digest_E_None;
}
return rtl_Digest_E_Argument;
}
// * rtl_digest_update.
rtlDigestError rtl_digest_update (
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl && pImpl->m_update)
return pImpl->m_update (Digest, pData, nDatLen);
else
return rtl_Digest_E_Argument;
}
// * rtl_digest_get.
rtlDigestError rtl_digest_get (
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl && pImpl->m_get)
return pImpl->m_get (Digest, pBuffer, nBufLen);
else
return rtl_Digest_E_Argument;
}
// * rtl_digest_destroy.
void rtl_digest_destroy (rtlDigest Digest)
{
Digest_Impl *pImpl = (Digest_Impl *)Digest;
if (pImpl && pImpl->m_delete)
pImpl->m_delete (Digest);
}
*/
/*========================================================================
*
* rtl_digest_(SHA|SHA1) common internals.
*
*======================================================================*/
#define DIGEST_CBLOCK_SHA 64
#define DIGEST_LBLOCK_SHA 16
typedef sal_uInt32 DigestSHA_update_t (sal_uInt32 x);
static sal_uInt32 __rtl_digest_updateSHA_1 (sal_uInt32 x);
typedef struct digestSHA_context_st
{
DigestSHA_update_t *m_update;
sal_uInt32 m_nDatLen;
sal_uInt32 m_pData[DIGEST_LBLOCK_SHA];
sal_uInt32 m_nA, m_nB, m_nC, m_nD, m_nE;
sal_uInt32 m_nL, m_nH;
} DigestContextSHA;
typedef struct digestSHA_impl_st
{
Digest_Impl m_digest;
DigestContextSHA m_context;
} DigestSHA_Impl;
static void __rtl_digest_initSHA (
DigestContextSHA *ctx, DigestSHA_update_t *fct);
static void __rtl_digest_updateSHA (DigestContextSHA *ctx);
static void __rtl_digest_endSHA (DigestContextSHA *ctx);
#define K_00_19 (sal_uInt32)0x5a827999L
#define K_20_39 (sal_uInt32)0x6ed9eba1L
#define K_40_59 (sal_uInt32)0x8f1bbcdcL
#define K_60_79 (sal_uInt32)0xca62c1d6L
#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
#define F_40_59(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
#define F_60_79(b,c,d) F_20_39(b,c,d)
#define BODY_X(i) \
(X[(i)&0x0f] ^ X[((i)+2)&0x0f] ^ X[((i)+8)&0x0f] ^ X[((i)+13)&0x0f])
#define BODY_00_15(u,i,a,b,c,d,e,f) \
(f) = X[i]; \
(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_16_19(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_20_39(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_20_39 + RTL_DIGEST_ROTL((a), 5) + F_20_39((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_40_59(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_40_59 + RTL_DIGEST_ROTL((a), 5) + F_40_59((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
#define BODY_60_79(u,i,a,b,c,d,e,f) \
(f) = BODY_X((i)); \
(f) = X[(i)&0x0f] = (u)((f)); \
(f) += (e) + K_60_79 + RTL_DIGEST_ROTL((a), 5) + F_60_79((b), (c), (d)); \
(b) = RTL_DIGEST_ROTL((b), 30);
/*
* __rtl_digest_initSHA.
*/
static void __rtl_digest_initSHA (
DigestContextSHA *ctx, DigestSHA_update_t *fct)
{
rtl_zeroMemory (ctx, sizeof (DigestContextSHA));
ctx->m_update = fct;
ctx->m_nA = (sal_uInt32)0x67452301L;
ctx->m_nB = (sal_uInt32)0xefcdab89L;
ctx->m_nC = (sal_uInt32)0x98badcfeL;
ctx->m_nD = (sal_uInt32)0x10325476L;
ctx->m_nE = (sal_uInt32)0xc3d2e1f0L;
}
/*
* __rtl_digest_updateSHA.
