You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/kspread/kspread_functions_math.cc

1145 lines
32 KiB

/* This file is part of the KDE project
Copyright (C) 1998-2002 The KSpread Team
www.koffice.org/kspread
Copyright (C) 2005 Tomas Mecir <mecirt@gmail.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
// built-in math functions
#include <kdebug.h>
#include <klocale.h>
#include "functions.h"
#include "valuecalc.h"
#include "valueconverter.h"
// these two are needed for SUBTOTAL:
#include "kspread_cell.h"
#include "kspread_sheet.h"
// needed for RANDBINOM and so
#include <math.h>
using namespace KSpread;
// RANDBINOM and RANDNEGBINOM won't support arbitrary precision
// prototypes
Value func_abs (valVector args, ValueCalc *calc, FuncExtra *);
Value func_ceil (valVector args, ValueCalc *calc, FuncExtra *);
Value func_ceiling (valVector args, ValueCalc *calc, FuncExtra *);
Value func_count (valVector args, ValueCalc *calc, FuncExtra *);
Value func_counta (valVector args, ValueCalc *calc, FuncExtra *);
Value func_countblank (valVector args, ValueCalc *calc, FuncExtra *);
Value func_countif (valVector args, ValueCalc *calc, FuncExtra *);
Value func_cur (valVector args, ValueCalc *calc, FuncExtra *);
Value func_div (valVector args, ValueCalc *calc, FuncExtra *);
Value func_eps (valVector args, ValueCalc *calc, FuncExtra *);
Value func_even (valVector args, ValueCalc *calc, FuncExtra *);
Value func_exp (valVector args, ValueCalc *calc, FuncExtra *);
Value func_fact (valVector args, ValueCalc *calc, FuncExtra *);
Value func_factdouble (valVector args, ValueCalc *calc, FuncExtra *);
Value func_fib (valVector args, ValueCalc *calc, FuncExtra *);
Value func_floor (valVector args, ValueCalc *calc, FuncExtra *);
Value func_gcd (valVector args, ValueCalc *calc, FuncExtra *);
Value func_int (valVector args, ValueCalc *calc, FuncExtra *);
Value func_inv (valVector args, ValueCalc *calc, FuncExtra *);
Value func_kproduct (valVector args, ValueCalc *calc, FuncExtra *);
Value func_lcm (valVector args, ValueCalc *calc, FuncExtra *);
Value func_ln (valVector args, ValueCalc *calc, FuncExtra *);
Value func_log2 (valVector args, ValueCalc *calc, FuncExtra *);
Value func_log10 (valVector args, ValueCalc *calc, FuncExtra *);
Value func_logn (valVector args, ValueCalc *calc, FuncExtra *);
Value func_max (valVector args, ValueCalc *calc, FuncExtra *);
Value func_maxa (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mdeterm (valVector args, ValueCalc *calc, FuncExtra *);
Value func_min (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mina (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mmult (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mod (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mround (valVector args, ValueCalc *calc, FuncExtra *);
Value func_mult (valVector args, ValueCalc *calc, FuncExtra *);
Value func_multinomial (valVector args, ValueCalc *calc, FuncExtra *);
Value func_odd (valVector args, ValueCalc *calc, FuncExtra *);
Value func_pow (valVector args, ValueCalc *calc, FuncExtra *);
Value func_quotient (valVector args, ValueCalc *calc, FuncExtra *);
Value func_product (valVector args, ValueCalc *calc, FuncExtra *);
Value func_rand (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randbetween (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randbernoulli (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randbinom (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randexp (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randnegbinom (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randnorm (valVector args, ValueCalc *calc, FuncExtra *);
Value func_randpoisson (valVector args, ValueCalc *calc, FuncExtra *);
Value func_rootn (valVector args, ValueCalc *calc, FuncExtra *);
Value func_round (valVector args, ValueCalc *calc, FuncExtra *);
Value func_rounddown (valVector args, ValueCalc *calc, FuncExtra *);
