You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/karbon/core/vcomposite.cpp

776 lines
18 KiB

/* This file is part of the KDE project
Copyright (C) 2001, 2002, 2003 The Karbon Developers
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <tqdom.h>
#include <tqpainter.h>
#include <tqwmatrix.h>
#include <tqregexp.h>
#include <KoPoint.h>
#include <KoRect.h>
#include <KoUnit.h>
#include <KoStore.h>
#include <KoXmlWriter.h>
#include <KoXmlNS.h>
#include <KoGenStyles.h>
#include "vcomposite.h"
#include "vcomposite_iface.h"
#include "vfill.h"
#include "vpainter.h"
#include "vsegment.h"
#include "vstroke.h"
#include "vvisitor.h"
#include "vpath.h"
#include "commands/vtransformcmd.h"
#include "vdocument.h"
#include <kdebug.h>
VPath::VPath( VObject* parent, VState state )
: VObject( parent, state ), m_fillRule( winding )
{
m_paths.setAutoDelete( true );
// add an initial path:
m_paths.append( new VSubpath( this ) );
// we need a stroke for boundingBox() at anytime:
m_stroke = new VStroke( this );
m_fill = new VFill();
m_drawCenterNode = false;
}
VPath::VPath( const VPath& composite )
: VObject( composite ), SVGPathParser()
{
m_paths.setAutoDelete( true );
VSubpath* path;
VSubpathListIterator itr( composite.m_paths );
for( itr.toFirst(); itr.current(); ++itr )
{
path = itr.current()->clone();
path->setParent( this );
m_paths.append( path );
}
if ( composite.stroke() )
setStroke( *composite.stroke() );
if ( composite.fill() )
setFill( *composite.fill() );
m_drawCenterNode = false;
m_fillRule = composite.m_fillRule;
m_matrix = composite.m_matrix;
}
VPath::~VPath()
{
}
DCOPObject* VPath::dcopObject()
{
if ( !m_dcop )
m_dcop = new VPathIface( this );
return m_dcop;
}
void
VPath::draw( VPainter* painter, const KoRect *rect ) const
{
if(
state() == deleted ||
state() == hidden ||
state() == hidden_locked )
{
return;
}
if( rect && !rect->intersects( boundingBox() ) )
return;
painter->save();
VSubpathListIterator itr( m_paths );
// draw simplistic contour:
if( state() == edit )
{
for( itr.toFirst(); itr.current(); ++itr )
{
if( !itr.current()->isEmpty() )
{
painter->newPath();
painter->setRasterOp( TQt::XorROP );
painter->setPen( TQt::yellow );
painter->setBrush( TQt::NoBrush );
VSubpathIterator jtr( *( itr.current() ) );
for( ; jtr.current(); ++jtr )
{
jtr.current()->draw( painter );
}
painter->strokePath();
}
}
}
else if( state() != edit )
{
// paint fill:
painter->newPath();
painter->setFillRule( m_fillRule );
for( itr.toFirst(); itr.current(); ++itr )
{
if( !itr.current()->isEmpty() )
{
VSubpathIterator jtr( *( itr.current() ) );
for( ; jtr.current(); ++jtr )
{
jtr.current()->draw( painter );
}
}
}
painter->setRasterOp( TQt::CopyROP );
painter->setPen( TQt::NoPen );
painter->setBrush( *fill() );
painter->fillPath();
// draw stroke:
painter->setPen( *stroke() );
painter->setBrush( TQt::NoBrush );
painter->strokePath();
}
painter->restore();
}
const KoPoint&
VPath::currentPoint() const
{
return m_paths.getLast()->currentPoint();
}
bool
VPath::moveTo( const KoPoint& p )
{
// Append a new subpath if current subpath is not empty.
