You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/kexi/3rdparty/kexisql3/src/build.c

2939 lines
92 KiB

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the SQLite parser
** when syntax rules are reduced. The routines in this file handle the
** following kinds of SQL syntax:
**
** CREATE TABLE
** DROP TABLE
** CREATE INDEX
** DROP INDEX
** creating ID lists
** BEGIN TRANSACTION
** COMMIT
** ROLLBACK
**
** $Id: build.c 548347 2006-06-05 10:53:00Z staniek $
*/
#include "sqliteInt.h"
#include <ctype.h>
/*
** This routine is called when a new SQL statement is beginning to
** be parsed. Initialize the pParse structure as needed.
*/
void sqlite3BeginParse(Parse *pParse, int explainFlag){
pParse->explain = explainFlag;
pParse->nVar = 0;
}
/*
** This routine is called after a single SQL statement has been
** parsed and a VDBE program to execute that statement has been
** prepared. This routine puts the finishing touches on the
** VDBE program and resets the pParse structure for the next
** parse.
**
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
void sqlite3FinishCoding(Parse *pParse){
sqlite3 *db;
Vdbe *v;
if( sqlite3_malloc_failed ) return;
if( pParse->nested ) return;
if( !pParse->pVdbe ){
if( pParse->rc==SQLITE_OK && pParse->nErr ){
pParse->rc = SQLITE_ERROR;
}
return;
}
/* Begin by generating some termination code at the end of the
** vdbe program
*/
db = pParse->db;
v = sqlite3GetVdbe(pParse);
if( v ){
sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
/* The cookie mask contains one bit for each database file open.
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
** set for each database that is used. Generate code to start a
** transaction on each used database and to verify the schema cookie
** on each used database.
*/
if( pParse->cookieGoto>0 ){
u32 mask;
int iDb;
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
if( (mask & pParse->cookieMask)==0 ) continue;
sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
}
sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
}
#ifndef SQLITE_OMIT_TRACE
/* Add a No-op that contains the complete text of the compiled SQL
** statement as its P3 argument. This does not change the functionality
** of the program.
**
** This is used to implement sqlite3_trace().
*/
sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
#endif /* SQLITE_OMIT_TRACE */
}
/* Get the VDBE program ready for execution
*/
if( v && pParse->nErr==0 ){
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
sqlite3VdbeTrace(v, trace);
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
pParse->nTab+3, pParse->explain);
pParse->rc = SQLITE_DONE;
pParse->colNamesSet = 0;
}else if( pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
}
pParse->nTab = 0;
pParse->nMem = 0;
pParse->nSet = 0;
pParse->nVar = 0;
pParse->cookieMask = 0;
pParse->cookieGoto = 0;
}
/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction. When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization
** and finalization steps are omitted because those are handling by the
** outermost parser.
**
** Not everything is nestable. This facility is designed to permit
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
** care if you decide to try to use this routine for some other purposes.
*/
void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
va_list ap;
char *zSql;
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
char saveBuf[SAVE_SZ];
if( pParse->nErr ) return;
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
va_start(ap, zFormat);
zSql = sqlite3VMPrintf(zFormat, ap);
va_end(ap);
if( zSql==0 ){
return; /* A malloc must have failed */
}
pParse->nested++;
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
memset(&pParse->nVar, 0, SAVE_SZ);
sqlite3RunParser(pParse, zSql, 0);
sqliteFree(zSql);
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
pParse->nested--;
}
/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table. Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the table and the
** first matching table is returned. (No checking for duplicate table
** names is done.) The search order is TEMP first, then MAIN, then any
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
Table *p = 0;
int i;
assert( zName!=0 );
assert( (db->flags & SQLITE_Initialized) || db->init.busy );
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
p = sqlite3HashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
if( p ) break;
}
return p;
}
/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table. Return NULL if not found. Also leave an
** error message in pParse->zErrMsg.
**
** The difference between this routine and sqlite3FindTable() is that this
** routine leaves an error message in pParse->zErrMsg where
** sqlite3FindTable() does not.
*/
Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
Table *p;
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
return 0;
}
p = sqlite3FindTable(pParse->db, zName, zDbase);
if( p==0 ){
if( zDbase ){
sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
}else{
sqlite3ErrorMsg(pParse, "no such table: %s", zName);
}
pParse->checkSchema = 1;
}
return p;
}
/*
** Locate the in-memory structure that describes
** a particular index given the name of that index
** and the name of the database that contains the index.
** Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching index is returned. (No checking
** for duplicate index names is done.) The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
*/
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
Index *p = 0;
int i;
assert( (db->flags & SQLITE_Initialized) || db->init.busy );
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
p = sqlite3HashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
if( p ) break;
}
return p;
}
/*
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
sqliteFree(p->zColAff);
sqliteFree(p);
}
/*
** Remove the given index from the index hash table, and free
** its memory structures.
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite3 *db, Index *p){
Index *pOld;
assert( db!=0 && p->zName!=0 );
pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName,
strlen(p->zName)+1, 0);
assert( pOld==0 || pOld==p );
freeIndex(p);
}
/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
** with the index.
*/
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
Index *pIndex;
int len;
len = strlen(zIdxName);
pIndex = sqlite3HashInsert(&db->aDb[iDb].idxHash, zIdxName, len+1, 0);
if( pIndex ){
if( pIndex->pTable->pIndex==pIndex ){
pIndex->pTable->pIndex = pIndex->pNext;
}else{
Index *p;
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
if( p && p->pNext==pIndex ){
p->pNext = pIndex->pNext;
}
}
freeIndex(pIndex);
}
db->flags |= SQLITE_InternChanges;
}
/*
** Erase all schema information from the in-memory hash tables of
** a single database. This routine is called to reclaim memory
** before the database closes. It is also called during a rollback
** if there were schema changes during the transaction or if a
** schema-cookie mismatch occurs.
**
** If iDb<=0 then reset the internal schema tables for all database
** files. If iDb>=2 then reset the internal schema for only the
** single file indicated.
*/
void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
HashElem *pElem;
Hash temp1;
Hash temp2;
int i, j;
assert( iDb>=0 && iDb<db->nDb );
db->flags &= ~SQLITE_Initialized;
for(i=iDb; i<db->nDb; i++){
Db *pDb = &db->aDb[i];
temp1 = pDb->tblHash;
temp2 = pDb->trigHash;
sqlite3HashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
sqlite3HashClear(&pDb->aFKey);
sqlite3HashClear(&pDb->idxHash);
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
}
sqlite3HashClear(&temp2);
sqlite3HashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
sqlite3DeleteTable(db, pTab);
}
sqlite3HashClear(&temp1);
pDb->pSeqTab = 0;
DbClearProperty(db, i, DB_SchemaLoaded);
if( iDb>0 ) return;
}
assert( iDb==0 );
db->flags &= ~SQLITE_InternChanges;
/* If one or more of the auxiliary database files has been closed,
** then remove then from the auxiliary database list. We take the
** opportunity to do this here since we have just deleted all of the
** schema hash tables and therefore do not have to make any changes
** to any of those tables.
*/
for(i=0; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
pDb->pAux = 0;
}
}
for(i=j=2; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
sqliteFree(pDb->zName);
pDb->zName = 0;
continue;
}
if( j<i ){
db->aDb[j] = db->aDb[i];
}
j++;
}
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
db->nDb = j;
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
sqliteFree(db->aDb);
db->aDb = db->aDbStatic;
}
}
/*
** This routine is called whenever a rollback occurs. If there were
** schema changes during the transaction, then we have to reset the
** internal hash tables and reload them from disk.
*/
void sqlite3RollbackInternalChanges(sqlite3 *db){
if( db->flags & SQLITE_InternChanges ){
sqlite3ResetInternalSchema(db, 0);
}
}
/*
** This routine is called when a commit occurs.
*/
void sqlite3CommitInternalChanges(sqlite3 *db){
db->flags &= ~SQLITE_InternChanges;
}
/*
** Clear the column names from a table or view.
*/
static void sqliteResetColumnNames(Table *pTable){
int i;
Column *pCol;
assert( pTable!=0 );
if( (pCol = pTable->aCol)!=0 ){
for(i=0; i<pTable->nCol; i++, pCol++){
sqliteFree(pCol->zName);
sqlite3ExprDelete(pCol->pDflt);
sqliteFree(pCol->zType);
}
sqliteFree(pTable->aCol);
}
pTable->aCol = 0;
pTable->nCol = 0;
}
/*
** Remove the memory data structures associated with the given
** Table. No changes are made to disk by this routine.
**
** This routine just deletes the data structure. It does not unlink
** the table data structure from the hash table. Nor does it remove
** foreign keys from the sqlite.aFKey hash table. But it does destroy
** memory structures of the indices and foreign keys associated with
** the table.
**
** Indices associated with the table are unlinked from the "db"
** data structure if db!=NULL. If db==NULL, indices attached to
** the table are deleted, but it is assumed they have already been
** unlinked.
*/
void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
if( pTable==0 ) return;
/* Do not delete the table until the reference count reaches zero. */
pTable->nRef--;
if( pTable->nRef>0 ){
return;
}
assert( pTable->nRef==0 );
/* Delete all indices associated with this table
*/
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
pNext = pIndex->pNext;
assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
sqliteDeleteIndex(db, pIndex);
}
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Delete all foreign keys associated with this table. The keys
** should have already been unlinked from the db->aFKey hash table
*/
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
pNextFKey = pFKey->pNextFrom;
assert( pTable->iDb<db->nDb );
assert( sqlite3HashFind(&db->aDb[pTable->iDb].aFKey,
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
sqliteFree(pFKey);
}
#endif
/* Delete the Table structure itself.