Value func_roundup (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sign (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sqrt (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sqrtpi (valVector args, ValueCalc *calc, FuncExtra *);
Value func_subtotal (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sum (valVector args, ValueCalc *calc, FuncExtra *);
Value func_suma (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sumif (valVector args, ValueCalc *calc, FuncExtra *);
Value func_sumsq (valVector args, ValueCalc *calc, FuncExtra *);
Value func_trunc (valVector args, ValueCalc *calc, FuncExtra *);
// Value func_multipleOP (valVector args, ValueCalc *calc, FuncExtra *);
// registers all math functions
void RegisterMathFunctions()
{
FunctionRepository* repo = FunctionRepository::self();
Function *f;
/*
f = new Function ("MULTIPLEOPERATIONS", func_multipleOP);
repo->add (f);
*/
// functions that don't take array parameters
f = new Function ("ABS", func_abs);
repo->add (f);
f = new Function ("CEIL", func_ceil);
repo->add (f);
f = new Function ("CEILING", func_ceiling);
f->setParamCount (1, 2);
repo->add (f);
f = new Function ("CUR", func_cur);
repo->add (f);
f = new Function ("EPS", func_eps);
f->setParamCount (0);
repo->add (f);
f = new Function ("EVEN", func_even);
repo->add (f);
f = new Function ("EXP", func_exp);
repo->add (f);
f = new Function ("FACT", func_fact);
repo->add (f);
f = new Function ("FACTDOUBLE", func_factdouble);
repo->add (f);
f = new Function ("FIB", func_fib); // KSpread-specific, like Quattro-Pro's FIB
repo->add (f);
f = new Function ("FLOOR", func_floor);
repo->add (f);
f = new Function ("INT", func_int);
repo->add (f);
f = new Function ("INV", func_inv);
repo->add (f);
f = new Function ("LN", func_ln);
repo->add (f);
f = new Function ("LOG", func_log10);
repo->add (f);
f = new Function ("LOG2", func_log2);
repo->add (f);
f = new Function ("LOG10", func_log10); // same as LOG
repo->add (f);
f = new Function ("LOGN", func_logn);
f->setParamCount (2);
repo->add (f);
f = new Function ("MOD", func_mod);
f->setParamCount (2);
repo->add (f);
f = new Function ("MROUND", func_mround);
f->setParamCount (2);
repo->add (f);
f = new Function ("MULTINOMIAL", func_multinomial);
f->setParamCount (1, -1);
repo->add (f);
f = new Function ("ODD", func_odd);
repo->add (f);
f = new Function ("POW", func_pow);
f->setParamCount (2);
repo->add (f);
f = new Function ("POWER", func_pow);
f->setParamCount (2);
repo->add (f);
f = new Function ("QUOTIENT", func_quotient);
f->setParamCount (2);
repo->add (f);
f = new Function ("RAND", func_rand);
f->setParamCount (0);
repo->add (f);
f = new Function ("RANDBERNOULLI", func_randbernoulli);
repo->add (f);
f = new Function ("RANDBETWEEN", func_randbetween);
f->setParamCount (2);
repo->add (f);
f = new Function ("RANDBINOM", func_randbinom);
f->setParamCount (2);
repo->add (f);
f = new Function ("RANDEXP", func_randexp);
repo->add (f);
f = new Function ("RANDNEGBINOM", func_randnegbinom);
f->setParamCount (2);
repo->add (f);
f = new Function ("RANDNORM", func_randnorm);
f->setParamCount (2);
repo->add (f);
f = new Function ("RANDPOISSON", func_randpoisson);
repo->add (f);
f = new Function ("ROOTN", func_rootn);
f->setParamCount (2);
repo->add (f);
f = new Function ("ROUND", func_round);
f->setParamCount (1, 2);
repo->add (f);
f = new Function ("ROUNDDOWN", func_rounddown);
f->setParamCount (1, 2);
repo->add (f);
f = new Function ("ROUNDUP", func_roundup);
f->setParamCount (1, 2);
repo->add (f);
f = new Function ("SIGN", func_sign);
repo->add (f);
f = new Function ("SQRT", func_sqrt);
repo->add (f);
f = new Function ("SQRTPI", func_sqrtpi);
repo->add (f);
f = new Function ("TRUNC", func_trunc);
f->setParamCount (1, 2);
repo->add (f);
// functions that operate over arrays
f = new Function ("COUNT", func_count);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("COUNTA", func_counta);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("COUNTBLANK", func_countblank);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("COUNTIF", func_countif);
