You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/chalk/core/kis_selection.cc

583 lines
20 KiB

/*
* Copyright (c) 2004 Boudewijn Rempt <boud@valdyas.org>
*
* this program is free software; you can redistribute it and/or modify
* it under the terms of the gnu general public license as published by
* the free software foundation; either version 2 of the license, or
* (at your option) any later version.
*
* this program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* merchantability or fitness for a particular purpose. see the
* gnu general public license for more details.
*
* you should have received a copy of the gnu general public license
* along with this program; if not, write to the free software
* foundation, inc., 675 mass ave, cambridge, ma 02139, usa.
*/
#include <tqimage.h>
#include <kdebug.h>
#include <tdelocale.h>
#include <tqcolor.h>
#include "kis_layer.h"
#include "kis_debug_areas.h"
#include "kis_types.h"
#include "kis_colorspace_factory_registry.h"
#include "kis_fill_painter.h"
#include "kis_iterators_pixel.h"
#include "kis_integer_maths.h"
#include "kis_image.h"
#include "kis_datamanager.h"
#include "kis_fill_painter.h"
#include "kis_selection.h"
KisSelection::KisSelection(KisPaintDeviceSP dev)
: super(dev->parentLayer()
, KisMetaRegistry::instance()->csRegistry()->getAlpha8()
, (TQString("selection for ") + dev->name()).latin1())
, m_parentPaintDevice(dev)
, m_doCacheExactRect(false)
, m_dirty(false)
{
Q_ASSERT(dev);
}
KisSelection::KisSelection()
: super(KisMetaRegistry::instance()->csRegistry()->getAlpha8(), "anonymous selection")
, m_parentPaintDevice(0), m_dirty(false)
{
}
KisSelection::KisSelection(const KisSelection& rhs)
: super(rhs), m_parentPaintDevice(rhs.m_parentPaintDevice), m_doCacheExactRect(rhs.m_doCacheExactRect),
m_cachedExactRect(rhs.m_cachedExactRect), m_dirty(rhs.m_dirty)
{
}
KisSelection::~KisSelection()
{
}
TQ_UINT8 KisSelection::selected(TQ_INT32 x, TQ_INT32 y)
{
KisHLineIteratorPixel iter = createHLineIterator(x, y, 1, false);
TQ_UINT8 *pix = iter.rawData();
return *pix;
}
void KisSelection::setSelected(TQ_INT32 x, TQ_INT32 y, TQ_UINT8 s)
{
KisHLineIteratorPixel iter = createHLineIterator(x, y, 1, true);
TQ_UINT8 *pix = iter.rawData();
*pix = s;
}
TQImage KisSelection::maskImage()
{
// If part of a KisAdjustmentLayer, there may be no parent device.
TQImage img;
TQRect bounds;
if (m_parentPaintDevice) {
bounds = m_parentPaintDevice->exactBounds();
bounds = bounds.intersect( m_parentPaintDevice->image()->bounds() );
img = TQImage(bounds.width(), bounds.height(), 32);
}
else {
bounds = TQRect( 0, 0, image()->width(), image()->height());
img = TQImage(bounds.width(), bounds.height(), 32);
}
KisHLineIteratorPixel it = createHLineIterator(bounds.x(), bounds.y(), bounds.width(), false);
for (int y2 = bounds.y(); y2 < bounds.height() - bounds.y(); ++y2) {
int x2 = 0;
while (!it.isDone()) {
TQ_UINT8 s = MAX_SELECTED - *(it.rawData());
TQ_INT32 c = tqRgb(s, s, s);
img.setPixel(x2, y2, c);
++x2;
++it;
}
it.nextRow();
}
return img;
}
void KisSelection::select(TQRect r)
{
KisFillPainter painter(this);
KisColorSpace * cs = KisMetaRegistry::instance()->csRegistry()->getRGB8();
painter.fillRect(r, KisColor(TQt::white, cs), MAX_SELECTED);
TQ_INT32 x, y, w, h;
extent(x, y, w, h);
}
void KisSelection::clear(TQRect r)
{
KisFillPainter painter(this);
KisColorSpace * cs = KisMetaRegistry::instance()->csRegistry()->getRGB8();
painter.fillRect(r, KisColor(TQt::white, cs), MIN_SELECTED);
}
void KisSelection::clear()
{
TQ_UINT8 defPixel = MIN_SELECTED;
m_datamanager->setDefaultPixel(&defPixel);
m_datamanager->clear();
}
void KisSelection::invert()
{
TQ_INT32 x,y,w,h;
extent(x, y, w, h);
KisRectIterator it = createRectIterator(x, y, w, h, true);
while ( ! it.isDone() )
{
// CBR this is wrong only first byte is inverted
// BSAR: But we have always only one byte in this color model :-).