*/
sqliteResetColumnNames(pTable);
sqliteFree(pTable->zName);
sqliteFree(pTable->zColAff);
sqlite3SelectDelete(pTable->pSelect);
sqliteFree(pTable);
}
/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
Table *p;
FKey *pF1, *pF2;
Db *pDb;
assert( db!=0 );
assert( iDb>=0 && iDb<db->nDb );
assert( zTabName && zTabName[0] );
pDb = &db->aDb[iDb];
p = sqlite3HashInsert(&pDb->tblHash, zTabName, strlen(zTabName)+1, 0);
if( p ){
#ifndef SQLITE_OMIT_FOREIGN_KEY
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
int nTo = strlen(pF1->zTo) + 1;
pF2 = sqlite3HashFind(&pDb->aFKey, pF1->zTo, nTo);
if( pF2==pF1 ){
sqlite3HashInsert(&pDb->aFKey, pF1->zTo, nTo, pF1->pNextTo);
}else{
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
if( pF2 ){
pF2->pNextTo = pF1->pNextTo;
}
}
}
#endif
sqlite3DeleteTable(db, p);
}
db->flags |= SQLITE_InternChanges;
}
/*
** Given a token, return a string that consists of the text of that
** token with any quotations removed. Space to hold the returned string
** is obtained from sqliteMalloc() and must be freed by the calling
** function.
**
** Tokens are often just pointers into the original SQL text and so
** are not \000 terminated and are not persistent. The returned string
** is \000 terminated and is persistent.
*/
char *sqlite3NameFromToken(Token *pName){
char *zName;
if( pName ){
zName = sqliteStrNDup(pName->z, pName->n);
sqlite3Dequote(zName);
}else{
zName = 0;
}
return zName;
}
/*
** Open the sqlite_master table stored in database number iDb for
** writing. The table is opened using cursor 0.
*/
void sqlite3OpenMasterTable(Vdbe *v, int iDb){
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
}
/*
** The token *pName contains the name of a database (either "main" or
** "temp" or the name of an attached db). This routine returns the
** index of the named database in db->aDb[], or -1 if the named db
** does not exist.
*/
int sqlite3FindDb(sqlite3 *db, Token *pName){
int i = -1; /* Database number */
int n; /* Number of characters in the name */
Db *pDb; /* A database whose name space is being searched */
char *zName; /* Name we are searching for */
zName = sqlite3NameFromToken(pName);
if( zName ){
n = strlen(zName);
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
0==sqlite3StrICmp(pDb->zName, zName) ){
break;
}
}
sqliteFree(zName);
}
return i;
}
/* The table or view or trigger name is passed to this routine via tokens
** pName1 and pName2. If the table name was fully qualified, for example:
**
** CREATE TABLE xxx.yyy (...);
**
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
** the table name is not fully qualified, i.e.:
**
** CREATE TABLE yyy(...);
**
** Then pName1 is set to "yyy" and pName2 is "".
**
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
** pName2) that stores the unqualified table name. The index of the
** database "xxx" is returned.
*/
int sqlite3TwoPartName(
Parse *pParse, /* Parsing and code generating context */
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
Token **pUnqual /* Write the unqualified object name here */
){
int iDb; /* Database holding the object */
sqlite3 *db = pParse->db;
if( pName2 && pName2->n>0 ){
assert( !db->init.busy );
*pUnqual = pName2;
iDb = sqlite3FindDb(db, pName1);
if( iDb<0 ){
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
pParse->nErr++;
return -1;
}
}else{
assert( db->init.iDb==0 || db->init.busy );
iDb = db->init.iDb;
*pUnqual = pName1;
}
return iDb;
}
/*
** This routine is used to check if the UTF-8 string zName is a legal
** unqualified name for a new schema object (table, index, view or
** trigger). All names are legal except those that begin with the string
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
** is reserved for internal use.
*/
int sqlite3CheckObjectName(Parse *pParse, const char *zName){
if( !pParse->db->init.busy && pParse->nested==0
&& (pParse->db->flags & SQLITE_WriteSchema)==0
&& 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
/*
** Begin constructing a new table representation in memory. This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement. In particular, this routine is called
** after seeing tokens "CREATE" and "TABLE" and the table name. The
** pStart token is the CREATE and pName is the table name. The isTemp
** flag is true if the table should be stored in the auxiliary database
** file instead of in the main database file. This is normally the case
** when the "TEMP" or "TEMPORARY" keyword occurs in between
** CREATE and TABLE.
**
** The new table record is initialized and put in pParse->pNewTable.
** As more of the CREATE TABLE statement is parsed, additional action
** routines will be called to add more information to this record.
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
** is called to complete the construction of the new table record.
*/
void sqlite3StartTable(
Parse *pParse, /* Parser context */
Token *pStart, /* The "CREATE" token */
Token *pName1, /* First part of the name of the table or view */
Token *pName2, /* Second part of the name of the table or view */
int isTemp, /* True if this is a TEMP table */
int isView /* True if this is a VIEW */
){
Table *pTable;
char *zName = 0; /* The name of the new table */
sqlite3 *db = pParse->db;
Vdbe *v;
int iDb; /* Database number to create the table in */
Token *pName; /* Unqualified name of the table to create */
/* The table or view name to create is passed to this routine via tokens
** pName1 and pName2. If the table name was fully qualified, for example:
**
** CREATE TABLE xxx.yyy (...);
**
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
** the table name is not fully qualified, i.e.:
**
** CREATE TABLE yyy(...);
**
** Then pName1 is set to "yyy" and pName2 is "".
**
** The call below sets the pName pointer to point at the token (pName1 or
** pName2) that stores the unqualified table name. The variable iDb is
** set to the index of the database that the table or view is to be
** created in.
*/
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if( iDb<0 ) return;
if( !OMIT_TEMPDB && isTemp && iDb>1 ){
/* If creating a temp table, the name may not be qualified */
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
return;
}
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
pParse->sNameToken = *pName;
zName = sqlite3NameFromToken(pName);
if( zName==0 ) return;
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
goto begin_table_error;
}
if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
assert( (isTemp & 1)==isTemp );
{
int code;
char *zDb = db->aDb[iDb].zName;
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
goto begin_table_error;
}
if( isView ){
if( !OMIT_TEMPDB && isTemp ){
code = SQLITE_CREATE_TEMP_VIEW;
}else{
code = SQLITE_CREATE_VIEW;
}
}else{
if( !OMIT_TEMPDB && isTemp ){
code = SQLITE_CREATE_TEMP_TABLE;
}else{
code = SQLITE_CREATE_TABLE;
}
}
if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
goto begin_table_error;
}
}
#endif
/* Make sure the new table name does not collide with an existing
** index or table name in the same database. Issue an error message if
** it does.
*/
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
goto begin_table_error;
}
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
if( pTable ){
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
goto begin_table_error;
}
if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
goto begin_table_error;
}
pTable = sqliteMalloc( sizeof(Table) );
if( pTable==0 ){
pParse->rc = SQLITE_NOMEM;
pParse->nErr++;
goto begin_table_error;
}
pTable->zName = zName;
pTable->nCol = 0;
pTable->aCol = 0;
pTable->iPKey = -1;
pTable->pIndex = 0;
pTable->iDb = iDb;
pTable->nRef = 1;
if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
pParse->pNewTable = pTable;
/* If this is the magic sqlite_sequence table used by autoincrement,
** then record a pointer to this table in the main database structure
** so that INSERT can find the table easily.
*/
#ifndef SQLITE_OMIT_AUTOINCREMENT
if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
db->aDb[iDb].pSeqTab = pTable;
}
#endif
/* Begin generating the code that will insert the table record into
** the SQLITE_MASTER table. Note in particular that we must go ahead
** and allocate the record number for the table entry now. Before any
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
** indices to be created and the table record must come before the
** indices. Hence, the record number for the table must be allocated
** now.
*/
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
int lbl;
sqlite3BeginWriteOperation(pParse, 0, iDb);
/* If the file format and encoding in the database have not been set,
** set them now.
*/
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */
lbl = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp(v, OP_If, 0, lbl);
sqlite3VdbeAddOp(v, OP_Integer, db->file_format, 0);
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
sqlite3VdbeAddOp(v, OP_Integer, db->enc, 0);
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
sqlite3VdbeResolveLabel(v, lbl);
/* This just creates a place-holder record in the sqlite_master table.