f->setParamCount (2);
f->setAcceptArray ();
repo->add (f);
f = new Function ("DIV", func_div);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("G_PRODUCT", func_kproduct); // Gnumeric compatibility
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("GCD", func_gcd);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("KPRODUCT", func_kproduct);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("LCM", func_lcm);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MAX", func_max);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MAXA", func_maxa);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MDETERM", func_mdeterm);
f->setParamCount (1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MIN", func_min);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MINA", func_mina);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MMULT", func_mmult);
f->setParamCount (2);
f->setAcceptArray ();
repo->add (f);
f = new Function ("MULTIPLY", func_product); // same as PRODUCT
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("PRODUCT", func_product);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("SUM", func_sum);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("SUMA", func_suma);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
f = new Function ("SUBTOTAL", func_subtotal);
f->setParamCount (2);
f->setAcceptArray ();
f->setNeedsExtra (true);
repo->add (f);
f = new Function ("SUMIF", func_sumif);
f->setParamCount (2, 3);
f->setAcceptArray ();
repo->add (f);
f = new Function ("SUMSQ", func_sumsq);
f->setParamCount (1, -1);
f->setAcceptArray ();
repo->add (f);
}
// Function: SQRT
Value func_sqrt (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->sqrt (args[0]);
}
// Function: SQRTPI
Value func_sqrtpi (valVector args, ValueCalc *calc, FuncExtra *)
{
// sqrt (val * PI)
return calc->sqrt (calc->mul (args[0], calc->pi()));
}
// Function: ROOTN
Value func_rootn (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->pow (args[0], calc->div (1, args[1]));
}
// Function: CUR
Value func_cur (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->pow (args[0], 1.0/3.0);
}
// Function: ABS
Value func_abs (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->abs (args[0]);
}
// Function: exp
Value func_exp (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->exp (args[0]);
}
// Function: ceil
Value func_ceil (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->roundUp (args[0], 0);
}
// Function: ceiling
Value func_ceiling (valVector args, ValueCalc *calc, FuncExtra *)
{
Value number = args[0];
Value res;
if (args.count() == 2)
res = args[1];
else
res = calc->gequal (number, 0.0) ? 1.0 : -1.0;
if (calc->isZero(res))
return Value::errorDIV0();
Value d = calc->div (number, res);
if (calc->greater (0, d))
return Value::errorVALUE();
Value rud = calc->roundDown (d);
if (calc->approxEqual (rud, d))
d = calc->mul (rud, res);
else
d = calc->mul (calc->roundUp (d), res);
return d;
}
// Function: floor
Value func_floor (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->roundDown (args[0], 0);
}
// Function: ln
Value func_ln (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->ln (args[0]);
}
// Function: LOGn
Value func_logn (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->log (args[0], args[1]);
}
// Function: LOG2
Value func_log2 (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->log (args[0], 2.0);
}
// Function: LOG10
Value func_log10 (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->log (args[0]);
}
// Function: sum
Value func_sum (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->sum (args, false);
}
// Function: suma
Value func_suma (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->sum (args, true);
}
Value func_sumif (valVector args, ValueCalc *calc, FuncExtra *)
{
Value checkRange = args[0];
TQString condition = calc->conv()->asString (args[1]).asString();
Value sumRange = checkRange;
if (args.count() == 3)
sumRange = args[2];
Condition cond;
