You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1113 lines
22 KiB
1113 lines
22 KiB
/* This file is part of the KDE project
|
|
Copyright (C) 2001, 2002, 2003 The Karbon Developers
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with this library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include <tqdom.h>
|
|
|
|
#include "vpainter.h"
|
|
#include "vpath.h"
|
|
#include "vsegment.h"
|
|
|
|
#include <kdebug.h>
|
|
|
|
VSegment::VSegment( unsigned short deg )
|
|
{
|
|
m_degree = deg;
|
|
|
|
m_nodes = new VNodeData[ degree() ];
|
|
|
|
for( unsigned short i = 0; i < degree(); ++i )
|
|
selectPoint( i );
|
|
|
|
m_state = normal;
|
|
|
|
m_prev = 0L;
|
|
m_next = 0L;
|
|
}
|
|
|
|
VSegment::VSegment( const VSegment& segment )
|
|
{
|
|
m_degree = segment.degree();
|
|
|
|
m_nodes = new VNodeData[ degree() ];
|
|
|
|
m_state = segment.m_state;
|
|
|
|
// Copying the pointers m_prev/m_next has some advantages (see VSegment::length()).
|
|
// Inserting a segment into a path overwrites these anyway.
|
|
m_prev = segment.m_prev;
|
|
m_next = segment.m_next;
|
|
|
|
// Copy points.
|
|
for( unsigned short i = 0; i < degree(); i++ )
|
|
{
|
|
setPoint( i, segment.point( i ) );
|
|
selectPoint( i, segment.pointIsSelected( i ) );
|
|
}
|
|
}
|
|
|
|
VSegment::~VSegment()
|
|
{
|
|
delete[]( m_nodes );
|
|
}
|
|
|
|
void
|
|
VSegment::setDegree( unsigned short deg )
|
|
{
|
|
// Do nothing if old and new degrees are identical.
|
|
if( degree() == deg )
|
|
return;
|
|
|
|
// TODO : this code is fishy, please make it sane
|
|
|
|
// Remember old nodes.
|
|
VNodeData* oldNodes = m_nodes;
|
|
KoPoint oldKnot = knot();
|
|
|
|
// Allocate new node data.
|
|
m_nodes = new VNodeData[ deg ];
|
|
|
|
if( deg == 1 )
|
|
m_nodes[ 0 ].m_vector = oldKnot;
|
|
else
|
|
{
|
|
// Copy old node data (from the knot "backwards".
|
|
unsigned short offset = kMax( 0, deg - m_degree );
|
|
|
|
for( unsigned short i = offset; i < deg; ++i )
|
|
{
|
|
m_nodes[ i ].m_vector = oldNodes[ i - offset ].m_vector;
|
|
}
|
|
|
|
// Fill with "zeros" if necessary.
|
|
for( unsigned short i = 0; i < offset; ++i )
|
|
{
|
|
m_nodes[ i ].m_vector = KoPoint( 0.0, 0.0 );
|
|
}
|
|
}
|
|
|
|
// Set new degree.
|
|
m_degree = deg;
|
|
|
|
// Delete old nodes.
|
|
delete[]( oldNodes );
|
|
}
|
|
|
|
void
|
|
VSegment::draw( VPainter* painter ) const
|
|
{
|
|
// Don't draw a deleted segment.
|
|
if( state() == deleted )
|
|
return;
|
|
|
|
|
|
if( prev() )
|
|
{
|
|
if( degree() == 3 )
|
|
{
|
|
painter->curveTo( point( 0 ), point( 1 ), point( 2 ) );
|
|
}
|
|
else
|
|
{
|
|
painter->lineTo( knot() );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
painter->moveTo( knot() );
|
|
}
|
|
}
|
|
|
|
bool
|
|
VSegment::isFlat( double flatness ) const
|
|
{
|
|
// Lines and "begin" segments are flat.
|
|
if(
|
|
!prev() ||
|
|
degree() == 1 )
|
|
{
|
|
return true;
|
|
}
|
|
|
|
|
|
// Iterate over control points.
|
|
for( unsigned short i = 0; i < degree() - 1; ++i )
|
|
{
|
|
if(
|
|
height( prev()->knot(), point( i ), knot() ) / chordLength()
|
|
>= flatness )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
KoPoint
|
|
VSegment::pointAt( double t ) const
|
|
{
|
|
KoPoint p;
|
|
|
|
pointDerivativesAt( t, &p );
|
|
|
|
return p;
|
|
}
|
|
|
|
void
|
|
VSegment::pointDerivativesAt( double t, KoPoint* p,
|
|
KoPoint* d1, KoPoint* d2 ) const
|
|
{
|
|
if( !prev() )
|
|
return;
|
|
|
|
|
|
// Optimise the line case.