** The record created does not contain anything yet. It will be replaced
** by the real entry in code generated at sqlite3EndTable().
**
** The rowid for the new entry is left on the top of the stack.
** The rowid value is needed by the code that sqlite3EndTable will
** generate.
*/
#ifndef SQLITE_OMIT_VIEW
if( isView ){
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
}else
#endif
{
sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
}
sqlite3OpenMasterTable(v, iDb);
sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
sqlite3VdbeAddOp(v, OP_Insert, 0, 0);
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
}
/* Normal (non-error) return. */
return;
/* If an error occurs, we jump here */
begin_table_error:
sqliteFree(zName);
return;
}
/*
** This macro is used to compare two strings in a case-insensitive manner.
** It is slightly faster than calling sqlite3StrICmp() directly, but
** produces larger code.
**
** WARNING: This macro is not compatible with the strcmp() family. It
** returns true if the two strings are equal, otherwise false.
*/
#define STRICMP(x, y) (\
sqlite3UpperToLower[*(unsigned char *)(x)]== \
sqlite3UpperToLower[*(unsigned char *)(y)] \
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement. sqlite3StartTable() gets called
** first to get things going. Then this routine is called for each
** column.
*/
void sqlite3AddColumn(Parse *pParse, Token *pName){
Table *p;
int i;
char *z;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
z = sqlite3NameFromToken(pName);
if( z==0 ) return;
for(i=0; i<p->nCol; i++){
if( STRICMP(z, p->aCol[i].zName) ){
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
sqliteFree(z);
return;
}
}
if( (p->nCol & 0x7)==0 ){
Column *aNew;
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
if( aNew==0 ){
sqliteFree(z);
return;
}
p->aCol = aNew;
}
pCol = &p->aCol[p->nCol];
memset(pCol, 0, sizeof(p->aCol[0]));
pCol->zName = z;
/* If there is no type specified, columns have the default affinity
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
** be called next to set pCol->affinity correctly.
*/
pCol->affinity = SQLITE_AFF_NONE;
pCol->pColl = pParse->db->pDfltColl;
p->nCol++;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
** been seen on a column. This routine sets the notNull flag on
** the column currently under construction.
*/
void sqlite3AddNotNull(Parse *pParse, int onError){
Table *p;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i>=0 ) p->aCol[i].notNull = onError;
}
/*
** Scan the column type name zType (length nType) and return the
** associated affinity type.
**
** This routine does a case-independent search of zType for the
** substrings in the following table. If one of the substrings is
** found, the corresponding affinity is returned. If zType contains
** more than one of the substrings, entries toward the top of
** the table take priority. For example, if zType is 'BLOBINT',
** SQLITE_AFF_INTEGER is returned.
**
** Substring | Affinity
** --------------------------------
** 'INT' | SQLITE_AFF_INTEGER
** 'CHAR' | SQLITE_AFF_TEXT
** 'CLOB' | SQLITE_AFF_TEXT
** 'TEXT' | SQLITE_AFF_TEXT
** 'BLOB' | SQLITE_AFF_NONE
**
** If none of the substrings in the above table are found,
** SQLITE_AFF_NUMERIC is returned.
*/
char sqlite3AffinityType(const Token *pType){
u32 h = 0;
char aff = SQLITE_AFF_NUMERIC;
const unsigned char *zIn = pType->z;
const unsigned char *zEnd = &pType->z[pType->n];
while( zIn!=zEnd ){
h = (h<<8) + sqlite3UpperToLower[*zIn];
zIn++;
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
aff = SQLITE_AFF_TEXT;
}else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
aff = SQLITE_AFF_TEXT;
}else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
aff = SQLITE_AFF_TEXT;
}else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
&& aff==SQLITE_AFF_NUMERIC ){
aff = SQLITE_AFF_NONE;
}else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
aff = SQLITE_AFF_INTEGER;
break;
}
}
return aff;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. The pFirst token is the first
** token in the sequence of tokens that describe the type of the
** column currently under construction. pLast is the last token
** in the sequence. Use this information to construct a string
** that contains the typename of the column and store that string
** in zType.
*/
void sqlite3AddColumnType(Parse *pParse, Token *pType){
Table *p;
int i;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pCol = &p->aCol[i];
sqliteFree(pCol->zType);
pCol->zType = sqlite3NameFromToken(pType);
pCol->affinity = sqlite3AffinityType(pType);
}
/*
** The expression is the default value for the most recently added column
** of the table currently under construction.
**
** Default value expressions must be constant. Raise an exception if this
** is not the case.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
Table *p;
Column *pCol;
if( (p = pParse->pNewTable)!=0 ){
pCol = &(p->aCol[p->nCol-1]);
if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
pCol->zName);
}else{
sqlite3ExprDelete(pCol->pDflt);
pCol->pDflt = sqlite3ExprDup(pExpr);
}
}
sqlite3ExprDelete(pExpr);
}
/*
** Designate the PRIMARY KEY for the table. pList is a list of names
** of columns that form the primary key. If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key. If the table already has
** a primary key (and this is the second primary key) then create an
** error.
**
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
** then we will try to use that column as the rowid. Set the Table.iPKey
** field of the table under construction to be the index of the
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
** no INTEGER PRIMARY KEY.
**
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key. No index is created for INTEGER PRIMARY KEYs.
*/
void sqlite3AddPrimaryKey(
Parse *pParse, /* Parsing context */
ExprList *pList, /* List of field names to be indexed */
int onError, /* What to do with a uniqueness conflict */
int autoInc /* True if the AUTOINCREMENT keyword is present */
){
Table *pTab = pParse->pNewTable;
char *zType = 0;
int iCol = -1, i;
if( pTab==0 ) goto primary_key_exit;
if( pTab->hasPrimKey ){
sqlite3ErrorMsg(pParse,
"table \"%s\" has more than one primary key", pTab->zName);
goto primary_key_exit;
}
pTab->hasPrimKey = 1;
if( pList==0 ){
iCol = pTab->nCol - 1;
pTab->aCol[iCol].isPrimKey = 1;
}else{
for(i=0; i<pList->nExpr; i++){
for(iCol=0; iCol<pTab->nCol; iCol++){
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
break;
}
}
if( iCol<pTab->nCol ){
pTab->aCol[iCol].isPrimKey = 1;
}
}
if( pList->nExpr>1 ) iCol = -1;
}
if( iCol>=0 && iCol<pTab->nCol ){
zType = pTab->aCol[iCol].zType;
}
if( zType && sqlite3StrICmp(zType, "INTEGER")==0 ){
pTab->iPKey = iCol;
pTab->keyConf = onError;
pTab->autoInc = autoInc;
}else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
"INTEGER PRIMARY KEY");
#endif
}else{
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0);
pList = 0;
}
primary_key_exit:
sqlite3ExprListDelete(pList);
return;
}
/*
** Set the collation function of the most recently parsed table column
** to the CollSeq given.
*/
void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
Table *p;
Index *pIdx;
CollSeq *pColl;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
pColl = sqlite3LocateCollSeq(pParse, zType, nType);
p->aCol[i].pColl = pColl;
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
** then an index may have been created on this column before the
** collation type was added. Correct this if it is the case.
*/
for(pIdx = p->pIndex; pIdx; pIdx=pIdx->pNext){
assert( pIdx->nColumn==1 );
if( pIdx->aiColumn[0]==i ) pIdx->keyInfo.aColl[0] = pColl;
}
}
/*
** Call sqlite3CheckCollSeq() for all collating sequences in an index,
** in order to verify that all the necessary collating sequences are
** loaded.
*/
int sqlite3CheckIndexCollSeq(Parse *pParse, Index *pIdx){
if( pIdx ){
int i;
for(i=0; i<pIdx->nColumn; i++){
if( sqlite3CheckCollSeq(pParse, pIdx->keyInfo.aColl[i]) ){
return SQLITE_ERROR;
}
}
}
return SQLITE_OK;
}
/*
** This function returns the collation sequence for database native text
** encoding identified by the string zName, length nName.
**
** If the requested collation sequence is not available, or not available
** in the database native encoding, the collation factory is invoked to
** request it. If the collation factory does not supply such a sequence,
** and the sequence is available in another text encoding, then that is
** returned instead.
**
** If no versions of the requested collations sequence are available, or
** another error occurs, NULL is returned and an error message written into
** pParse.
*/
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
sqlite3 *db = pParse->db;
u8 enc = db->enc;
u8 initbusy = db->init.busy;
CollSeq *pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
if( !initbusy && (!pColl || !pColl->xCmp) ){
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
if( !pColl ){
if( nName<0 ){
nName = strlen(zName);
}
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
pColl = 0;
}
}
return pColl;
}
/*
** Generate code that will increment the schema cookie.
**
** The schema cookie is used to determine when the schema for the
** database changes. After each schema change, the cookie value
** changes. When a process first reads the schema it records the
** cookie. Thereafter, whenever it goes to access the database,
** it checks the cookie to make sure the schema has not changed
** since it was last read.
**
** This plan is not completely bullet-proof. It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value. But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32. So we're safe enough.
