You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/karbon/core/vsegment.h

433 lines
9.2 KiB

/* This file is part of the KDE project
Copyright (C) 2001, 2002, 2003 The Karbon Developers
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef __VSEGMENT_H__
#define __VSEGMENT_H__
#include <tqptrlist.h>
#include <tqvaluelist.h>
#include <KoPoint.h>
#include <KoRect.h>
#include "vglobal.h"
#include <koffice_export.h>
class TQDomElement;
class VPainter;
/**
* A class representing lines and beziers. We waste some KoPoints, if we
* would use only lines, but this makes it easy to convert the segment types
* into each other. Make sure yourself, that you pass values to functions within
* proper ranges.
*/
class KARBONBASE_EXPORT VSegment
{
friend class VSubpath;
friend class VSubpathIterator;
public:
/**
* Tells which control point is "fixed" i.e. located at the
* corresponding knot and invisible. This flag makes no sense for
* line segments.
*/
enum VCtrlPointFixing
{
none = 0,
first = 1,
second = 2
};
enum VState
{
normal,
deleted
};
VSegment( unsigned short deg = 3 );
VSegment( const VSegment& segment );
~VSegment();
/**
* Returns the segment's degree, which is identical to the number of nodes.
* For cubic beziers it is "three" and "one" for lines.
*/
unsigned short degree() const
{
return m_degree;
}
/**
* Sets the segment's degree and thus resizes the array of node data.
* The node data is copied from the old knot "backwards".
*/
void setDegree( unsigned short deg );
/**
* Tests for the segment type ("begin", "line" or "curve").
*/
bool isBegin() const { return (degree() == 1) && !prev(); }
bool isLine() const { return (degree() == 1) && prev(); }
bool isCurve() const { return degree() > 1; }
/**
* Returns the segment state.
*/
VState state() const
{
return m_state;
}
/**
* Sets the segment state.
*/
void setState( VState state )
{
m_state = state;
}
/**
* Returns the segment's point with index 0 <= i < degree().
*/
const KoPoint& point( int i ) const
{
return m_nodes[ i ].m_vector;
}
/**
* This is a convenience function. It returns the point with index
* 0 <= i <= degree() while p( 0 ) is the knot of the previous
* segment.
*/
const KoPoint& p( int i ) const
{
return i == 0
? prev()->knot()
: m_nodes[ --i ].m_vector;
}
/**
* Returns the knot. This is a convenience function using point().
*/
const KoPoint& knot() const
{
return point( degree() - 1 );
}
/**
* Sets the segment's point with index 0 <= i < degree() to "p".
*/
void setPoint( int i, const KoPoint& p )
{
m_nodes[ i ].m_vector = p;
}
/**
* This is a convenience function. It sets the point with index
* 0 <= i <= degree() to "p" while setP( 0 ) sets the knot of the
* previous segment.
*/
void setP( int i, const KoPoint& p )
{
if( i == 0 )
prev()->setKnot( p );
else
m_nodes[ --i ].m_vector = p;
}
/**
* Sets the knot. This is a convenience function.
*/
void setKnot( const KoPoint& p )
{
m_nodes[ degree() - 1 ].m_vector = p;
}
/**
* Returns true if the point with index 0 <= i < degree() is selected.
*/
bool pointIsSelected( int i ) const
{
return m_nodes[ i ].m_isSelected;
}
/**
* Returns true if the knot is selected. This is a convenience function.
*/
bool knotIsSelected() const
{
return m_nodes[ degree() - 1 ].m_isSelected;
}
/**
* Selects the point with index 0 <= i < degree().
*/
void selectPoint( int i, bool select = true )
{
m_nodes[ i ].m_isSelected = select;
}
/**
* Selects/deselects the knot of this segment.
*/
void selectKnot( bool select = true )
{
m_nodes[ degree() - 1 ].m_isSelected = select;
}
/**
* Returns index of the node at point p. Returns 0 if no
* segment point matches point p.
*/
// TODO: Move this function into "userland"
uint nodeNear( const KoPoint& p,
double isNearRange = VGlobal::isNearRange ) const;
/**
* Returns a pointer to the previous not deleted segment, if
* stored in a VSubpath.
*/
VSegment* prev() const;
/**
* Returns a pointer to the next not deleted segment, if
* stored in a VSubpath.
*/
VSegment* next() const;
/**
* Returns true if the segment is flat. That means it's height
* is smaller than flatness.