if( !m_paths.getLast()->isEmpty() )
{
VSubpath* path = new VSubpath( this );
m_paths.append( path );
}
return m_paths.getLast()->moveTo( p );
}
bool
VPath::lineTo( const KoPoint& p )
{
return m_paths.getLast()->lineTo( p );
}
bool
VPath::curveTo(
const KoPoint& p1, const KoPoint& p2, const KoPoint& p3 )
{
return m_paths.getLast()->curveTo( p1, p2, p3 );
}
bool
VPath::curve1To( const KoPoint& p2, const KoPoint& p3 )
{
return m_paths.getLast()->curve1To( p2, p3 );
}
bool
VPath::curve2To( const KoPoint& p1, const KoPoint& p3 )
{
return m_paths.getLast()->curve2To( p1, p3 );
}
bool
VPath::arcTo( const KoPoint& p1, const KoPoint& p2, const double r )
{
return m_paths.getLast()->arcTo( p1, p2, r );
}
void
VPath::close()
{
m_paths.getLast()->close();
// Append a new subpath.
VSubpath* path = new VSubpath( this );
path->moveTo( currentPoint() );
m_paths.append( path );
}
bool
VPath::isClosed() const
{
return m_paths.getLast()->isEmpty() || m_paths.getLast()->isClosed();
}
void
VPath::combine( const VPath& composite )
{
VSubpathListIterator itr( composite.m_paths );
for( ; itr.current(); ++itr )
{
combinePath( *( itr.current() ) );
}
}
void
VPath::combinePath( const VSubpath& path )
{
VSubpath* p = path.clone();
p->setParent( this );
// TODO: do complex inside tests instead:
// Make new segments clock wise oriented:
m_paths.append( p );
m_fillRule = fillMode();
}
bool
VPath::pointIsInside( const KoPoint& p ) const
{
// Check if point is inside boundingbox.
if( !boundingBox().contains( p ) )
return false;
VSubpathListIterator itr( m_paths );
for( itr.toFirst(); itr.current(); ++itr )
{
if( itr.current()->pointIsInside( p ) )
return true;
}
return false;
}
bool
VPath::intersects( const VSegment& segment ) const
{
// Check if boundingboxes intersect.
if( !boundingBox().intersects( segment.boundingBox() ) )
return false;
VSubpathListIterator itr( m_paths );
for( itr.toFirst(); itr.current(); ++itr )
{
if( itr.current()->intersects( segment ) )
return true;
}
return false;
}
VFillRule
VPath::fillMode() const
{
return ( m_paths.count() > 1 ) ? evenOdd : winding;
}
const KoRect&
VPath::boundingBox() const
{
if( m_boundingBoxIsInvalid )
{
VSubpathListIterator itr( m_paths );
itr.toFirst();
m_boundingBox = itr.current() ? itr.current()->boundingBox() : KoRect();
for( ++itr; itr.current(); ++itr )
m_boundingBox |= itr.current()->boundingBox();
if( !m_boundingBox.isNull() )
{
// take line width into account:
m_boundingBox.setCoords(
m_boundingBox.left() - 0.5 * stroke()->lineWidth(),
m_boundingBox.top() - 0.5 * stroke()->lineWidth(),
m_boundingBox.right() + 0.5 * stroke()->lineWidth(),
m_boundingBox.bottom() + 0.5 * stroke()->lineWidth() );
}
m_boundingBoxIsInvalid = false;
}
return m_boundingBox;
}
VPath*
VPath::clone() const
{
return new VPath( *this );
}
void
VPath::save( TQDomElement& element ) const
{
if( state() != deleted )
{
TQDomElement me = element.ownerDocument().createElement( "PATH" );
element.appendChild( me );
VObject::save( me );
TQString d;
saveSvgPath( d );
me.setAttribute( "d", d );
//writeTransform( me );
// save fill rule if necessary:
if( !( m_fillRule == evenOdd ) )
me.setAttribute( "fillRule", m_fillRule );
}
}
void
VPath::saveOasis( KoStore *store, KoXmlWriter *docWriter, KoGenStyles &mainStyles, int &index ) const
{
if( state() != deleted )
{
docWriter->startElement( "draw:path" );
TQString d;