*/
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].schema_cookie+1, 0);
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
}
/*
** Measure the number of characters needed to output the given
** identifier. The number returned includes any quotes used
** but does not include the null terminator.
**
** The estimate is conservative. It might be larger that what is
** really needed.
*/
static int identLength(const char *z){
int n;
for(n=0; *z; n++, z++){
if( *z=='"' ){ n++; }
}
return n + 2;
}
/*
** Write an identifier onto the end of the given string. Add
** quote characters as needed.
*/
static void identPut(char *z, int *pIdx, char *zSignedIdent){
unsigned char *zIdent = (unsigned char*)zSignedIdent;
int i, j, needQuote;
i = *pIdx;
for(j=0; zIdent[j]; j++){
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
}
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|| sqlite3KeywordCode(zIdent, j)!=TK_ID;
if( needQuote ) z[i++] = '"';
for(j=0; zIdent[j]; j++){
z[i++] = zIdent[j];
if( zIdent[j]=='"' ) z[i++] = '"';
}
if( needQuote ) z[i++] = '"';
z[i] = 0;
*pIdx = i;
}
/*
** Generate a CREATE TABLE statement appropriate for the given
** table. Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p){
int i, k, n;
char *zStmt;
char *zSep, *zSep2, *zEnd, *z;
Column *pCol;
n = 0;
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
n += identLength(pCol->zName);
z = pCol->zType;
if( z ){
n += (strlen(z) + 1);
}
}
n += identLength(p->zName);
if( n<50 ){
zSep = "";
zSep2 = ",";
zEnd = ")";
}else{
zSep = "\n ";
zSep2 = ",\n ";
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
zStmt = sqliteMallocRaw( n );
if( zStmt==0 ) return 0;
strcpy(zStmt, !OMIT_TEMPDB&&p->iDb==1 ? "CREATE TEMP TABLE ":"CREATE TABLE ");
k = strlen(zStmt);
identPut(zStmt, &k, p->zName);
zStmt[k++] = '(';
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
strcpy(&zStmt[k], zSep);
k += strlen(&zStmt[k]);
zSep = zSep2;
identPut(zStmt, &k, pCol->zName);
if( (z = pCol->zType)!=0 ){
zStmt[k++] = ' ';
strcpy(&zStmt[k], z);
k += strlen(z);
}
}
strcpy(&zStmt[k], zEnd);
return zStmt;
}
/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
** occurred.
**
** An entry for the table is made in the master table on disk, unless
** this is a temporary table or db->init.busy==1. When db->init.busy==1
** it means we are reading the sqlite_master table because we just
** connected to the database or because the sqlite_master table has
** recently changed, so the entry for this table already exists in
** the sqlite_master table. We do not want to create it again.
**
** If the pSelect argument is not NULL, it means that this routine
** was called to create a table generated from a
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
** the new table will match the result set of the SELECT.
*/
void sqlite3EndTable(
Parse *pParse, /* Parse context */
Token *pCons, /* The ',' token after the last column defn. */
Token *pEnd, /* The final ')' token in the CREATE TABLE */
Select *pSelect /* Select from a "CREATE ... AS SELECT" */
){
Table *p;
sqlite3 *db = pParse->db;
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3_malloc_failed ) return;
p = pParse->pNewTable;
if( p==0 ) return;
assert( !db->init.busy || !pSelect );
/* If the db->init.busy is 1 it means we are reading the SQL off the
** "sqlite_master" or "sqlite_temp_master" table on the disk.
** So do not write to the disk again. Extract the root page number
** for the table from the db->init.newTnum field. (The page number
** should have been put there by the sqliteOpenCb routine.)
*/
if( db->init.busy ){
p->tnum = db->init.newTnum;
}
/* If not initializing, then create a record for the new table
** in the SQLITE_MASTER table of the database. The record number
** for the new table entry should already be on the stack.
**
** If this is a TEMPORARY table, write the entry into the auxiliary
** file instead of into the main database file.
*/
if( !db->init.busy ){
int n;
Vdbe *v;
char *zType; /* "view" or "table" */
char *zType2; /* "VIEW" or "TABLE" */
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
/* Create the rootpage for the new table and push it onto the stack.
** A view has no rootpage, so just push a zero onto the stack for
** views. Initialize zType at the same time.
*/
if( p->pSelect==0 ){
/* A regular table */
zType = "table";
zType2 = "TABLE";
#ifndef SQLITE_OMIT_VIEW
}else{
/* A view */
zType = "view";
zType2 = "VIEW";
#endif
}
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
** statement to populate the new table. The root-page number for the
** new table is on the top of the vdbe stack.
**
** Once the SELECT has been coded by sqlite3Select(), it is in a
** suitable state to query for the column names and types to be used
** by the new table.
*/
if( pSelect ){
Table *pSelTab;
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
sqlite3VdbeAddOp(v, OP_Integer, p->iDb, 0);
sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
pParse->nTab = 2;
sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
sqlite3VdbeAddOp(v, OP_Close, 1, 0);
if( pParse->nErr==0 ){
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
if( pSelTab==0 ) return;
assert( p->aCol==0 );
p->nCol = pSelTab->nCol;
p->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqlite3DeleteTable(0, pSelTab);
}
}
/* Compute the complete text of the CREATE statement */
if( pSelect ){
zStmt = createTableStmt(p);
}else{
n = pEnd->z - pParse->sNameToken.z + 1;
zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
}
/* A slot for the record has already been allocated in the
** SQLITE_MASTER table. We just need to update that slot with all
** the information we've collected. The rowid for the preallocated
** slot is the 2nd item on the stack. The top of the stack is the
** root page for the new table (or a 0 if this is a view).
*/
sqlite3NestedParse(pParse,
"UPDATE %Q.%s "
"SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
"WHERE rowid=#1",
db->aDb[p->iDb].zName, SCHEMA_TABLE(p->iDb),
zType,
p->zName,
p->zName,
zStmt
);
sqliteFree(zStmt);
sqlite3ChangeCookie(db, v, p->iDb);
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Check to see if we need to create an sqlite_sequence table for
** keeping track of autoincrement keys.
*/
if( p->autoInc ){
Db *pDb = &db->aDb[p->iDb];
if( pDb->pSeqTab==0 ){
sqlite3NestedParse(pParse,
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
pDb->zName
);
}
}
#endif
/* Reparse everything to update our internal data structures */
sqlite3VdbeOp3(v, OP_ParseSchema, p->iDb, 0,
sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
}
/* Add the table to the in-memory representation of the database.
*/
if( db->init.busy && pParse->nErr==0 ){
Table *pOld;
FKey *pFKey;
Db *pDb = &db->aDb[p->iDb];
pOld = sqlite3HashInsert(&pDb->tblHash, p->zName, strlen(p->zName)+1, p);
if( pOld ){
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
return;
}
#ifndef SQLITE_OMIT_FOREIGN_KEY
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
int nTo = strlen(pFKey->zTo) + 1;
pFKey->pNextTo = sqlite3HashFind(&pDb->aFKey, pFKey->zTo, nTo);
sqlite3HashInsert(&pDb->aFKey, pFKey->zTo, nTo, pFKey);
}
#endif
pParse->pNewTable = 0;
db->nTable++;
db->flags |= SQLITE_InternChanges;
#ifndef SQLITE_OMIT_ALTERTABLE
if( !p->pSelect ){
assert( !pSelect && pCons && pEnd );
if( pCons->z==0 ) pCons = pEnd;
p->addColOffset = 13 + (pCons->z - pParse->sNameToken.z);
}
#endif
}
}
#ifndef SQLITE_OMIT_VIEW
/*
** The parser calls this routine in order to create a new VIEW
*/
void sqlite3CreateView(
Parse *pParse, /* The parsing context */
Token *pBegin, /* The CREATE token that begins the statement */
Token *pName1, /* The token that holds the name of the view */
Token *pName2, /* The token that holds the name of the view */
Select *pSelect, /* A SELECT statement that will become the new view */
int isTemp /* TRUE for a TEMPORARY view */
){
Table *p;
int n;
const unsigned char *z;
Token sEnd;
DbFixer sFix;
Token *pName;
if( pParse->nVar>0 ){
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
sqlite3SelectDelete(pSelect);
return;
}
sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1);
p = pParse->pNewTable;
if( p==0 || pParse->nErr ){
sqlite3SelectDelete(pSelect);
return;
}
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if( sqlite3FixInit(&sFix, pParse, p->iDb, "view", pName)
&& sqlite3FixSelect(&sFix, pSelect)
){
sqlite3SelectDelete(pSelect);
return;
}
/* Make a copy of the entire SELECT statement that defines the view.
** This will force all the Expr.token.z values to be dynamically
** allocated rather than point to the input string - which means that
** they will persist after the current sqlite3_exec() call returns.
*/
p->pSelect = sqlite3SelectDup(pSelect);
sqlite3SelectDelete(pSelect);
if( !pParse->db->init.busy ){
sqlite3ViewGetColumnNames(pParse, p);
}
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
** the end.
*/
sEnd = pParse->sLastToken;
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
sEnd.z += sEnd.n;
}
sEnd.n = 0;
n = sEnd.z - pBegin->z;
z = (const unsigned char*)pBegin->z;
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
sEnd.z = &z[n-1];
sEnd.n = 1;
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
sqlite3EndTable(pParse, 0, &sEnd, 0);
return;
}
#endif /* SQLITE_OMIT_VIEW */
#ifndef SQLITE_OMIT_VIEW
/*
** The Table structure pTable is really a VIEW. Fill in the names of
** the columns of the view in the pTable structure. Return the number
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
*/
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
Table *pSelTab; /* A fake table from which we get the result set */
Select *pSel; /* Copy of the SELECT that implements the view */
int nErr = 0; /* Number of errors encountered */
int n; /* Temporarily holds the number of cursors assigned */
assert( pTable );
/* A positive nCol means the columns names for this view are
** already known.
*/
if( pTable->nCol>0 ) return 0;
/* A negative nCol is a special marker meaning that we are currently
** trying to compute the column names. If we enter this routine with
** a negative nCol, it means two or more views form a loop, like this:
**
** CREATE VIEW one AS SELECT * FROM two;
** CREATE VIEW two AS SELECT * FROM one;
**
** Actually, this error is caught previously and so the following test
** should always fail. But we will leave it in place just to be safe.
*/
#if 0
if( pTable->nCol<0 ){
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
return 1;
}
#endif
assert( pTable->nCol>=0 );
/* If we get this far, it means we need to compute the table names.
