You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/kpresenter/KoPointArray.cpp

321 lines
9.6 KiB

// -*- Mode: c++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4; -*-
/* This file is part of the KDE project
Copyright (C) 2001 Laurent MONTEL <lmontel@mandrakesoft.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "KoPointArray.h"
#include <KoRect.h>
#include <stdarg.h>
#include <KoZoomHandler.h>
void KoPointArray::translate( double dx, double dy )
{
register KoPoint *p = data();
register int i = size();
KoPoint pt( dx, dy );
while ( i-- ) {
*p += pt;
p++;
}
}
void KoPointArray::point( uint index, double *x, double *y ) const
{
KoPoint p = TQMemArray<KoPoint>::at( index );
if ( x )
*x = (double)p.x();
if ( y )
*y = (double)p.y();
}
KoPoint KoPointArray::point( uint index ) const
{ // #### index out of bounds
return TQMemArray<KoPoint>::at( index );
}
void KoPointArray::setPoint( uint index, double x, double y )
{ // #### index out of bounds
TQMemArray<KoPoint>::at( index ) = KoPoint( x, y );
}
bool KoPointArray::putPoints( int index, int nPoints, double firstx, double firsty,
... )
{
va_list ap;
if ( index + nPoints > (int)size() ) { // extend array
if ( !resize(index + nPoints) )
return FALSE;
}
if ( nPoints <= 0 )
return TRUE;
setPoint( index, firstx, firsty ); // set first point
int i = index + 1;
double x, y;
nPoints--;
va_start( ap, firsty );
while ( nPoints-- ) {
x = va_arg( ap, double );
y = va_arg( ap, double );
setPoint( i++, x, y );
}
va_end( ap );
return TRUE;
}
void split(const double *p, double *l, double *r)
{
double tmpx;
double tmpy;
l[0] = p[0];
l[1] = p[1];
r[6] = p[6];
r[7] = p[7];
l[2] = (p[0]+ p[2])/2;
l[3] = (p[1]+ p[3])/2;
tmpx = (p[2]+ p[4])/2;
tmpy = (p[3]+ p[5])/2;
r[4] = (p[4]+ p[6])/2;
r[5] = (p[5]+ p[7])/2;
l[4] = (l[2]+ tmpx)/2;
l[5] = (l[3]+ tmpy)/2;
r[2] = (tmpx + r[4])/2;
r[3] = (tmpy + r[5])/2;
l[6] = (l[4]+ r[2])/2;
l[7] = (l[5]+ r[3])/2;
r[0] = l[6];
r[1] = l[7];
}
// Based on:
//
// A Fast 2D Point-On-Line Test
// by Alan Paeth
// from "Graphics Gems", Academic Press, 1990
static
int pnt_on_line( const int* p, const int* q, const int* t )
{
/*
* given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
* return 0 if T is not on the line through <--P--Q-->
* 1 if T is on the open ray ending at P: <--P
* 2 if T is on the closed interior along: P--Q
* 3 if T is on the open ray beginning at Q: Q-->
*
* Example: consider the line P = (3,2), Q = (17,7). A plot
* of the test points T(x,y) (with 0 mapped onto '.') yields:
*
* 8| . . . . . . . . . . . . . . . . . 3 3
* Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
* 6| . . . . . . . . . . . 2 2 2 2 2 . . .
* a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
* x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
* i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
* s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
* 1| 1 1 . . . . . . . . . . . . . . . . .
* +--------------------------------------
* 1 2 3 4 5 X-axis 10 15 19
*
* Point-Line distance is normalized with the Infinity Norm
* avoiding square-root code and tightening the test vs the
* Manhattan Norm. All math is done on the field of integers.
* The latter replaces the initial ">= MAX(...)" test with
* "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
* and norm, yielding a broader target line for selection.
* The tightest test is employed here for best discrimination
* in merging collinear (to grid coordinates) vertex chains
* into a larger, spanning vectors within the Lemming editor.