saveSvgPath( d );
docWriter->addAttribute( "svg:d", d );
double x = boundingBox().x();
double y = boundingBox().y();
double w = boundingBox().width();
double h = boundingBox().height();
docWriter->addAttribute( "svg:viewBox", TQString( "%1 %2 %3 %4" ).arg( x ).arg( y ).arg( w ).arg( h ) );
docWriter->addAttributePt( "svg:x", x );
docWriter->addAttributePt( "svg:y", y );
docWriter->addAttributePt( "svg:width", w );
docWriter->addAttributePt( "svg:height", h );
VObject::saveOasis( store, docWriter, mainStyles, index );
TQWMatrix tmpMat;
tmpMat.scale( 1, -1 );
tmpMat.translate( 0, -document()->height() );
TQString transform = buildOasisTransform( tmpMat );
if( !transform.isEmpty() )
docWriter->addAttribute( "draw:transform", transform );
docWriter->endElement();
}
}
void
VPath::saveOasisFill( KoGenStyles &mainStyles, KoGenStyle &stylesobjectauto ) const
{
if( m_fill )
{
TQWMatrix mat;
mat.scale( 1, -1 );
mat.translate( 0, -document()->height() );
// mirror fill before saving
VFill fill( *m_fill );
fill.transform( mat );
fill.saveOasis( mainStyles, stylesobjectauto );
// save fill rule if necessary:
if( !( m_fillRule == evenOdd ) )
stylesobjectauto.addProperty( "svg:fill-rule", "winding" );
}
}
void
VPath::transformByViewbox( const TQDomElement &element, TQString viewbox )
{
if( ! viewbox.isEmpty() )
{
// allow for viewbox def with ',' or whitespace
TQStringList points = TQStringList::split( ' ', viewbox.replace( ',', ' ' ).simplifyWhiteSpace() );
double w = KoUnit::parseValue( element.attributeNS( KoXmlNS::svg, "width", TQString() ) );
double h = KoUnit::parseValue( element.attributeNS( KoXmlNS::svg, "height", TQString() ) );
double x = KoUnit::parseValue( element.attributeNS( KoXmlNS::svg, "x", TQString() ) );
double y = KoUnit::parseValue( element.attributeNS( KoXmlNS::svg, "y", TQString() ) );
TQWMatrix mat;
mat.translate( x-KoUnit::parseValue( points[0] ), y-KoUnit::parseValue( points[1] ) );
mat.scale( w / KoUnit::parseValue( points[2] ) , h / KoUnit::parseValue( points[3] ) );
VTransformCmd cmd( 0L, mat );
cmd.visitVPath( *this );
}
}
bool
VPath::loadOasis( const TQDomElement &element, KoOasisLoadingContext &context )
{
setState( normal );
TQString viewbox;
if( element.localName() == "path" )
{
TQString data = element.attributeNS( KoXmlNS::svg, "d", TQString() );
if( data.length() > 0 )
{
loadSvgPath( data );
}
m_fillRule = element.attributeNS( KoXmlNS::svg, "fill-rule", TQString() ) == "winding" ? winding : evenOdd;
viewbox = element.attributeNS( KoXmlNS::svg, "viewBox", TQString() );
}
else if( element.localName() == "custom-shape" )
{
TQDomNodeList list = element.childNodes();
for( uint i = 0; i < list.count(); ++i )
{
if( list.item( i ).isElement() )
{
TQDomElement e = list.item( i ).toElement();
if( e.namespaceURI() != KoXmlNS::draw )
continue;
if( e.localName() == "enhanced-geometry" )
{
TQString data = e.attributeNS( KoXmlNS::draw, "enhanced-path", TQString() );
if( ! data.isEmpty() )
loadSvgPath( data );
viewbox = e.attributeNS( KoXmlNS::svg, "viewBox", TQString() );
}
}
}
}
transformByViewbox( element, viewbox );
TQString trafo = element.attributeNS( KoXmlNS::draw, "transform", TQString() );
if( !trafo.isEmpty() )
transformOasis( trafo );
return VObject::loadOasis( element, context );
}
void
VPath::load( const TQDomElement& element )
{
setState( normal );
VObject::load( element );