** Note that the call to sqlite3ResultSetOfSelect() will expand any
** "*" elements in the results set of the view and will assign cursors
** to the elements of the FROM clause. But we do not want these changes
** to be permanent. So the computation is done on a copy of the SELECT
** statement that defines the view.
*/
assert( pTable->pSelect );
pSel = sqlite3SelectDup(pTable->pSelect);
n = pParse->nTab;
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
pTable->nCol = -1;
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
pParse->nTab = n;
if( pSelTab ){
assert( pTable->aCol==0 );
pTable->nCol = pSelTab->nCol;
pTable->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqlite3DeleteTable(0, pSelTab);
DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
}else{
pTable->nCol = 0;
nErr++;
}
sqlite3SelectDelete(pSel);
return nErr;
}
#endif /* SQLITE_OMIT_VIEW */
#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite3 *db, int idx){
HashElem *i;
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
Table *pTab = sqliteHashData(i);
if( pTab->pSelect ){
sqliteResetColumnNames(pTab);
}
}
DbClearProperty(db, idx, DB_UnresetViews);
}
#else
# define sqliteViewResetAll(A,B)
#endif /* SQLITE_OMIT_VIEW */
/*
** This function is called by the VDBE to adjust the internal schema
** used by SQLite when the btree layer moves a table root page. The
** root-page of a table or index in database iDb has changed from iFrom
** to iTo.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
HashElem *pElem;
for(pElem=sqliteHashFirst(&pDb->tblHash); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
if( pTab->tnum==iFrom ){
pTab->tnum = iTo;
return;
}
}
for(pElem=sqliteHashFirst(&pDb->idxHash); pElem; pElem=sqliteHashNext(pElem)){
Index *pIdx = sqliteHashData(pElem);
if( pIdx->tnum==iFrom ){
pIdx->tnum = iTo;
return;
}
}
assert(0);
}
#endif
/*
** Write code to erase the table with root-page iTable from database iDb.
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* OP_Destroy pushes an integer onto the stack. If this integer
** is non-zero, then it is the root page number of a table moved to
** location iTable. The following code modifies the sqlite_master table to
** reflect this.
**
** The "#0" in the SQL is a special constant that means whatever value
** is on the top of the stack. See sqlite3RegisterExpr().
*/
sqlite3NestedParse(pParse,
"UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
#endif
}
/*
** Write VDBE code to erase table pTab and all associated indices on disk.
** Code to update the sqlite_master tables and internal schema definitions
** in case a root-page belonging to another table is moved by the btree layer
** is also added (this can happen with an auto-vacuum database).
*/
static void destroyTable(Parse *pParse, Table *pTab){
#ifdef SQLITE_OMIT_AUTOVACUUM
Index *pIdx;
destroyRootPage(pParse, pTab->tnum, pTab->iDb);
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
destroyRootPage(pParse, pIdx->tnum, pIdx->iDb);
}
#else
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
** is not defined), then it is important to call OP_Destroy on the
** table and index root-pages in order, starting with the numerically
** largest root-page number. This guarantees that none of the root-pages
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
** following were coded:
**
** OP_Destroy 4 0
** ...
** OP_Destroy 5 0
**
** and root page 5 happened to be the largest root-page number in the
** database, then root page 5 would be moved to page 4 by the
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
** a free-list page.
*/
int iTab = pTab->tnum;
int iDestroyed = 0;
while( 1 ){
Index *pIdx;
int iLargest = 0;
if( iDestroyed==0 || iTab<iDestroyed ){
iLargest = iTab;
}
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int iIdx = pIdx->tnum;
assert( pIdx->iDb==pTab->iDb );
if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
iLargest = iIdx;
}
}
if( iLargest==0 ) return;
destroyRootPage(pParse, iLargest, pTab->iDb);
iDestroyed = iLargest;
}
#endif
}
/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView){
Table *pTab;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
if( pParse->nErr || sqlite3_malloc_failed ) goto exit_drop_table;
assert( pName->nSrc==1 );
pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
if( pTab==0 ) goto exit_drop_table;
iDb = pTab->iDb;
assert( iDb>=0 && iDb<db->nDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code;
const char *zTab = SCHEMA_TABLE(pTab->iDb);
const char *zDb = db->aDb[pTab->iDb].zName;
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
goto exit_drop_table;
}
if( isView ){
if( !OMIT_TEMPDB && iDb==1 ){
code = SQLITE_DROP_TEMP_VIEW;
}else{
code = SQLITE_DROP_VIEW;
}
}else{
if( !OMIT_TEMPDB && iDb==1 ){
code = SQLITE_DROP_TEMP_TABLE;
}else{
code = SQLITE_DROP_TABLE;
}
}
if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){
goto exit_drop_table;
}
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
goto exit_drop_table;
}
}
#endif
if( pTab->readOnly || pTab==db->aDb[iDb].pSeqTab ){
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
goto exit_drop_table;
}
#ifndef SQLITE_OMIT_VIEW
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
** on a table.
*/
if( isView && pTab->pSelect==0 ){
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
goto exit_drop_table;
}
if( !isView && pTab->pSelect ){
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
goto exit_drop_table;
}
#endif
/* Generate code to remove the table from the master table
** on disk.
*/
v = sqlite3GetVdbe(pParse);
if( v ){
Trigger *pTrigger;
int iDb = pTab->iDb;
Db *pDb = &db->aDb[iDb];
sqlite3BeginWriteOperation(pParse, 0, iDb);
/* Drop all triggers associated with the table being dropped. Code
** is generated to remove entries from sqlite_master and/or
** sqlite_temp_master if required.
*/
pTrigger = pTab->pTrigger;
while( pTrigger ){
assert( pTrigger->iDb==iDb || pTrigger->iDb==1 );
sqlite3DropTriggerPtr(pParse, pTrigger, 1);
pTrigger = pTrigger->pNext;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Remove any entries of the sqlite_sequence table associated with
** the table being dropped. This is done before the table is dropped
** at the btree level, in case the sqlite_sequence table needs to
** move as a result of the drop (can happen in auto-vacuum mode).
*/
if( pTab->autoInc ){
sqlite3NestedParse(pParse,
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
pDb->zName, pTab->zName
);
}
#endif
/* Drop all SQLITE_MASTER table and index entries that refer to the
** table. The program name loops through the master table and deletes
** every row that refers to a table of the same name as the one being
** dropped. Triggers are handled seperately because a trigger can be
** created in the temp database that refers to a table in another
** database.
*/
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
if( !isView ){
destroyTable(pParse, pTab);
}
/* Remove the table entry from SQLite's internal schema and modify
** the schema cookie.
*/
sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
sqlite3ChangeCookie(db, v, iDb);
}
sqliteViewResetAll(db, iDb);
exit_drop_table:
sqlite3SrcListDelete(pName);