*(it.rawData()) = MAX_SELECTED - *(it.rawData());
++it;
}
TQ_UINT8 defPixel = MAX_SELECTED - *(m_datamanager->defaultPixel());
m_datamanager->setDefaultPixel(&defPixel);
}
bool KisSelection::isTotallyUnselected(TQRect r)
{
if(*(m_datamanager->defaultPixel()) != MIN_SELECTED)
return false;
TQRect sr = selectedExactRect();
return ! r.intersects(sr);
}
bool KisSelection::isProbablyTotallyUnselected(TQRect r)
{
if(*(m_datamanager->defaultPixel()) != MIN_SELECTED)
return false;
TQRect sr = selectedRect();
return ! r.intersects(sr);
}
TQRect KisSelection::selectedRect() const
{
if(*(m_datamanager->defaultPixel()) == MIN_SELECTED || !m_parentPaintDevice)
return extent();
else
return extent().unite(m_parentPaintDevice->extent());
}
TQRect KisSelection::selectedExactRect() const
{
if(m_doCacheExactRect)
return m_cachedExactRect;
else if(*(m_datamanager->defaultPixel()) == MIN_SELECTED || !m_parentPaintDevice)
return exactBounds();
else
return exactBounds().unite(m_parentPaintDevice->exactBounds());
}
void KisSelection::stopCachingExactRect()
{
kdDebug() << "stop caching the exact rect" << endl;
m_doCacheExactRect = false;
}
void KisSelection::startCachingExactRect()
{
kdDebug() << "start caching the exact rect" << endl;
if(*(m_datamanager->defaultPixel()) == MIN_SELECTED || !m_parentPaintDevice)
m_cachedExactRect = exactBounds();
else
m_cachedExactRect = exactBounds().unite(m_parentPaintDevice->exactBounds());
m_doCacheExactRect = true;
}
void KisSelection::paintUniformSelectionRegion(TQImage img, const TQRect& imageRect, const TQRegion& uniformRegion)
{
Q_ASSERT(img.size() == imageRect.size());
Q_ASSERT(imageRect.contains(uniformRegion.boundingRect()));
if (img.isNull() || img.size() != imageRect.size() || !imageRect.contains(uniformRegion.boundingRect())) {
return;
}
if (*m_datamanager->defaultPixel() == MIN_SELECTED) {
TQRegion region = uniformRegion & TQRegion(imageRect);
if (!region.isEmpty()) {
TQMemArray<TQRect> rects = region.rects();
for (unsigned int i = 0; i < rects.count(); i++) {
TQRect r = rects[i];
for (TQ_INT32 y = 0; y < r.height(); ++y) {
TQRgb *imagePixel = reinterpret_cast<TQRgb *>(img.scanLine(r.y() - imageRect.y() + y));
imagePixel += r.x() - imageRect.x();
TQ_INT32 numPixels = r.width();
while (numPixels > 0) {
TQRgb srcPixel = *imagePixel;
TQ_UINT8 srcGrey = (tqRed(srcPixel) + tqGreen(srcPixel) + tqBlue(srcPixel)) / 9;
TQ_UINT8 srcAlpha = tqAlpha(srcPixel);
srcGrey = UINT8_MULT(srcGrey, srcAlpha);
TQ_UINT8 dstAlpha = TQMAX(srcAlpha, 192);
TQRgb dstPixel = tqRgba(128 + srcGrey, 128 + srcGrey, 165 + srcGrey, dstAlpha);
*imagePixel = dstPixel;
++imagePixel;
--numPixels;
}
}
}
}
}
}
void KisSelection::paintSelection(TQImage img, TQ_INT32 imageRectX, TQ_INT32 imageRectY, TQ_INT32 imageRectWidth, TQ_INT32 imageRectHeight)
{
Q_ASSERT(img.size() == TQSize(imageRectWidth, imageRectHeight));