*/
static void __rtl_digest_updateSHA (DigestContextSHA *ctx)
{
register sal_uInt32 A, B, C, D, E, T;
register sal_uInt32 *X;
register DigestSHA_update_t *U;
U = ctx->m_update;
A = ctx->m_nA;
B = ctx->m_nB;
C = ctx->m_nC;
D = ctx->m_nD;
E = ctx->m_nE;
X = ctx->m_pData;
BODY_00_15 (U, 0, A, B, C, D, E, T);
BODY_00_15 (U, 1, T, A, B, C, D, E);
BODY_00_15 (U, 2, E, T, A, B, C, D);
BODY_00_15 (U, 3, D, E, T, A, B, C);
BODY_00_15 (U, 4, C, D, E, T, A, B);
BODY_00_15 (U, 5, B, C, D, E, T, A);
BODY_00_15 (U, 6, A, B, C, D, E, T);
BODY_00_15 (U, 7, T, A, B, C, D, E);
BODY_00_15 (U, 8, E, T, A, B, C, D);
BODY_00_15 (U, 9, D, E, T, A, B, C);
BODY_00_15 (U, 10, C, D, E, T, A, B);
BODY_00_15 (U, 11, B, C, D, E, T, A);
BODY_00_15 (U, 12, A, B, C, D, E, T);
BODY_00_15 (U, 13, T, A, B, C, D, E);
BODY_00_15 (U, 14, E, T, A, B, C, D);
BODY_00_15 (U, 15, D, E, T, A, B, C);
BODY_16_19 (U, 16, C, D, E, T, A, B);
BODY_16_19 (U, 17, B, C, D, E, T, A);
BODY_16_19 (U, 18, A, B, C, D, E, T);
BODY_16_19 (U, 19, T, A, B, C, D, E);
BODY_20_39 (U, 20, E, T, A, B, C, D);
BODY_20_39 (U, 21, D, E, T, A, B, C);
BODY_20_39 (U, 22, C, D, E, T, A, B);
BODY_20_39 (U, 23, B, C, D, E, T, A);
BODY_20_39 (U, 24, A, B, C, D, E, T);
BODY_20_39 (U, 25, T, A, B, C, D, E);
BODY_20_39 (U, 26, E, T, A, B, C, D);
BODY_20_39 (U, 27, D, E, T, A, B, C);
BODY_20_39 (U, 28, C, D, E, T, A, B);
BODY_20_39 (U, 29, B, C, D, E, T, A);
BODY_20_39 (U, 30, A, B, C, D, E, T);
BODY_20_39 (U, 31, T, A, B, C, D, E);
BODY_20_39 (U, 32, E, T, A, B, C, D);
BODY_20_39 (U, 33, D, E, T, A, B, C);
BODY_20_39 (U, 34, C, D, E, T, A, B);
BODY_20_39 (U, 35, B, C, D, E, T, A);
BODY_20_39 (U, 36, A, B, C, D, E, T);
BODY_20_39 (U, 37, T, A, B, C, D, E);
BODY_20_39 (U, 38, E, T, A, B, C, D);
BODY_20_39 (U, 39, D, E, T, A, B, C);
BODY_40_59 (U, 40, C, D, E, T, A, B);
BODY_40_59 (U, 41, B, C, D, E, T, A);
BODY_40_59 (U, 42, A, B, C, D, E, T);
BODY_40_59 (U, 43, T, A, B, C, D, E);
BODY_40_59 (U, 44, E, T, A, B, C, D);
BODY_40_59 (U, 45, D, E, T, A, B, C);
BODY_40_59 (U, 46, C, D, E, T, A, B);
BODY_40_59 (U, 47, B, C, D, E, T, A);
BODY_40_59 (U, 48, A, B, C, D, E, T);
BODY_40_59 (U, 49, T, A, B, C, D, E);
BODY_40_59 (U, 50, E, T, A, B, C, D);
BODY_40_59 (U, 51, D, E, T, A, B, C);
BODY_40_59 (U, 52, C, D, E, T, A, B);
BODY_40_59 (U, 53, B, C, D, E, T, A);
BODY_40_59 (U, 54, A, B, C, D, E, T);
BODY_40_59 (U, 55, T, A, B, C, D, E);
BODY_40_59 (U, 56, E, T, A, B, C, D);
BODY_40_59 (U, 57, D, E, T, A, B, C);
BODY_40_59 (U, 58, C, D, E, T, A, B);
BODY_40_59 (U, 59, B, C, D, E, T, A);
BODY_60_79 (U, 60, A, B, C, D, E, T);
BODY_60_79 (U, 61, T, A, B, C, D, E);
BODY_60_79 (U, 62, E, T, A, B, C, D);
BODY_60_79 (U, 63, D, E, T, A, B, C);
BODY_60_79 (U, 64, C, D, E, T, A, B);
BODY_60_79 (U, 65, B, C, D, E, T, A);
BODY_60_79 (U, 66, A, B, C, D, E, T);
BODY_60_79 (U, 67, T, A, B, C, D, E);
BODY_60_79 (U, 68, E, T, A, B, C, D);
BODY_60_79 (U, 69, D, E, T, A, B, C);
BODY_60_79 (U, 70, C, D, E, T, A, B);
BODY_60_79 (U, 71, B, C, D, E, T, A);
BODY_60_79 (U, 72, A, B, C, D, E, T);
BODY_60_79 (U, 73, T, A, B, C, D, E);
BODY_60_79 (U, 74, E, T, A, B, C, D);
BODY_60_79 (U, 75, D, E, T, A, B, C);
BODY_60_79 (U, 76, C, D, E, T, A, B);
BODY_60_79 (U, 77, B, C, D, E, T, A);
BODY_60_79 (U, 78, A, B, C, D, E, T);
BODY_60_79 (U, 79, T, A, B, C, D, E);
ctx->m_nA += E;
ctx->m_nB += T;
ctx->m_nC += A;
ctx->m_nD += B;
ctx->m_nE += C;
}
/*
* __rtl_digest_endSHA.