}
/*
** This routine is called to create a new foreign key on the table
** currently under construction. pFromCol determines which columns
** in the current table point to the foreign key. If pFromCol==0 then
** connect the key to the last column inserted. pTo is the name of
** the table referred to. pToCol is a list of tables in the other
** pTo table that the foreign key points to. flags contains all
** information about the conflict resolution algorithms specified
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
** under construction in the pParse->pNewTable field. The new FKey
** is not linked into db->aFKey at this point - that does not happen
** until sqlite3EndTable().
**
** The foreign key is set for IMMEDIATE processing. A subsequent call
** to sqlite3DeferForeignKey() might change this to DEFERRED.
*/
void sqlite3CreateForeignKey(
Parse *pParse, /* Parsing context */
ExprList *pFromCol, /* Columns in this table that point to other table */
Token *pTo, /* Name of the other table */
ExprList *pToCol, /* Columns in the other table */
int flags /* Conflict resolution algorithms. */
){
#ifndef SQLITE_OMIT_FOREIGN_KEY
FKey *pFKey = 0;
Table *p = pParse->pNewTable;
int nByte;
int i;
int nCol;
char *z;
assert( pTo!=0 );
if( p==0 || pParse->nErr ) goto fk_end;
if( pFromCol==0 ){
int iCol = p->nCol-1;
if( iCol<0 ) goto fk_end;
if( pToCol && pToCol->nExpr!=1 ){
sqlite3ErrorMsg(pParse, "foreign key on %s"
" should reference only one column of table %T",
p->aCol[iCol].zName, pTo);
goto fk_end;
}
nCol = 1;
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
sqlite3ErrorMsg(pParse,
"number of columns in foreign key does not match the number of "
"columns in the referenced table");
goto fk_end;
}else{
nCol = pFromCol->nExpr;
}
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
if( pToCol ){
for(i=0; i<pToCol->nExpr; i++){
nByte += strlen(pToCol->a[i].zName) + 1;
}
}
pFKey = sqliteMalloc( nByte );
if( pFKey==0 ) goto fk_end;
pFKey->pFrom = p;
pFKey->pNextFrom = p->pFKey;
z = (char*)&pFKey[1];
pFKey->aCol = (struct sColMap*)z;
z += sizeof(struct sColMap)*nCol;
pFKey->zTo = z;
memcpy(z, pTo->z, pTo->n);
z[pTo->n] = 0;
z += pTo->n+1;
pFKey->pNextTo = 0;
pFKey->nCol = nCol;
if( pFromCol==0 ){
pFKey->aCol[0].iFrom = p->nCol-1;
}else{
for(i=0; i<nCol; i++){
int j;
for(j=0; j<p->nCol; j++){
if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
pFKey->aCol[i].iFrom = j;
break;
}
}
if( j>=p->nCol ){
sqlite3ErrorMsg(pParse,
"unknown column \"%s\" in foreign key definition",
pFromCol->a[i].zName);
goto fk_end;
}
}
}
if( pToCol ){
for(i=0; i<nCol; i++){
int n = strlen(pToCol->a[i].zName);
pFKey->aCol[i].zCol = z;
memcpy(z, pToCol->a[i].zName, n);
z[n] = 0;
z += n+1;
}
}
pFKey->isDeferred = 0;
pFKey->deleteConf = flags & 0xff;
pFKey->updateConf = (flags >> 8 ) & 0xff;
pFKey->insertConf = (flags >> 16 ) & 0xff;
/* Link the foreign key to the table as the last step.
*/
p->pFKey = pFKey;
pFKey = 0;
fk_end:
sqliteFree(pFKey);
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
sqlite3ExprListDelete(pFromCol);
sqlite3ExprListDelete(pToCol);
}
/*
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
** clause is seen as part of a foreign key definition. The isDeferred
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
#ifndef SQLITE_OMIT_FOREIGN_KEY
Table *pTab;
FKey *pFKey;
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
pFKey->isDeferred = isDeferred;
#endif
}
/*
** Generate code that will erase and refill index *pIdx. This is
** used to initialize a newly created index or to recompute the
** content of an index in response to a REINDEX command.
**
** if memRootPage is not negative, it means that the index is newly
** created. The memory cell specified by memRootPage contains the
** root page number of the index. If memRootPage is negative, then
** the index already exists and must be cleared before being refilled and
** the root page number of the index is taken from pIndex->tnum.
*/
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
Table *pTab = pIndex->pTable; /* The table that is indexed */
int iTab = pParse->nTab; /* Btree cursor used for pTab */
int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
int addr1; /* Address of top of loop */
int tnum; /* Root page of index */
Vdbe *v; /* Generate code into this virtual machine */
#ifndef SQLITE_OMIT_AUTHORIZATION
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
pParse->db->aDb[pIndex->iDb].zName ) ){
return;
}
#endif
/* Ensure all the required collation sequences are available. This
** routine will invoke the collation-needed callback if necessary (and
** if one has been registered).
*/
if( sqlite3CheckIndexCollSeq(pParse, pIndex) ){
return;
}
v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
if( memRootPage>=0 ){
sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
tnum = 0;
}else{
tnum = pIndex->tnum;
sqlite3VdbeAddOp(v, OP_Clear, tnum, pIndex->iDb);
}
sqlite3VdbeAddOp(v, OP_Integer, pIndex->iDb, 0);
sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum,
(char*)&pIndex->keyInfo, P3_KEYINFO);
sqlite3OpenTableForReading(v, iTab, pTab);
addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
sqlite3GenerateIndexKey(v, pIndex, iTab);
if( pIndex->onError!=OE_None ){
int curaddr = sqlite3VdbeCurrentAddr(v);
int addr2 = curaddr+4;
sqlite3VdbeChangeP2(v, curaddr-1, addr2);
sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
"indexed columns are not unique", P3_STATIC);
assert( addr2==sqlite3VdbeCurrentAddr(v) );
}
sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
}
/*
** Create a new index for an SQL table. pName1.pName2 is the name of the index
** and pTblList is the name of the table that is to be indexed. Both will
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed. pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
**
** pList is a list of columns to be indexed. pList will be NULL if this
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.
*/
void sqlite3CreateIndex(
Parse *pParse, /* All information about this parse */
Token *pName1, /* First part of index name. May be NULL */
Token *pName2, /* Second part of index name. May be NULL */
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
ExprList *pList, /* A list of columns to be indexed */
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
Token *pEnd /* The ")" that closes the CREATE INDEX statement */
){
Table *pTab = 0; /* Table to be indexed */
Index *pIndex = 0; /* The index to be created */
char *zName = 0;
int i, j;
Token nullId; /* Fake token for an empty ID list */
DbFixer sFix; /* For assigning database names to pTable */
sqlite3 *db = pParse->db;
int iDb; /* Index of the database that is being written */
Token *pName = 0; /* Unqualified name of the index to create */
if( pParse->nErr || sqlite3_malloc_failed ) goto exit_create_index;
/*
** Find the table that is to be indexed. Return early if not found.
*/
if( pTblName!=0 ){
/* Use the two-part index name to determine the database
** to search for the table. 'Fix' the table name to this db
** before looking up the table.
*/
assert( pName1 && pName2 );
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if( iDb<0 ) goto exit_create_index;
#ifndef SQLITE_OMIT_TEMPDB
/* If the index name was unqualified, check if the the table
** is a temp table. If so, set the database to 1.
*/
pTab = sqlite3SrcListLookup(pParse, pTblName);
if( pName2 && pName2->n==0 && pTab && pTab->iDb==1 ){
iDb = 1;
}
#endif
if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
sqlite3FixSrcList(&sFix, pTblName)
){
/* Because the parser constructs pTblName from a single identifier,
** sqlite3FixSrcList can never fail. */
assert(0);
}
pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
pTblName->a[0].zDatabase);
if( !pTab ) goto exit_create_index;
assert( iDb==pTab->iDb );
}else{
assert( pName==0 );
pTab = pParse->pNewTable;
iDb = pTab->iDb;
}
if( pTab==0 || pParse->nErr ) goto exit_create_index;
if( pTab->readOnly ){
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
goto exit_create_index;
}
#ifndef SQLITE_OMIT_VIEW
if( pTab->pSelect ){
sqlite3ErrorMsg(pParse, "views may not be indexed");
goto exit_create_index;
}
#endif
/*
** Find the name of the index. Make sure there is not already another
** index or table with the same name.
**
** Exception: If we are reading the names of permanent indices from the
** sqlite_master table (because some other process changed the schema) and
** one of the index names collides with the name of a temporary table or
** index, then we will continue to process this index.
**
** If pName==0 it means that we are
** dealing with a primary key or UNIQUE constraint. We have to invent our
** own name.
*/
if( pName ){
zName = sqlite3NameFromToken(pName);
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
if( zName==0 ) goto exit_create_index;
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
goto exit_create_index;
}
if( !db->init.busy ){
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
if( sqlite3FindIndex(db, zName, db->aDb[iDb].zName)!=0 ){
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
goto exit_create_index;
}
if( sqlite3FindTable(db, zName, 0)!=0 ){
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
goto exit_create_index;
}
}
}else{
char zBuf[30];
int n;
Index *pLoop;
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
sprintf(zBuf,"_%d",n);
zName = 0;
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
if( zName==0 ) goto exit_create_index;
}
/* Check for authorization to create an index.
*/
#ifndef SQLITE_OMIT_AUTHORIZATION
{
const char *zDb = db->aDb[iDb].zName;
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
goto exit_create_index;
}
i = SQLITE_CREATE_INDEX;
if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
goto exit_create_index;
}
}
#endif
/* If pList==0, it means this routine was called to make a primary
** key out of the last column added to the table under construction.
** So create a fake list to simulate this.
*/
if( pList==0 ){
nullId.z = pTab->aCol[pTab->nCol-1].zName;
nullId.n = strlen(nullId.z);
pList = sqlite3ExprListAppend(0, 0, &nullId);
if( pList==0 ) goto exit_create_index;
}
/*
** Allocate the index structure.
*/
pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int) +
(sizeof(int)*2 + sizeof(CollSeq*))*pList->nExpr );
if( sqlite3_malloc_failed ) goto exit_create_index;
pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nExpr];
pIndex->aiRowEst = (unsigned*)&pIndex->aiColumn[pList->nExpr];
pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1];
strcpy(pIndex->zName, zName);
pIndex->pTable = pTab;
pIndex->nColumn = pList->nExpr;
pIndex->onError = onError;
pIndex->autoIndex = pName==0;
pIndex->iDb = iDb;