calc->getCond (cond, condition);
return calc->sumIf (sumRange, checkRange, cond);
}
// Function: product
Value func_product (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->product (args, 0.0);
}
// Function: kproduct
Value func_kproduct (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->product (args, 1.0);
}
// Function: DIV
Value func_div (valVector args, ValueCalc *calc, FuncExtra *)
{
Value val = args[0];
for (unsigned int i = 1; i < args.count(); ++i)
{
val = calc->div (val, args[i]);
if (val.isError())
return val;
}
return val;
}
// Function: SUMSQ
Value func_sumsq (valVector args, ValueCalc *calc, FuncExtra *)
{
Value res;
calc->arrayWalk (args, res, calc->awFunc ("sumsq"), 0);
return res;
}
// Function: MAX
Value func_max (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m = calc->max (args, false);
return m.isEmpty() ? Value(0.0) : m;
}
// Function: MAXA
Value func_maxa (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m = calc->max (args);
return m.isEmpty() ? Value(0.0) : m;
}
// Function: MIN
Value func_min (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m = calc->min (args, false);
return m.isEmpty() ? Value(0.0) : m;
}
// Function: MINA
Value func_mina (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m = calc->min (args);
return m.isEmpty() ? Value(0.0) : m;
}
// Function: INT
Value func_int (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->conv()->asInteger (args[0]);
}
// Function: QUOTIENT
Value func_quotient (valVector args, ValueCalc *calc, FuncExtra *)
{
if (calc->isZero (args[1]))
return Value::errorDIV0();
return calc->conv()->asInteger (calc->div (args[0], args[1]));
}
// Function: eps
Value func_eps (valVector, ValueCalc *calc, FuncExtra *)
{
return calc->eps ();
}
Value func_randexp (valVector args, ValueCalc *calc, FuncExtra *)
{
// -1 * d * log (random)
return calc->mul (calc->mul (args[0], -1), calc->random());
}
Value func_randbinom (valVector args, ValueCalc *calc, FuncExtra *)
{
// this function will not support arbitrary precision
double d = calc->conv()->asFloat (args[0]).asFloat();
int tr = calc->conv()->asInteger (args[1]).asInteger();
if ( d < 0 || d > 1 )
return Value::errorVALUE();
if ( tr < 0 )
return Value::errorVALUE();
// taken from gnumeric
double x = pow(1 - d, tr);
double r = (double) rand() / ( RAND_MAX + 1.0 );
double t = x;
int i = 0;
while (r > t)
{
x *= (((tr - i) * d) / ((1 + i) * (1 - d)));
i++;
t += x;
}
return Value (i);
}
Value func_randnegbinom (valVector args, ValueCalc *calc, FuncExtra *)
{
// this function will not support arbitrary precision
double d = calc->conv()->asFloat (args[0]).asFloat();
int f = calc->conv()->asInteger (args[1]).asInteger();
if ( d < 0 || d > 1 )
return Value::errorVALUE();
if ( f < 0 )
return Value::errorVALUE();
// taken from Gnumeric
double x = pow(d, f);
double r = (double) rand() / ( RAND_MAX + 1.0 );
double t = x;
int i = 0;
while (r > t)
{
x *= ( ( ( f + i ) * ( 1 - d ) ) / (1 + i) ) ;
i++;
t += x;
}
return Value (i);
}
Value func_randbernoulli (valVector args, ValueCalc *calc, FuncExtra *)
{
Value rnd = calc->random ();
return Value (calc->greater (rnd, args[0]) ? 1.0 : 0.0);
}
Value func_randnorm (valVector args, ValueCalc *calc, FuncExtra *)
{
Value mu = args[0];
Value sigma = args[1];
//using polar form of the Box-Muller transformation
//refer to http://www.taygeta.com/random/gaussian.html for more info
Value x1, x2, w;
do {
// x1,x2 = 2 * random() - 1
x1 = calc->random (2.0);
x2 = calc->random (2.0);
x1 = calc->sub (x1, 1);
x1 = calc->sub (x2, 1);
w = calc->add (calc->sqr(x1), calc->sqr (x2));
} while (calc->gequal (w, 1.0)); // w >= 1.0
//sqrt ((-2.0 * log (w)) / w) :
w = calc->sqrt (calc->div (calc->mul (-2.0, calc->ln (w)), w));
Value res = calc->mul (x1, w);
res = calc->add (calc->mul (res, sigma), mu); // res*sigma + mu
return res;
}
Value func_randpoisson (valVector args, ValueCalc *calc, FuncExtra *)
{
if (calc->lower (args[0], 0))
return Value::errorVALUE();
// taken from Gnumeric...