*/
// if all points are coincident, return condition 2 (on line)
if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
return 2;
}
if ( TQABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
(TQMAX(TQABS(q[0]-p[0]), TQABS(q[1]-p[1])))) return 0;
if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
return 1 ;
if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
return 1 ;
if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
return 3 ;
if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
return 3 ;
return 2 ;
}
static
void polygonizeTQBezier( double* acc, int& accsize, const double ctrl[],
int maxsize )
{
if ( accsize > maxsize / 2 )
{
// This never happens in practice.
if ( accsize >= maxsize-4 )
return;
// Running out of space - approximate by a line.
acc[accsize++] = ctrl[0];
acc[accsize++] = ctrl[1];
acc[accsize++] = ctrl[6];
acc[accsize++] = ctrl[7];
return;
}
//intersects:
double l[8];
double r[8];
split( ctrl, l, r);
// convert to integers for line condition check
int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
// #### Duplication needed?
if ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|| ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
// Too big and too curved - recusively subdivide.
polygonizeTQBezier( acc, accsize, l, maxsize );
polygonizeTQBezier( acc, accsize, r, maxsize );
}
KoRect KoPointArray::boundingRect() const
{
if ( isEmpty() )
return KoRect( 0, 0, 0, 0 ); // null rectangle
register KoPoint *pd = data();
double minx, maxx, miny, maxy;
minx = maxx = pd->x();
miny = maxy = pd->y();
pd++;
for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
if ( pd->x() < minx )
minx = pd->x();
else if ( pd->x() > maxx )
maxx = pd->x();
if ( pd->y() < miny )
miny = pd->y();
else if ( pd->y() > maxy )
maxy = pd->y();
pd++;
}
return KoRect( KoPoint(minx,miny), KoPoint(maxx,maxy) );
}
KoPointArray KoPointArray::cubicBezier() const
{
if ( size() != 4 ) {
#if defined(TQT_CHECK_RANGE)
qWarning( "TQPointArray::bezier: The array must have 4 control points" );
#endif
KoPointArray pa;
return pa;
} else {
KoRect r = boundingRect();
int m = (int)(4+2*TQMAX(r.width(),r.height()));
double *p = new double[m];
double ctrl[8];
int i;
for (i=0; i<4; i++) {
ctrl[i*2] = at(i).x();
ctrl[i*2+1] = at(i).y();
}
int len=0;
polygonizeTQBezier( p, len, ctrl, m );
KoPointArray pa((len/2)+1); // one extra point for last point on line
int j=0;
for (i=0; j<len; i++) {
double x = tqRound(p[j++]);
double y = tqRound(p[j++]);
pa[i] = KoPoint(x,y);
}
// add last pt on the line, which will be at the last control pt
pa[(int)pa.size()-1] = at(3);
delete[] p;
return pa;
}
}
TQPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler ) const
{
TQPointArray tmpPoints(size());
for ( uint i= 0; i<size();i++ ) {
KoPoint p = at( i );
tmpPoints.putPoints( i, 1, zoomHandler->zoomItX(p.x()),zoomHandler->zoomItY(p.y()) );
}
return tmpPoints;
}
TQPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler, int penWidth ) const
{
double fx;
double fy;
KoSize ext = boundingRect().size();
int pw = zoomHandler->zoomItX( penWidth ) / 2;
fx = (double)( zoomHandler->zoomItX(ext.width()) - 2 * pw ) / ext.width();
fy = (double)( zoomHandler->zoomItY(ext.height()) - 2 * pw ) / ext.height();
unsigned int index = 0;
TQPointArray tmpPoints;
KoPointArray::ConstIterator it;
for ( it = begin(); it != end(); ++it, ++index ) {
int tmpX = tqRound((*it).x() * fx + pw);
int tmpY = tqRound((*it).y() * fy + pw);
tmpPoints.putPoints( index, 1, tmpX, tmpY );
}
return tmpPoints;
}