/* Scan the names of the columns of the table to be indexed and
** load the column indices into the Index structure. Report an error
** if any column is not found.
*/
for(i=0; i<pList->nExpr; i++){
for(j=0; j<pTab->nCol; j++){
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
}
if( j>=pTab->nCol ){
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
pTab->zName, pList->a[i].zName);
goto exit_create_index;
}
pIndex->aiColumn[i] = j;
if( pList->a[i].pExpr ){
assert( pList->a[i].pExpr->pColl );
pIndex->keyInfo.aColl[i] = pList->a[i].pExpr->pColl;
}else{
pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl;
}
assert( pIndex->keyInfo.aColl[i] );
if( !db->init.busy &&
sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i])
){
goto exit_create_index;
}
}
pIndex->keyInfo.nField = pList->nExpr;
sqlite3DefaultRowEst(pIndex);
if( pTab==pParse->pNewTable ){
/* This routine has been called to create an automatic index as a
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
** a PRIMARY KEY or UNIQUE clause following the column definitions.
** i.e. one of:
**
** CREATE TABLE t(x PRIMARY KEY, y);
** CREATE TABLE t(x, y, UNIQUE(x, y));
**
** Either way, check to see if the table already has such an index. If
** so, don't bother creating this one. This only applies to
** automatically created indices. Users can do as they wish with
** explicit indices.
*/
Index *pIdx;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int k;
assert( pIdx->onError!=OE_None );
assert( pIdx->autoIndex );
assert( pIndex->onError!=OE_None );
if( pIdx->nColumn!=pIndex->nColumn ) continue;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
if( pIdx->keyInfo.aColl[k]!=pIndex->keyInfo.aColl[k] ) break;
}
if( k==pIdx->nColumn ){
if( pIdx->onError!=pIndex->onError ){
/* This constraint creates the same index as a previous
** constraint specified somewhere in the CREATE TABLE statement.
** However the ON CONFLICT clauses are different. If both this
** constraint and the previous equivalent constraint have explicit
** ON CONFLICT clauses this is an error. Otherwise, use the
** explicitly specified behaviour for the index.
*/
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
sqlite3ErrorMsg(pParse,
"conflicting ON CONFLICT clauses specified", 0);
}
if( pIdx->onError==OE_Default ){
pIdx->onError = pIndex->onError;
}
}
goto exit_create_index;
}
}
}
/* Link the new Index structure to its table and to the other
** in-memory database structures.
*/
if( db->init.busy ){
Index *p;
p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash,
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
if( p ){
assert( p==pIndex ); /* Malloc must have failed */
goto exit_create_index;
}
db->flags |= SQLITE_InternChanges;
if( pTblName!=0 ){
pIndex->tnum = db->init.newTnum;
}
}
/* If the db->init.busy is 0 then create the index on disk. This
** involves writing the index into the master table and filling in the
** index with the current table contents.
**
** The db->init.busy is 0 when the user first enters a CREATE INDEX
** command. db->init.busy is 1 when a database is opened and
** CREATE INDEX statements are read out of the master table. In
** the latter case the index already exists on disk, which is why
** we don't want to recreate it.
**
** If pTblName==0 it means this index is generated as a primary key
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
** has just been created, it contains no data and the index initialization
** step can be skipped.
*/
else if( db->init.busy==0 ){
Vdbe *v;
char *zStmt;
int iMem = pParse->nMem++;
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto exit_create_index;
/* Create the rootpage for the index
*/
sqlite3BeginWriteOperation(pParse, 1, iDb);
sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
/* Gather the complete text of the CREATE INDEX statement into
** the zStmt variable
*/
if( pStart && pEnd ){
/* A named index with an explicit CREATE INDEX statement */
zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
onError==OE_None ? "" : " UNIQUE",
pEnd->z - pName->z + 1,
pName->z);
}else{
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
/* zStmt = sqlite3MPrintf(""); */
zStmt = 0;
}
/* Add an entry in sqlite_master for this index
*/
sqlite3NestedParse(pParse,
"INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName,
pTab->zName,
zStmt
);
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
sqliteFree(zStmt);
/* Fill the index with data and reparse the schema. Code an OP_Expire
** to invalidate all pre-compiled statements.
*/
if( pTblName ){
sqlite3RefillIndex(pParse, pIndex, iMem);
sqlite3ChangeCookie(db, v, iDb);
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
}
}
/* When adding an index to the list of indices for a table, make
** sure all indices labeled OE_Replace come after all those labeled
** OE_Ignore. This is necessary for the correct operation of UPDATE
** and INSERT.
*/
if( db->init.busy || pTblName==0 ){
if( onError!=OE_Replace || pTab->pIndex==0
|| pTab->pIndex->onError==OE_Replace){
pIndex->pNext = pTab->pIndex;
pTab->pIndex = pIndex;
}else{
Index *pOther = pTab->pIndex;
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
pOther = pOther->pNext;
}
pIndex->pNext = pOther->pNext;
pOther->pNext = pIndex;
}
pIndex = 0;
}
/* Clean up before exiting */
exit_create_index:
if( pIndex ){
freeIndex(pIndex);
}
sqlite3ExprListDelete(pList);
sqlite3SrcListDelete(pTblName);
sqliteFree(zName);
return;
}
/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
** aiRowEst[0] is suppose to contain the number of elements in the index.
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
** number of rows in the table that match any particular value of the
** first column of the index. aiRowEst[2] is an estimate of the number
** of rows that match any particular combiniation of the first 2 columns
** of the index. And so forth. It must always be the case that
*
** aiRowEst[N]<=aiRowEst[N-1]
** aiRowEst[N]>=1
**
** Apart from that, we have little to go on besides intuition as to
** how aiRowEst[] should be initialized. The numbers generated here
** are based on typical values found in actual indices.
*/
void sqlite3DefaultRowEst(Index *pIdx){
unsigned *a = pIdx->aiRowEst;
int i;
assert( a!=0 );
a[0] = 1000000;
for(i=pIdx->nColumn; i>=1; i--){
a[i] = 10;
}
if( pIdx->onError!=OE_None ){
a[pIdx->nColumn] = 1;
}
}
/*
** This routine will drop an existing named index. This routine
** implements the DROP INDEX statement.
*/
void sqlite3DropIndex(Parse *pParse, SrcList *pName){
Index *pIndex;
Vdbe *v;
sqlite3 *db = pParse->db;
if( pParse->nErr || sqlite3_malloc_failed ){
goto exit_drop_index;
}
assert( pName->nSrc==1 );
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
goto exit_drop_index;
}
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
if( pIndex==0 ){
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
pParse->checkSchema = 1;
goto exit_drop_index;
}
if( pIndex->autoIndex ){
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
"or PRIMARY KEY constraint cannot be dropped", 0);
goto exit_drop_index;
}
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code = SQLITE_DROP_INDEX;
Table *pTab = pIndex->pTable;
const char *zDb = db->aDb[pIndex->iDb].zName;
const char *zTab = SCHEMA_TABLE(pIndex->iDb);
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
goto exit_drop_index;
}
if( !OMIT_TEMPDB && pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
goto exit_drop_index;
}
}
#endif
/* Generate code to remove the index and from the master table */
v = sqlite3GetVdbe(pParse);
if( v ){
int iDb = pIndex->iDb;
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE name=%Q",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName
);
sqlite3ChangeCookie(db, v, iDb);
destroyRootPage(pParse, pIndex->tnum, iDb);
sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
}
exit_drop_index:
sqlite3SrcListDelete(pName);
}
/*
** ppArray points into a structure where there is an array pointer
** followed by two integers. The first integer is the
** number of elements in the structure array. The second integer
** is the number of allocated slots in the array.
**
** In other words, the structure looks something like this:
**
** struct Example1 {
** struct subElem *aEntry;
** int nEntry;
** int nAlloc;
** }
**
** The pnEntry parameter points to the equivalent of Example1.nEntry.
**
** This routine allocates a new slot in the array, zeros it out,
** and returns its index. If malloc fails a negative number is returned.
**
** szEntry is the sizeof of a single array entry. initSize is the
** number of array entries allocated on the initial allocation.
*/
int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){
char *p;
int *an = (int*)&ppArray[1];
if( an[0]>=an[1] ){
void *pNew;
int newSize;
newSize = an[1]*2 + initSize;
pNew = sqliteRealloc(*ppArray, newSize*szEntry);
if( pNew==0 ){
return -1;
}
an[1] = newSize;
*ppArray = pNew;
}
p = *ppArray;
memset(&p[an[0]*szEntry], 0, szEntry);
return an[0]++;
}
/*
** Append a new element to the given IdList. Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
int i;
if( pList==0 ){
pList = sqliteMalloc( sizeof(IdList) );
if( pList==0 ) return 0;
pList->nAlloc = 0;
}
i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5);
if( i<0 ){
sqlite3IdListDelete(pList);
return 0;
}
pList->a[i].zName = sqlite3NameFromToken(pToken);
return pList;
}
/*
** Delete an IdList.
*/
void sqlite3IdListDelete(IdList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nId; i++){
sqliteFree(pList->a[i].zName);
}
sqliteFree(pList->a);
sqliteFree(pList);
}
/*
** Return the index in pList of the identifier named zId. Return -1
** if not found.
*/
int sqlite3IdListIndex(IdList *pList, const char *zName){
int i;
if( pList==0 ) return -1;
for(i=0; i<pList->nId; i++){
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
}
return -1;