if (img.isNull() || img.size() != TQSize(imageRectWidth, imageRectHeight)) {
return;
}
TQRect imageRect(imageRectX, imageRectY, imageRectWidth, imageRectHeight);
TQRect selectionExtent = extent();
selectionExtent.setLeft(selectionExtent.left() - 1);
selectionExtent.setTop(selectionExtent.top() - 1);
selectionExtent.setWidth(selectionExtent.width() + 2);
selectionExtent.setHeight(selectionExtent.height() + 2);
TQRegion uniformRegion = TQRegion(imageRect);
uniformRegion -= TQRegion(selectionExtent);
if (!uniformRegion.isEmpty()) {
paintUniformSelectionRegion(img, imageRect, uniformRegion);
}
TQRect nonuniformRect = imageRect & selectionExtent;
if (!nonuniformRect.isEmpty()) {
const TQ_INT32 imageRectOffsetX = nonuniformRect.x() - imageRectX;
const TQ_INT32 imageRectOffsetY = nonuniformRect.y() - imageRectY;
imageRectX = nonuniformRect.x();
imageRectY = nonuniformRect.y();
imageRectWidth = nonuniformRect.width();
imageRectHeight = nonuniformRect.height();
const TQ_INT32 NUM_SELECTION_ROWS = 3;
TQ_UINT8 *selectionRow[NUM_SELECTION_ROWS];
TQ_INT32 aboveRowIndex = 0;
TQ_INT32 centreRowIndex = 1;
TQ_INT32 belowRowIndex = 2;
selectionRow[aboveRowIndex] = new TQ_UINT8[imageRectWidth + 2];
selectionRow[centreRowIndex] = new TQ_UINT8[imageRectWidth + 2];
selectionRow[belowRowIndex] = new TQ_UINT8[imageRectWidth + 2];
readBytes(selectionRow[centreRowIndex], imageRectX - 1, imageRectY - 1, imageRectWidth + 2, 1);
readBytes(selectionRow[belowRowIndex], imageRectX - 1, imageRectY, imageRectWidth + 2, 1);
for (TQ_INT32 y = 0; y < imageRectHeight; ++y) {
TQ_INT32 oldAboveRowIndex = aboveRowIndex;
aboveRowIndex = centreRowIndex;
centreRowIndex = belowRowIndex;
belowRowIndex = oldAboveRowIndex;
readBytes(selectionRow[belowRowIndex], imageRectX - 1, imageRectY + y + 1, imageRectWidth + 2, 1);
const TQ_UINT8 *aboveRow = selectionRow[aboveRowIndex] + 1;
const TQ_UINT8 *centreRow = selectionRow[centreRowIndex] + 1;
const TQ_UINT8 *belowRow = selectionRow[belowRowIndex] + 1;
TQRgb *imagePixel = reinterpret_cast<TQRgb *>(img.scanLine(imageRectOffsetY + y));
imagePixel += imageRectOffsetX;
for (TQ_INT32 x = 0; x < imageRectWidth; ++x) {
TQ_UINT8 centre = *centreRow;
if (centre != MAX_SELECTED) {
// this is where we come if the pixels should be blue or bluish
TQRgb srcPixel = *imagePixel;
TQ_UINT8 srcGrey = (tqRed(srcPixel) + tqGreen(srcPixel) + tqBlue(srcPixel)) / 9;
TQ_UINT8 srcAlpha = tqAlpha(srcPixel);
// Colour influence is proportional to alphaPixel.
srcGrey = UINT8_MULT(srcGrey, srcAlpha);
TQRgb dstPixel;
if (centre == MIN_SELECTED) {
//this is where we come if the pixels should be blue (or red outline)
TQ_UINT8 left = *(centreRow - 1);
TQ_UINT8 right = *(centreRow + 1);
TQ_UINT8 above = *aboveRow;
TQ_UINT8 below = *belowRow;
// Stop unselected transparent areas from appearing the same
// as selected transparent areas.