*/
bool isFlat( double flatness = VGlobal::flatnessTolerance ) const;
/**
* Calculates the point on this segment at parameter 0 <= t <= 1.
* This is a convenience wrapper for pointDerivativesAt().
*/
KoPoint pointAt( double t ) const;
/**
* Calculates the point and the derivatives of first and
* second order for 0 <= t <= 1.
*/
void pointDerivativesAt( double t, KoPoint* p = 0L,
KoPoint* d1 = 0L, KoPoint* d2 = 0L ) const;
/**
* Calculates the normalized tangent vector (length=1) at the point
* parameterized by 0 <= t <= 1. This is a convenience wrapper
* for pointTangentNormalAt(). Use the latter function directly if you
* need to calculate the point and normal vector or tangent vector
* at once.
*/
KoPoint tangentAt( double t ) const;
/**
* Calculates the point, the tangent vector and the normal vector for
* 0 <= t <= 1. The tangent vector and the normal vector are
* normalized (length=1).
*/
void pointTangentNormalAt( double t, KoPoint* p = 0L,
KoPoint* tn = 0L, KoPoint* n = 0L ) const;
/**
* Calculates the arclength from p0 to the point parametrized
* by 0 <= t <= 1. For beziers this function is a bit expensive.
*/
double length( double t = 1.0 ) const;
/**
* Calculates the chord length (the distance from the previous
* knot to the current knot).
*/
double chordLength() const;
/**
* Calculates the length of the control polygon.
*/
double polyLength() const;
/**
* Calculates the parameter of a point located at arclength len.
* This is the exact inverse operation of length( t ).
*/
double lengthParam( double len ) const;
/**
* Calculates the parameter of the nearest point on this segment
* to the point p. This function is pretty expensive.
*/
double nearestPointParam( const KoPoint& p ) const;
/**
* Calculates wether the tangent at the knot is exactly parallel to
* the tangent at p0 of the next segment. Returns false if the
* current segment is a "begin".
*/
bool isSmooth( const VSegment& next ) const;
bool isSmooth() const
{
return next()
? isSmooth( *next() )
: false;
}
/**
* Creates a reverted version of this segment. For example:
* if this segment is a line from A to B, the result is a
* line from B to A.
*/
VSegment* revert() const;
/**
* Splits the segment at parameter 0 <= t <= 1. Returns a pointer
* to the first segment and modifies the current one to
* be the second segment.
*/
VSegment* splitAt( double t );
/**
* Calculates height of point p above line AB.
*/
static double height(
const KoPoint& a,
const KoPoint& p,
const KoPoint& b );
/**
* Calculates whether lines A0A1 and B0B1 intersect.
*/
static bool linesIntersect(
const KoPoint& a0,
const KoPoint& a1,
const KoPoint& b0,
const KoPoint& b1 );
/**
* Returns true, if this segment intersects the other segment.
*/
bool intersects( const VSegment& segment ) const;
/**
* Returns a number > 0 if the point p is left, 0 if it's on and
* a number < 0 if it's right of the infinite line through the
* previous segment's knot and the current knot.
*/
double pointIsLeft( const KoPoint& p ) const
{
return
( knot().x() - prev()->knot().x() ) *
( p.y() - prev()->knot().y() )
-
( p.x() - prev()->knot().x() ) *
( knot().y() - prev()->knot().y() );
}
/**
* Calculates the bounding box.
*/
KoRect boundingBox() const;
void draw( VPainter* painter ) const;
// TODO: remove this backward compatibility function after koffice 1.3.x.
void load( const TQDomElement& element );
/**
* Returns a pointer to a copy of this segment.
*/
VSegment* clone() const;
private:
/**
* Calculates the solutions of y(x) = 0 where 0 <= x <= 1. The
* returned parameters are not ordered.
*/
void rootParams( TQValueList<double>& params ) const;
/**
* Calculates how often the control polygon crosses the x-axis.
*/
int controlPolygonZeros() const;
/**
* The segment degree. For (cubic) beziers "three", "one" for lines.
*/
unsigned short m_degree : 6;
/**
* The segment state.
*/
VState m_state : 2;
/**
* Node data.
*/
struct VNodeData
{
KoPoint m_vector;
bool m_isSelected;
};
/**
* A pointer to an array of node data.
*/
VNodeData* m_nodes;
/**
* Pointer to the previous segment.
*/
VSegment* m_prev;
/**
* Pointer to the next segment.
*/
VSegment* m_next;
};
#endif