Value x = calc->exp (calc->mul (-1, args[0])); // e^(-A)
Value r = calc->random ();
Value t = x;
int i = 0;
while (calc->greater (r, t)) { // r > t
x = calc->mul (x, calc->div (args[0], i + 1)); // x *= (A/(i+1))
t = calc->add (t, x); //t += x
i++;
}
return Value (i);
}
// Function: rand
Value func_rand (valVector, ValueCalc *calc, FuncExtra *)
{
return calc->random ();
}
// Function: RANDBETWEEN
Value func_randbetween (valVector args, ValueCalc *calc, FuncExtra *)
{
Value v1 = args[0];
Value v2 = args[1];
if (calc->greater (v2, v1)) {
v1 = args[1];
v2 = args[0];
}
return calc->add (v1, calc->random (calc->sub (v2, v1)));
}
// Function: POW
Value func_pow (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->pow (args[0], args[1]);
}
// Function: MOD
Value func_mod (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->mod (args[0], args[1]);
}
// Function: fact
Value func_fact (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->fact (args[0]);
}
// Function: FACTDOUBLE
Value func_factdouble (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->factDouble (args[0]);
}
// Function: MULTINOMIAL
Value func_multinomial (valVector args, ValueCalc *calc, FuncExtra *)
{
// (a+b+c)! / a!b!c! (any number of params possible)
Value num = 0, den = 1;
for (unsigned int i = 0; i < args.count(); ++i) {
num = calc->add (num, args[i]);
den = calc->mul (den, calc->fact (args[i]));
}
num = calc->fact (num);
return calc->div (num, den);
}
// Function: sign
Value func_sign (valVector args, ValueCalc *calc, FuncExtra *)
{
return Value (calc->sign (args[0]));
}
// Function: INV
Value func_inv (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->mul (args[0], -1);
}
Value func_mround (valVector args, ValueCalc *calc, FuncExtra *)
{
Value d = args[0];
Value m = args[1];
// signs must be the same
if ((calc->greater (d, 0) && calc->lower (m, 0))
|| (calc->lower (d, 0) && calc->greater (m, 0)))
return Value::errorVALUE();
int sign = 1;
if (calc->lower (d, 0))
{
sign = -1;
d = calc->mul (d, -1);
m = calc->mul (m, -1);
}
// from gnumeric:
Value mod = calc->mod (d, m);
Value div = calc->sub (d, mod);
Value result = div;
if (calc->greater (mod, calc->div (m, 2))) // mod > m/2
result = calc->add (result, m); // result += m
result = calc->mul (result, sign); // add the sign
return result;
}
// Function: ROUNDDOWN
Value func_rounddown (valVector args, ValueCalc *calc, FuncExtra *)
{
if (args.count() == 2)
return calc->roundDown (args[0], args[1]);
return calc->roundDown (args[0], 0);
}
// Function: ROUNDUP
Value func_roundup (valVector args, ValueCalc *calc, FuncExtra *)
{
if (args.count() == 2)
return calc->roundUp (args[0], args[1]);
return calc->roundUp (args[0], 0);
}
// Function: ROUND
Value func_round (valVector args, ValueCalc *calc, FuncExtra *)
{
if (args.count() == 2)
return calc->round (args[0], args[1]);
return calc->round (args[0], 0);
}
// Function: EVEN
Value func_even (valVector args, ValueCalc *calc, FuncExtra *)
{
const Value value = calc->roundUp (args[0], 0);
return calc->isZero( calc->mod(value, 2) ) ? value : calc->add(value, 1);