TQString data = element.attribute( "d" );
if( data.length() > 0 )
{
loadSvgPath( data );
}
m_fillRule = element.attribute( "fillRule" ) == 0 ? evenOdd : winding;
TQDomNodeList list = element.childNodes();
for( uint i = 0; i < list.count(); ++i )
{
if( list.item( i ).isElement() )
{
TQDomElement child = list.item( i ).toElement();
if( child.tagName() == "PATH" )
{
VSubpath path( this );
path.load( child );
combinePath( path );
}
else
{
VObject::load( child );
}
}
}
TQString trafo = element.attribute( "transform" );
if( !trafo.isEmpty() )
transform( trafo );
}
void
VPath::loadSvgPath( const TQString &d )
{
//TQTime s;s.start();
parseSVG( d, true );
//kdDebug(38000) << "Parsing time : " << s.elapsed() << endl;
}
void
VPath::saveSvgPath( TQString &d ) const
{
// save paths to svg:
VSubpathListIterator itr( m_paths );
for( itr.toFirst(); itr.current(); ++itr )
{
if( !itr.current()->isEmpty() )
itr.current()->saveSvgPath( d );
}
}
void
VPath::svgMoveTo( double x1, double y1, bool )
{
moveTo( KoPoint( x1, y1 ) );
}
void
VPath::svgLineTo( double x1, double y1, bool )
{
lineTo( KoPoint( x1, y1 ) );
}
void
VPath::svgCurveToCubic( double x1, double y1, double x2, double y2, double x, double y, bool )
{
curveTo( KoPoint( x1, y1 ), KoPoint( x2, y2 ), KoPoint( x, y ) );
}
void
VPath::svgClosePath()
{
close();
}
void
VPath::accept( VVisitor& visitor )
{
visitor.visitVPath( *this );
}
void
VPath::transform( const TQString &transform )
{
VTransformCmd cmd( 0L, parseTransform( transform ) );
cmd.visitVPath( *this );
}
void
VPath::transformOasis( const TQString &transform )
{
VTransformCmd cmd( 0L, parseOasisTransform( transform ) );
cmd.visitVPath( *this );
}
TQWMatrix
VPath::parseTransform( const TQString &transform )
{
TQWMatrix result;
// Split string for handling 1 transform statement at a time
TQStringList subtransforms = TQStringList::split(')', transform);
TQStringList::ConstIterator it = subtransforms.begin();
TQStringList::ConstIterator end = subtransforms.end();
for(; it != end; ++it)
{
TQStringList subtransform = TQStringList::split('(', (*it));
subtransform[0] = subtransform[0].stripWhiteSpace().lower();
subtransform[1] = subtransform[1].simplifyWhiteSpace();
TQRegExp reg("[,( ]");
TQStringList params = TQStringList::split(reg, subtransform[1]);
if(subtransform[0].startsWith(";") || subtransform[0].startsWith(","))
subtransform[0] = subtransform[0].right(subtransform[0].length() - 1);
if(subtransform[0] == "rotate")
{
if(params.count() == 3)
{
double x = params[1].toDouble();
double y = params[2].toDouble();
result.translate(x, y);
result.rotate(params[0].toDouble());
result.translate(-x, -y);
}
else
result.rotate(params[0].toDouble());
}
else if(subtransform[0] == "translate")
{
if(params.count() == 2)
result.translate(params[0].toDouble(), params[1].toDouble());
else // Spec : if only one param given, assume 2nd param to be 0
result.translate(params[0].toDouble() , 0);
}
else if(subtransform[0] == "scale")
{
if(params.count() == 2)
result.scale(params[0].toDouble(), params[1].toDouble());
else // Spec : if only one param given, assume uniform scaling
result.scale(params[0].toDouble(), params[0].toDouble());
}
else if(subtransform[0] == "skewx")
result.shear(tan(params[0].toDouble() * VGlobal::pi_180), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(tan(params[0].toDouble() * VGlobal::pi_180), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(0.0F, tan(params[0].toDouble() * VGlobal::pi_180));