}
/*
** Append a new table name to the given SrcList. Create a new SrcList if
** need be. A new entry is created in the SrcList even if pToken is NULL.
**
** A new SrcList is returned, or NULL if malloc() fails.
**
** If pDatabase is not null, it means that the table has an optional
** database name prefix. Like this: "database.table". The pDatabase
** points to the table name and the pTable points to the database name.
** The SrcList.a[].zName field is filled with the table name which might
** come from pTable (if pDatabase is NULL) or from pDatabase.
** SrcList.a[].zDatabase is filled with the database name from pTable,
** or with NULL if no database is specified.
**
** In other words, if call like this:
**
** sqlite3SrcListAppend(A,B,0);
**
** Then B is a table name and the database name is unspecified. If called
** like this:
**
** sqlite3SrcListAppend(A,B,C);
**
** Then C is the table name and B is the database name.
*/
SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
struct SrcList_item *pItem;
if( pList==0 ){
pList = sqliteMalloc( sizeof(SrcList) );
if( pList==0 ) return 0;
pList->nAlloc = 1;
}
if( pList->nSrc>=pList->nAlloc ){
SrcList *pNew;
pList->nAlloc *= 2;
pNew = sqliteRealloc(pList,
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
if( pNew==0 ){
sqlite3SrcListDelete(pList);
return 0;
}
pList = pNew;
}
pItem = &pList->a[pList->nSrc];
memset(pItem, 0, sizeof(pList->a[0]));
if( pDatabase && pDatabase->z==0 ){
pDatabase = 0;
}
if( pDatabase && pTable ){
Token *pTemp = pDatabase;
pDatabase = pTable;
pTable = pTemp;
}
pItem->zName = sqlite3NameFromToken(pTable);
pItem->zDatabase = sqlite3NameFromToken(pDatabase);
pItem->iCursor = -1;
pList->nSrc++;
return pList;
}
/*
** Assign cursors to all tables in a SrcList
*/
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
int i;
struct SrcList_item *pItem;
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
if( pItem->iCursor>=0 ) break;
pItem->iCursor = pParse->nTab++;
if( pItem->pSelect ){
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
}
}
}
/*
** Add an alias to the last identifier on the given identifier list.
*/
void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){
if( pList && pList->nSrc>0 ){
pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken);
}
}
/*
** Delete an entire SrcList including all its substructure.
*/
void sqlite3SrcListDelete(SrcList *pList){
int i;
struct SrcList_item *pItem;
if( pList==0 ) return;
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
sqliteFree(pItem->zDatabase);
sqliteFree(pItem->zName);
sqliteFree(pItem->zAlias);
sqlite3DeleteTable(0, pItem->pTab);
sqlite3SelectDelete(pItem->pSelect);
sqlite3ExprDelete(pItem->pOn);
sqlite3IdListDelete(pItem->pUsing);
}
sqliteFree(pList);
}
/*
** Begin a transaction
*/
void sqlite3BeginTransaction(Parse *pParse, int type){
sqlite3 *db;
Vdbe *v;
int i;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite3_malloc_failed ) return;
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
v = sqlite3GetVdbe(pParse);
if( !v ) return;
if( type!=TK_DEFERRED ){
for(i=0; i<db->nDb; i++){
sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
}
}
sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
}
/*
** Commit a transaction
*/
void sqlite3CommitTransaction(Parse *pParse){
sqlite3 *db;
Vdbe *v;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite3_malloc_failed ) return;
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
v = sqlite3GetVdbe(pParse);
if( v ){
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
}
}
/*
** Rollback a transaction
*/
void sqlite3RollbackTransaction(Parse *pParse){
sqlite3 *db;
Vdbe *v;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite3_malloc_failed ) return;
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
v = sqlite3GetVdbe(pParse);
if( v ){
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
}
}
/*
** Make sure the TEMP database is open and available for use. Return
** the number of errors. Leave any error messages in the pParse structure.
*/
static int sqlite3OpenTempDatabase(Parse *pParse){
sqlite3 *db = pParse->db;
if( db->aDb[1].pBt==0 && !pParse->explain ){
int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt, 0 /*!exclusive*/, 1/*allowReadonly*/);
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
"file for storing temporary tables");
pParse->rc = rc;
return 1;
}
if( db->flags & !db->autoCommit ){
rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "unable to get a write lock on "
"the temporary database file");
pParse->rc = rc;
return 1;
}
}
}
return 0;
}
/*
** Generate VDBE code that will verify the schema cookie and start
** a read-transaction for all named database files.
**
** It is important that all schema cookies be verified and all
** read transactions be started before anything else happens in
** the VDBE program. But this routine can be called after much other
** code has been generated. So here is what we do:
**
** The first time this routine is called, we code an OP_Goto that
** will jump to a subroutine at the end of the program. Then we
** record every database that needs its schema verified in the
** pParse->cookieMask field. Later, after all other code has been
** generated, the subroutine that does the cookie verifications and
** starts the transactions will be coded and the OP_Goto P2 value
** will be made to point to that subroutine. The generation of the
** cookie verification subroutine code happens in sqlite3FinishCoding().
**
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
** schema on any databases. This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
sqlite3 *db;
Vdbe *v;
int mask;
v = sqlite3GetVdbe(pParse);
if( v==0 ) return; /* This only happens if there was a prior error */
db = pParse->db;
if( pParse->cookieGoto==0 ){
pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
}
if( iDb>=0 ){
assert( iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
assert( iDb<32 );
mask = 1<<iDb;
if( (pParse->cookieMask & mask)==0 ){
pParse->cookieMask |= mask;
pParse->cookieValue[iDb] = db->aDb[iDb].schema_cookie;
if( !OMIT_TEMPDB && iDb==1 ){
sqlite3OpenTempDatabase(pParse);
}
}
}
}
/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction. If we are already within a transaction, then a checkpoint
** is set if the setStatement parameter is true. A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction. For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
**
** Only database iDb and the temp database are made writable by this call.
** If iDb==0, then the main and temp databases are made writable. If
** iDb==1 then only the temp database is made writable. If iDb>1 then the
** specified auxiliary database and the temp database are made writable.
*/
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
sqlite3CodeVerifySchema(pParse, iDb);
pParse->writeMask |= 1<<iDb;
if( setStatement && pParse->nested==0 ){
sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
}
if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
sqlite3BeginWriteOperation(pParse, setStatement, 1);
}
}
/*
** Check to see if pIndex uses the collating sequence pColl. Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX
static int collationMatch(CollSeq *pColl, Index *pIndex){
int n = pIndex->keyInfo.nField;
CollSeq **pp = pIndex->keyInfo.aColl;
while( n-- ){
if( *pp==pColl ) return 1;
pp++;
}
return 0;
}
#endif
/*
** Recompute all indices of pTab that use the collating sequence pColl.
** If pColl==0 then recompute all indices of pTab.
*/
#ifndef SQLITE_OMIT_REINDEX
static void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){
Index *pIndex; /* An index associated with pTab */
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
if( pColl==0 || collationMatch(pColl,pIndex) ){
sqlite3BeginWriteOperation(pParse, 0, pTab->iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
}
}
}
#endif
/*
** Recompute all indices of all tables in all databases where the
** indices use the collating sequence pColl. If pColl==0 then recompute
** all indices everywhere.
*/
#ifndef SQLITE_OMIT_REINDEX
static void reindexDatabases(Parse *pParse, CollSeq *pColl){
Db *pDb; /* A single database */
int iDb; /* The database index number */
sqlite3 *db = pParse->db; /* The database connection */
HashElem *k; /* For looping over tables in pDb */
Table *pTab; /* A table in the database */
for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
if( pDb==0 ) continue;
for(k=sqliteHashFirst(&pDb->tblHash); k; k=sqliteHashNext(k)){
pTab = (Table*)sqliteHashData(k);
reindexTable(pParse, pTab, pColl);
}
}
}
#endif
/*
** Generate code for the REINDEX command.
**
** REINDEX -- 1
** REINDEX <collation> -- 2
** REINDEX ?<database>.?<tablename> -- 3
** REINDEX ?<database>.?<indexname> -- 4
**
** Form 1 causes all indices in all attached databases to be rebuilt.
** Form 2 rebuilds all indices in all databases that use the named
** collating function. Forms 3 and 4 rebuild the named index or all
** indices associated with the named table.
*/
#ifndef SQLITE_OMIT_REINDEX
void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
char *z; /* Name of a table or index */
const char *zDb; /* Name of the database */
Table *pTab; /* A table in the database */
Index *pIndex; /* An index associated with pTab */
int iDb; /* The database index number */
sqlite3 *db = pParse->db; /* The database connection */
Token *pObjName; /* Name of the table or index to be reindexed */
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
return;
}
if( pName1==0 || pName1->z==0 ){
reindexDatabases(pParse, 0);
return;
}else if( pName2==0 || pName2->z==0 ){
pColl = sqlite3FindCollSeq(db, db->enc, pName1->z, pName1->n, 0);
if( pColl ){
reindexDatabases(pParse, pColl);
return;
}
}
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
if( iDb<0 ) return;
z = sqlite3NameFromToken(pObjName);
zDb = db->aDb[iDb].zName;
pTab = sqlite3FindTable(db, z, zDb);
if( pTab ){
reindexTable(pParse, pTab, 0);
sqliteFree(z);
return;
}
pIndex = sqlite3FindIndex(db, z, zDb);
sqliteFree(z);
if( pIndex ){
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
return;
}
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
}
#endif