}
// Function: ODD
Value func_odd (valVector args, ValueCalc *calc, FuncExtra *)
{
const Value value = calc->roundUp (args[0], 0);
return calc->isZero( calc->mod(value, 2) ) ? calc->add(value, 1) : value;
}
Value func_trunc (valVector args, ValueCalc *calc, FuncExtra *)
{
if (args.count() == 1)
return calc->roundDown (args[0]);
return calc->roundDown (args[0], args[1]);
}
// Function: COUNT
Value func_count (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->count (args, false);
}
// Function: COUNTA
Value func_counta (valVector args, ValueCalc *calc, FuncExtra *)
{
return calc->count (args);
}
// Function: COUNTBLANK
Value func_countblank (valVector args, ValueCalc *, FuncExtra *)
{
int cnt = 0;
for (unsigned int i = 0; i < args.count(); ++i)
if (args[i].isArray()) {
int rows = args[i].rows();
int cols = args[i].columns();
for (int r = 0; r < rows; ++r)
for (int c = 0; c < cols; ++c)
if (args[i].element (c, r).isEmpty())
cnt++;
} else
if (args[i].isEmpty())
cnt++;
return Value (cnt);
}
// Function: COUNTIF
Value func_countif (valVector args, ValueCalc *calc, FuncExtra *)
{
Value range = args[0];
TQString condition = calc->conv()->asString (args[1]).asString();
Condition cond;
calc->getCond (cond, condition);
return calc->countIf (range, cond);
}
// Function: FIB
Value func_fib (valVector args, ValueCalc *calc, FuncExtra *)
{
/*
Lucas' formula for the nth Fibonacci number F(n) is given by
((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n
F(n) = ------------------------------------- .
sqrt(5)
*/
Value n = args[0];
Value s = calc->sqrt (5.0);
// u1 = ((1+sqrt(5))/2)^n
Value u1 = calc->pow (calc->div (calc->add (1, s), 2), n);
// u2 = ((1-sqrt(5))/2)^n
Value u2 = calc->pow (calc->div (calc->sub (1, s), 2), n);
Value result = calc->div (calc->sub (u1, u2), s);
return result;
}
static Value func_gcd_helper(const Value &val, ValueCalc *calc)
{
Value res = 0;
if (!val.isArray ())
return val;
for (unsigned int row = 0; row < val.rows(); ++row)
for (unsigned int col = 0; col < val.columns(); ++col)
{
Value v = val.element (col, row);
if (v.isArray ())
v = func_gcd_helper (v, calc);
res = calc->gcd (res, v);
}
return res;
}
// Function: GCD
Value func_gcd (valVector args, ValueCalc *calc, FuncExtra *)
{
Value result = 0;
for (unsigned int i = 0; i < args.count(); ++i)
if (args[i].isArray())
result = calc->gcd (result, func_gcd_helper (args[i], calc));
else
result = calc->gcd (result, args[i]);
return result;
}
static Value func_lcm_helper(const Value &val, ValueCalc *calc)
{
Value res = 0;
if (!val.isArray ())
return val;
for (unsigned int row = 0; row < val.rows(); ++row)
for (unsigned int col = 0; col < val.columns(); ++col)
{
Value v = val.element (col, row);
if (v.isArray ())
v = func_lcm_helper (v, calc);
res = calc->lcm (res, v);
}
return res;
}
// Function: lcm
Value func_lcm (valVector args, ValueCalc *calc, FuncExtra *)
{
Value result = 0;
for (unsigned int i = 0; i < args.count(); ++i)
if (args[i].isArray())
result = calc->lcm (result, func_lcm_helper (args[i], calc));
else