TQ_UINT8 dstAlpha = TQMAX(srcAlpha, 192);
// now for a simple outline based on 4-connectivity
if (left != MIN_SELECTED || right != MIN_SELECTED || above != MIN_SELECTED || below != MIN_SELECTED) {
dstPixel = tqRgba(255, 0, 0, dstAlpha);
} else {
dstPixel = tqRgba(128 + srcGrey, 128 + srcGrey, 165 + srcGrey, dstAlpha);
}
} else {
dstPixel = tqRgba(UINT8_BLEND(tqRed(srcPixel), srcGrey + 128, centre),
UINT8_BLEND(tqGreen(srcPixel), srcGrey + 128, centre),
UINT8_BLEND(tqBlue(srcPixel), srcGrey + 165, centre),
srcAlpha);
}
*imagePixel = dstPixel;
}
aboveRow++;
centreRow++;
belowRow++;
imagePixel++;
}
}
delete [] selectionRow[aboveRowIndex];
delete [] selectionRow[centreRowIndex];
delete [] selectionRow[belowRowIndex];
}
}
void KisSelection::paintSelection(TQImage img, const TQRect& scaledImageRect, const TQSize& scaledImageSize, const TQSize& imageSize)
{
if (img.isNull() || scaledImageRect.isEmpty() || scaledImageSize.isEmpty() || imageSize.isEmpty()) {
return;
}
Q_ASSERT(img.size() == scaledImageRect.size());
if (img.size() != scaledImageRect.size()) {
return;
}
TQ_INT32 imageWidth = imageSize.width();
TQ_INT32 imageHeight = imageSize.height();
TQRect selectionExtent = extent();
selectionExtent.setLeft(selectionExtent.left() - 1);
selectionExtent.setTop(selectionExtent.top() - 1);
selectionExtent.setWidth(selectionExtent.width() + 2);
selectionExtent.setHeight(selectionExtent.height() + 2);
double xScale = static_cast<double>(scaledImageSize.width()) / imageWidth;
double yScale = static_cast<double>(scaledImageSize.height()) / imageHeight;
TQRect scaledSelectionExtent;
scaledSelectionExtent.setLeft(static_cast<int>(selectionExtent.left() * xScale));
scaledSelectionExtent.setRight(static_cast<int>(ceil((selectionExtent.right() + 1) * xScale)) - 1);
scaledSelectionExtent.setTop(static_cast<int>(selectionExtent.top() * yScale));
scaledSelectionExtent.setBottom(static_cast<int>(ceil((selectionExtent.bottom() + 1) * yScale)) - 1);
TQRegion uniformRegion = TQRegion(scaledImageRect);
uniformRegion -= TQRegion(scaledSelectionExtent);
if (!uniformRegion.isEmpty()) {
paintUniformSelectionRegion(img, scaledImageRect, uniformRegion);
}
TQRect nonuniformRect = scaledImageRect & scaledSelectionExtent;
if (!nonuniformRect.isEmpty()) {
const TQ_INT32 scaledImageRectXOffset = nonuniformRect.x() - scaledImageRect.x();
const TQ_INT32 scaledImageRectYOffset = nonuniformRect.y() - scaledImageRect.y();
const TQ_INT32 scaledImageRectX = nonuniformRect.x();
const TQ_INT32 scaledImageRectY = nonuniformRect.y();
const TQ_INT32 scaledImageRectWidth = nonuniformRect.width();
const TQ_INT32 scaledImageRectHeight = nonuniformRect.height();
const TQ_INT32 imageRowLeft = static_cast<TQ_INT32>(scaledImageRectX / xScale);
const TQ_INT32 imageRowRight = static_cast<TQ_INT32>((ceil((scaledImageRectX + scaledImageRectWidth - 1 + 1) / xScale)) - 1);
const TQ_INT32 imageRowWidth = imageRowRight - imageRowLeft + 1;
const TQ_INT32 imageRowStride = imageRowWidth + 2;
const TQ_INT32 NUM_SELECTION_ROWS = 3;
TQ_INT32 aboveRowIndex = 0;
TQ_INT32 centreRowIndex = 1;
TQ_INT32 belowRowIndex = 2;
TQ_INT32 aboveRowSrcY = -3;
TQ_INT32 centreRowSrcY = -3;
TQ_INT32 belowRowSrcY = -3;
TQ_UINT8 *selectionRows = new TQ_UINT8[imageRowStride * NUM_SELECTION_ROWS];
TQ_UINT8 *selectionRow[NUM_SELECTION_ROWS];
selectionRow[0] = selectionRows + 1;
selectionRow[1] = selectionRow[0] + imageRowStride;
selectionRow[2] = selectionRow[0] + (2 * imageRowStride);
for (TQ_INT32 y = 0; y < scaledImageRectHeight; ++y) {