*/
static void __rtl_digest_endSHA (DigestContextSHA *ctx)
{
static const sal_uInt8 end[4] =
{
0x80, 0x00, 0x00, 0x00
};
register const sal_uInt8 *p = end;
register sal_uInt32 *X;
register int i;
X = ctx->m_pData;
i = (ctx->m_nDatLen >> 2);
#ifdef WORDS_BIGENDIAN
__rtl_digest_swapLong (X, i + 1);
#endif
switch (ctx->m_nDatLen & 0x03)
{
case 1: X[i] &= 0x000000ff; break;
case 2: X[i] &= 0x0000ffff; break;
case 3: X[i] &= 0x00ffffff; break;
}
switch (ctx->m_nDatLen & 0x03)
{
case 0: X[i] = ((sal_uInt32)(*(p++))) << 0L;
case 1: X[i] |= ((sal_uInt32)(*(p++))) << 8L;
case 2: X[i] |= ((sal_uInt32)(*(p++))) << 16L;
case 3: X[i] |= ((sal_uInt32)(*(p++))) << 24L;
}
__rtl_digest_swapLong (X, i + 1);
i += 1;
if (i >= (DIGEST_LBLOCK_SHA - 2))
{
for (; i < DIGEST_LBLOCK_SHA; i++)
X[i] = 0;
__rtl_digest_updateSHA (ctx);
i = 0;
}
for (; i < (DIGEST_LBLOCK_SHA - 2); i++)
X[i] = 0;
X[DIGEST_LBLOCK_SHA - 2] = ctx->m_nH;
X[DIGEST_LBLOCK_SHA - 1] = ctx->m_nL;
__rtl_digest_updateSHA (ctx);
}
/*========================================================================
*
* rtl_digest_SHA1 internals.
*
*======================================================================*/
/*
* __rtl_digest_SHA_1.
*/
static const Digest_Impl __rtl_digest_SHA_1 = { rtl_Digest_AlgorithmSHA1,
RTL_DIGEST_LENGTH_SHA1,
0,
rtl_digest_destroySHA1,
rtl_digest_updateSHA1,
rtl_digest_getSHA1
};
/*
* __rtl_digest_updateSHA_1.
*/
static sal_uInt32 __rtl_digest_updateSHA_1 (sal_uInt32 x)
{
return RTL_DIGEST_ROTL (x, 1);
}
/*========================================================================
*
* rtl_digest_SHA1 implementation.
*
*======================================================================*/
/*
* rtl_digest_SHA1.
*/
rtlDigestError rtl_digest_SHA1 (
const void *pData, sal_uInt32 nDatLen,
sal_uInt8 *pBuffer, sal_uInt32 nBufLen)
{
DigestSHA_Impl digest;
rtlDigestError result;
digest.m_digest = __rtl_digest_SHA_1;
__rtl_digest_initSHA (&(digest.m_context), __rtl_digest_updateSHA_1);
result = rtl_digest_updateSHA1 (&digest, pData, nDatLen);
if (result == rtl_Digest_E_None)
result = rtl_digest_getSHA1 (&digest, pBuffer, nBufLen);
rtl_zeroMemory (&digest, sizeof (digest));
return (result);
}
/*
* rtl_digest_createSHA1.
*/
rtlDigest rtl_digest_createSHA1 (void)
{
DigestSHA_Impl *pImpl = (DigestSHA_Impl*)NULL;
pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl);
if (pImpl)
{
pImpl->m_digest = __rtl_digest_SHA_1;
__rtl_digest_initSHA (&(pImpl->m_context), __rtl_digest_updateSHA_1);
}
return ((rtlDigest)pImpl);
}
/*
* rtl_digest_updateSHA1.