result = calc->lcm (result, args[i]);
return result;
}
Value determinant (ValueCalc *calc, Value matrix)
{
// this is a --- SLOOOW --- recursive function
// using this for something bigger than 10x10 or so = suicide :P
// but I'm too lazy to adjust gnumeric's code - remains as a TODO then
// as a note, gnumeric uses LUP decomposition to compute this
// take first row, generate smaller matrices, recursion, multiply
Value res = 0.0;
int n = matrix.columns();
if (n == 1) return matrix.element (0, 0);
if (n == 2) return calc->sub (
calc->mul (matrix.element (1,1), matrix.element (0,0)),
calc->mul (matrix.element (1,0), matrix.element (0,1)));
// n >= 3
for (int i = 0; i < n; ++i) {
Value smaller (n-1, n-1);
int col = 0;
for (int c = 0; c < n; ++c)
if (c != i) {
// copy column c to column col in new matrix
for (int r = 1; r < n; r++)
smaller.setElement (col, r-1, matrix.element (c, r));
col++;
}
Value minor = determinant (calc, smaller);
if (i % 2 == 1) minor = calc->mul (minor, -1);
res = calc->add (res, calc->mul (minor, matrix.element (i, 0)));
}
return res;
}
// Function: mdeterm
Value func_mdeterm (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m = args[0];
unsigned r = m.rows ();
unsigned c = m.columns ();
if (r != c) // must be a square matrix
return Value::errorVALUE();
return determinant (calc, args[0]);
}
// Function: mmult
Value func_mmult (valVector args, ValueCalc *calc, FuncExtra *)
{
Value m1 = args[0];
Value m2 = args[1];
unsigned r1 = m1.rows ();
unsigned c1 = m1.columns ();
unsigned r2 = m2.rows ();
unsigned c2 = m2.columns ();
if (c1 != r2) // row/column counts must match
return Value::errorVALUE();
// create the resulting matrix
Value res (c2, r1);
// perform the multiplication - O(n^3) algorithm
for (uint row = 0; row < r1; ++row)
for (uint col = 0; col < c2; ++col) {
Value val = 0.0;
for (uint pos = 0; pos < c1; ++pos)
val = calc->add (val,
calc->mul (m1.element (pos, row), m2.element (col, pos)));
res.setElement (col, row, val);
}
return res;
}
// Function: SUBTOTAL
// This function requires access to the Sheet and so on, because
// it needs to check whether cells contain the SUBTOTAL formula or not ...
// Cells containing a SUBTOTAL formula must be ignored.
Value func_subtotal (valVector args, ValueCalc *calc, FuncExtra *e)
{
int function = calc->conv()->asInteger (args[0]).asInteger();
Value range = args[1];
int r1 = -1, c1 = -1, r2 = -1, c2 = -1;
if (e) {
r1 = e->ranges[1].row1;
c1 = e->ranges[1].col1;
r2 = e->ranges[1].row2;
c2 = e->ranges[1].col2;
}
// if we have a range, run through it, and put an empty value to the place
// of all occurences of the SUBTOTAL function
Value empty;
if ((r1 > 0) && (c1 > 0) && (r2 > 0) && (c2 > 0)) {
for (int r = r1; r <= r2; ++r)
for (int c = c1; c <= c2; ++c) {
Cell *cell = e->sheet->cellAt (c, r);
if (cell->isDefault())
continue;
if (cell->isFormula() && cell->text().find ("SUBTOTAL", 0, false) != -1)
// cell contains the word SUBTOTAL - replace value with empty
range.setElement (c-c1, r-r1, empty);
}
}
// Good. Now we can execute the necessary function on the range.