else if(subtransform[0] == "matrix")
{
if(params.count() >= 6)
result.setMatrix(params[0].toDouble(), params[1].toDouble(), params[2].toDouble(), params[3].toDouble(), params[4].toDouble(), params[5].toDouble());
}
}
return result;
}
TQWMatrix
VPath::parseOasisTransform( const TQString &transform )
{
TQWMatrix result;
// Split string for handling 1 transform statement at a time
TQStringList subtransforms = TQStringList::split(')', transform);
TQStringList::ConstIterator it = subtransforms.begin();
TQStringList::ConstIterator end = subtransforms.end();
for(; it != end; ++it)
{
TQStringList subtransform = TQStringList::split('(', (*it));
subtransform[0] = subtransform[0].stripWhiteSpace().lower();
subtransform[1] = subtransform[1].simplifyWhiteSpace();
TQRegExp reg("[,( ]");
TQStringList params = TQStringList::split(reg, subtransform[1]);
if(subtransform[0].startsWith(";") || subtransform[0].startsWith(","))
subtransform[0] = subtransform[0].right(subtransform[0].length() - 1);
if(subtransform[0] == "rotate")
{
// TODO find out what oo2 really does when rotating, it seems severly broken
if(params.count() == 3)
{
double x = KoUnit::parseValue( params[1] );
double y = KoUnit::parseValue( params[2] );
result.translate(x, y);
// oo2 rotates by radians
result.rotate( params[0].toDouble()*VGlobal::one_pi_180 );
result.translate(-x, -y);
}
else
{
// oo2 rotates by radians
result.rotate( params[0].toDouble()*VGlobal::one_pi_180 );
}
}
else if(subtransform[0] == "translate")
{
if(params.count() == 2)
{
double x = KoUnit::parseValue( params[0] );
double y = KoUnit::parseValue( params[1] );
result.translate(x, y);
}
else // Spec : if only one param given, assume 2nd param to be 0
result.translate( KoUnit::parseValue( params[0] ) , 0);
}
else if(subtransform[0] == "scale")
{
if(params.count() == 2)
result.scale(params[0].toDouble(), params[1].toDouble());
else // Spec : if only one param given, assume uniform scaling
result.scale(params[0].toDouble(), params[0].toDouble());
}
else if(subtransform[0] == "skewx")
result.shear(tan(params[0].toDouble()), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(tan(params[0].toDouble()), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(0.0F, tan(params[0].toDouble()));
else if(subtransform[0] == "matrix")
{
if(params.count() >= 6)
result.setMatrix(params[0].toDouble(), params[1].toDouble(), params[2].toDouble(), params[3].toDouble(), KoUnit::parseValue( params[4] ), KoUnit::parseValue( params[5] ) );
}
}
return result;
}
TQString
VPath::buildSvgTransform() const
{
return buildSvgTransform( m_matrix );
}
TQString
VPath::buildSvgTransform( const TQWMatrix &mat ) const
{
TQString transform;
if( !mat.isIdentity() )
{
transform = TQString( "matrix(%1, %2, %3, %4, %5, %6)" ).arg( mat.m11() )
.arg( mat.m12() )
.arg( mat.m21() )
.arg( mat.m22() )
.arg( mat.dx() )
.arg( mat.dy() );
}
return transform;
}
TQString
VPath::buildOasisTransform() const
{
return buildSvgTransform( m_matrix );
}
TQString
VPath::buildOasisTransform( const TQWMatrix &mat ) const
{
TQString transform;
if( !mat.isIdentity() )
{
transform = TQString( "matrix(%1, %2, %3, %4, %5pt, %6pt)" ).arg( mat.m11() )
.arg( mat.m12() )
.arg( mat.m21() )
.arg( mat.m22() )
.arg( mat.dx() )
.arg( mat.dy() );
}
return transform;
}