*/
rtlDigestError rtl_digest_updateSHA1 (
rtlDigest Digest, const void *pData, sal_uInt32 nDatLen)
{
DigestSHA_Impl *pImpl = (DigestSHA_Impl *)Digest;
const sal_uInt8 *d = (const sal_uInt8 *)pData;
DigestContextSHA *ctx;
sal_uInt32 len;
if ((pImpl == NULL) || (pData == NULL))
return rtl_Digest_E_Argument;
if (!(pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1))
return rtl_Digest_E_Algorithm;
if (nDatLen == 0)
return rtl_Digest_E_None;
ctx = &(pImpl->m_context);
len = ctx->m_nL + (nDatLen << 3);
if (len < ctx->m_nL) ctx->m_nH += 1;
ctx->m_nH += (nDatLen >> 29);
ctx->m_nL = len;
if (ctx->m_nDatLen)
{
sal_uInt8 *p = (sal_uInt8 *)(ctx->m_pData) + ctx->m_nDatLen;
sal_uInt32 n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen;
if (nDatLen < n)
{
rtl_copyMemory (p, d, nDatLen);
ctx->m_nDatLen += nDatLen;
return rtl_Digest_E_None;
}
rtl_copyMemory (p, d, n);
d += n;
nDatLen -= n;
#ifndef WORDS_BIGENDIAN
__rtl_digest_swapLong (ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif
__rtl_digest_updateSHA (ctx);
ctx->m_nDatLen = 0;
}
while (nDatLen >= DIGEST_CBLOCK_SHA)
{
rtl_copyMemory (ctx->m_pData, d, DIGEST_CBLOCK_SHA);
d += DIGEST_CBLOCK_SHA;
nDatLen -= DIGEST_CBLOCK_SHA;
#ifndef WORDS_BIGENDIAN
__rtl_digest_swapLong (ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif
__rtl_digest_updateSHA (ctx);
}
rtl_copyMemory (ctx->m_pData, d, nDatLen);
ctx->m_nDatLen = nDatLen;
return rtl_Digest_E_None;
}
/*
* rtl_digest_getSHA1.
*/
rtlDigestError rtl_digest_getSHA1 (
rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen)
{
DigestSHA_Impl *pImpl = (DigestSHA_Impl *)Digest;
sal_uInt8 *p = pBuffer;
DigestContextSHA *ctx;
if ((pImpl == NULL) || (pBuffer == NULL))
return rtl_Digest_E_Argument;
if (!(pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1))
return rtl_Digest_E_Algorithm;
if (!(pImpl->m_digest.m_length <= nBufLen))
return rtl_Digest_E_BufferSize;
ctx = &(pImpl->m_context);
__rtl_digest_endSHA (ctx);
RTL_DIGEST_HTONL (ctx->m_nA, p);
RTL_DIGEST_HTONL (ctx->m_nB, p);
RTL_DIGEST_HTONL (ctx->m_nC, p);
RTL_DIGEST_HTONL (ctx->m_nD, p);
RTL_DIGEST_HTONL (ctx->m_nE, p);
__rtl_digest_initSHA (ctx, __rtl_digest_updateSHA_1);
return rtl_Digest_E_None;
}
/*
* rtl_digest_destroySHA1.
*/
void rtl_digest_destroySHA1 (rtlDigest Digest)
{
DigestSHA_Impl *pImpl = (DigestSHA_Impl *)Digest;
if (pImpl)
{
if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1)
rtl_freeZeroMemory (pImpl, sizeof (DigestSHA_Impl));
else
rtl_freeMemory (pImpl);
}
}
/*========================================================================
*
* The End.
*
*======================================================================*/
bool SHA1::getHash( QString const & text, QCString & hash )
{
rtlDigest aDigest = rtl_digest_createSHA1();
rtlDigestError aError = rtl_digest_updateSHA1( aDigest, text.unicode(), text.length() * sizeof(QChar) );
if ( aError == rtl_Digest_E_None )
{
QCString digest;
digest.resize( RTL_DIGEST_LENGTH_SHA1 + 1 );
digest.fill( '\0', RTL_DIGEST_LENGTH_SHA1 );
aError = rtl_digest_getSHA1( aDigest, (unsigned char *) digest.data(), RTL_DIGEST_LENGTH_SHA1 );
if (aError != rtl_Digest_E_None)
return false;
hash = digest;
return true;
}
return false;
}