Value res;
Function *f;
valVector a;
switch (function) {
case 1: // Average
res = calc->avg (range, false);
break;
case 2: // Count
res = calc->count (range, false);
break;
case 3: // CountA
res = calc->count (range);
break;
case 4: // MAX
res = calc->max (range, false);
break;
case 5: // Min
res = calc->min (range, false);
break;
case 6: // Product
res = calc->product (range, 0.0, false);
break;
case 7: // StDev
res = calc->stddev (range, false);
break;
case 8: // StDevP
res = calc->stddevP (range, false);
break;
case 9: // Sum
res = calc->sum (range, false);
break;
case 10: // Var
f = FunctionRepository::self()->function ("VAR");
if (!f) return Value::errorVALUE();
a.reserve (1);
a[0] = range;
res = f->exec (a, calc, 0);
break;
case 11: // VarP
f = FunctionRepository::self()->function ("VARP");
if (!f) return Value::errorVALUE();
a.reserve (1);
a[0] = range;
res = f->exec (a, calc, 0);
break;
default:
return Value::errorVALUE();
}
return res;
}
/*
Commented out.
Absolutely no idea what this thing is supposed to do.
To anyone who would enable this code: it still uses koscript calls - you need
to convert it to the new style prior to uncommenting.
// Function: MULTIPLEOPERATIONS
Value func_multipleOP (valVector args, ValueCalc *calc, FuncExtra *)
{
if (gCell)
{
context.setValue( new KSValue( ((Interpreter *) context.interpreter() )->cell()->value().asFloat() ) );
return true;
}
gCell = ((Interpreter *) context.interpreter() )->cell();
TQValueList<KSValue::Ptr>& args = context.value()->listValue();
TQValueList<KSValue::Ptr>& extra = context.extraData()->listValue();
if ( !KSUtil::checkArgumentsCount( context, 5, "MULTIPLEOPERATIONS", true ) )
{
gCell = 0;
return false;
}
// 0: cell must contain formula with double/int result
// 0, 1, 2, 3, 4: must contain integer/double
for (int i = 0; i < 5; ++i)
{
if ( !KSUtil::checkType( context, args[i], KSValue::DoubleType, true ) )
{
gCell = 0;
return false;
}
}
// ((Interpreter *) context.interpreter() )->document()->emitBeginOperation();
double oldCol = args[1]->doubleValue();
double oldRow = args[3]->doubleValue();
kdDebug() << "Old values: Col: " << oldCol << ", Row: " << oldRow << endl;
Cell * cell;
Sheet * sheet = ((Interpreter *) context.interpreter() )->sheet();
Point point( extra[1]->stringValue() );
Point point2( extra[3]->stringValue() );
Point point3( extra[0]->stringValue() );
if ( ( args[1]->doubleValue() != args[2]->doubleValue() )
|| ( args[3]->doubleValue() != args[4]->doubleValue() ) )
{
cell = sheet->cellAt( point.pos.x(), point.pos.y() );
cell->setValue( args[2]->doubleValue() );
kdDebug() << "Setting value " << args[2]->doubleValue() << " on cell " << point.pos.x()
<< ", " << point.pos.y() << endl;
cell = sheet->cellAt( point2.pos.x(), point.pos.y() );
cell->setValue( args[4]->doubleValue() );
kdDebug() << "Setting value " << args[4]->doubleValue() << " on cell " << point2.pos.x()
<< ", " << point2.pos.y() << endl;
}
Cell * cell1 = sheet->cellAt( point3.pos.x(), point3.pos.y() );
cell1->calc( false );
double d = cell1->value().asFloat();
kdDebug() << "Cell: " << point3.pos.x() << "; " << point3.pos.y() << " with value "
<< d << endl;
kdDebug() << "Resetting old values" << endl;
cell = sheet->cellAt( point.pos.x(), point.pos.y() );
cell->setValue( oldCol );
cell = sheet->cellAt( point2.pos.x(), point2.pos.y() );
cell->setValue( oldRow );
cell1->calc( false );
// ((Interpreter *) context.interpreter() )->document()->emitEndOperation();
context.setValue( new KSValue( (double) d ) );
gCell = 0;
return true;
}
*/