TQ_INT32 scaledY = scaledImageRectY + y;
TQ_INT32 srcY = (scaledY * imageHeight) / scaledImageSize.height();
TQ_UINT8 *aboveRow;
TQ_UINT8 *centreRow;
TQ_UINT8 *belowRow;
if (srcY - 1 == aboveRowSrcY) {
aboveRow = selectionRow[aboveRowIndex];
centreRow = selectionRow[centreRowIndex];
belowRow = selectionRow[belowRowIndex];
} else if (srcY - 1 == centreRowSrcY) {
TQ_INT32 oldAboveRowIndex = aboveRowIndex;
aboveRowIndex = centreRowIndex;
centreRowIndex = belowRowIndex;
belowRowIndex = oldAboveRowIndex;
aboveRow = selectionRow[aboveRowIndex];
centreRow = selectionRow[centreRowIndex];
belowRow = selectionRow[belowRowIndex];
readBytes(belowRow - 1, imageRowLeft - 1, srcY + 1, imageRowStride, 1);
} else if (srcY - 1 == belowRowSrcY) {
TQ_INT32 oldAboveRowIndex = aboveRowIndex;
TQ_INT32 oldCentreRowIndex = centreRowIndex;
aboveRowIndex = belowRowIndex;
centreRowIndex = oldAboveRowIndex;
belowRowIndex = oldCentreRowIndex;
aboveRow = selectionRow[aboveRowIndex];
centreRow = selectionRow[centreRowIndex];
belowRow = selectionRow[belowRowIndex];
if (belowRowIndex == centreRowIndex + 1) {
readBytes(centreRow - 1, imageRowLeft - 1, srcY, imageRowStride, 2);
} else {
readBytes(centreRow - 1, imageRowLeft - 1, srcY, imageRowStride, 1);
readBytes(belowRow - 1, imageRowLeft - 1, srcY + 1, imageRowStride, 1);
}
} else {
aboveRowIndex = 0;
centreRowIndex = 1;
belowRowIndex = 2;
aboveRow = selectionRow[aboveRowIndex];
centreRow = selectionRow[centreRowIndex];
belowRow = selectionRow[belowRowIndex];
readBytes(selectionRows, imageRowLeft - 1, srcY - 1, imageRowStride, NUM_SELECTION_ROWS);
}
aboveRowSrcY = srcY - 1;
centreRowSrcY = aboveRowSrcY + 1;
belowRowSrcY = centreRowSrcY + 1;
TQRgb *imagePixel = reinterpret_cast<TQRgb *>(img.scanLine(scaledImageRectYOffset + y));
imagePixel += scaledImageRectXOffset;
for (TQ_INT32 x = 0; x < scaledImageRectWidth; ++x) {
TQ_INT32 scaledX = scaledImageRectX + x;
TQ_INT32 srcX = (scaledX * imageWidth) / scaledImageSize.width();
TQ_UINT8 centre = *(centreRow + srcX - imageRowLeft);
if (centre != MAX_SELECTED) {
// this is where we come if the pixels should be blue or bluish
TQRgb srcPixel = *imagePixel;
TQ_UINT8 srcGrey = (tqRed(srcPixel) + tqGreen(srcPixel) + tqBlue(srcPixel)) / 9;
TQ_UINT8 srcAlpha = tqAlpha(srcPixel);
// Colour influence is proportional to alphaPixel.
srcGrey = UINT8_MULT(srcGrey, srcAlpha);
TQRgb dstPixel;
if (centre == MIN_SELECTED) {
//this is where we come if the pixels should be blue (or red outline)
TQ_UINT8 left = *(centreRow + (srcX - imageRowLeft) - 1);
TQ_UINT8 right = *(centreRow + (srcX - imageRowLeft) + 1);
TQ_UINT8 above = *(aboveRow + (srcX - imageRowLeft));
TQ_UINT8 below = *(belowRow + (srcX - imageRowLeft));
// Stop unselected transparent areas from appearing the same
// as selected transparent areas.
TQ_UINT8 dstAlpha = TQMAX(srcAlpha, 192);
// now for a simple outline based on 4-connectivity
if (left != MIN_SELECTED || right != MIN_SELECTED || above != MIN_SELECTED || below != MIN_SELECTED) {
dstPixel = tqRgba(255, 0, 0, dstAlpha);
} else {
dstPixel = tqRgba(128 + srcGrey, 128 + srcGrey, 165 + srcGrey, dstAlpha);
}
} else {
dstPixel = tqRgba(UINT8_BLEND(tqRed(srcPixel), srcGrey + 128, centre),
UINT8_BLEND(tqGreen(srcPixel), srcGrey + 128, centre),
UINT8_BLEND(tqBlue(srcPixel), srcGrey + 165, centre),
srcAlpha);
}
*imagePixel = dstPixel;
}
imagePixel++;
}
}
delete [] selectionRows;
}
}
void KisSelection::setDirty(const TQRect& rc)
{
if (m_dirty)
super::setDirty(rc);
}
void KisSelection::setDirty()
{
if (m_dirty)
super::setDirty();
}