|
|
if( degree() == 1 )
|
|
{
|
|
const KoPoint diff = knot() - prev()->knot();
|
|
|
|
if( p )
|
|
*p = prev()->knot() + diff * t;
|
|
|
|
if( d1 )
|
|
*d1 = diff;
|
|
|
|
if( d2 )
|
|
*d2 = KoPoint( 0.0, 0.0 );
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
// Beziers.
|
|
|
|
// Copy points.
|
|
KoPoint* q = new KoPoint[ degree() + 1 ];
|
|
|
|
q[ 0 ] = prev()->knot();
|
|
|
|
for( unsigned short i = 0; i < degree(); ++i )
|
|
{
|
|
q[ i + 1 ] = point( i );
|
|
}
|
|
|
|
|
|
// The De Casteljau algorithm.
|
|
for( unsigned short j = 1; j <= degree(); j++ )
|
|
{
|
|
for( unsigned short i = 0; i <= degree() - j; i++ )
|
|
{
|
|
q[ i ] = ( 1.0 - t ) * q[ i ] + t * q[ i + 1 ];
|
|
}
|
|
|
|
// Save second derivative now that we have it.
|
|
if( j == degree() - 2 )
|
|
{
|
|
if( d2 )
|
|
*d2 = degree() * ( degree() - 1 )
|
|
* ( q[ 2 ] - 2 * q[ 1 ] + q[ 0 ] );
|
|
}
|
|
|
|
// Save first derivative now that we have it.
|
|
else if( j == degree() - 1 )
|
|
{
|
|
if( d1 )
|
|
*d1 = degree() * ( q[ 1 ] - q[ 0 ] );
|
|
}
|
|
}
|
|
|
|
// Save point.
|
|
if( p )
|
|
*p = q[ 0 ];
|
|
|
|
delete[]( q );
|
|
|
|
|
|
return;
|
|
}
|
|
|
|
KoPoint
|
|
VSegment::tangentAt( double t ) const
|
|
{
|
|
KoPoint tangent;
|
|
|
|
pointTangentNormalAt( t, 0L, &tangent );
|
|
|
|
return tangent;
|
|
}
|
|
|
|
void
|
|
VSegment::pointTangentNormalAt( double t, KoPoint* p,
|
|
KoPoint* tn, KoPoint* n ) const
|
|
{
|
|
// Calculate derivative if necessary.
|
|
KoPoint d;
|
|
|
|
pointDerivativesAt( t, p, tn || n ? &d : 0L );
|
|
|
|
|
|
// Normalize derivative.
|
|
if( tn || n )
|
|
{
|
|
const double norm =
|
|
sqrt( d.x() * d.x() + d.y() * d.y() );
|
|
|
|
d = norm ? d * ( 1.0 / norm ) : KoPoint( 0.0, 0.0 );
|
|
}
|
|
|
|
// Assign tangent vector.
|
|
if( tn )
|
|
*tn = d;
|
|
|
|
// Calculate normal vector.
|
|
if( n )
|
|
{
|
|
// Calculate vector product of "binormal" x tangent
|
|
// (0,0,1) x (dx,dy,0), which is simply (dy,-dx,0).
|
|
n->setX( d.y() );
|
|
n->setY( -d.x() );
|
|
}
|
|
}
|
|
|
|
double
|
|
VSegment::length( double t ) const
|
|
{
|
|
if( !prev() || t == 0.0 )
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
// Optimise the line case.
|
|
if( degree() == 1 )
|
|
{
|
|
return
|
|
t * chordLength();
|
|
}
|
|
|
|
|
|
/* This algortihm is by Jens Gravesen <gravesen AT mat DOT dth DOT dk>.
|
|
* We calculate the chord length "chord"=|P0P3| and the length of the control point
|
|
* polygon "poly"=|P0P1|+|P1P2|+|P2P3|. The approximation for the bezier length is
|
|
* 0.5 * poly + 0.5 * chord. "poly - chord" is a measure for the error.
|
|
* We subdivide each segment until the error is smaller than a given tolerance
|
|
* and add up the subresults.
|
|
*/
|
|
|
|
// "Copy segment" splitted at t into a path.
|
|
VSubpath path( 0L );
|
|
path.moveTo( prev()->knot() );
|
|
|
|
// Optimize a bit: most of the time we'll need the
|
|
// length of the whole segment.
|
|
if( t == 1.0 )
|
|
path.append( this->clone() );
|
|
else
|
|
{
|
|
VSegment* copy = this->clone();
|
|
path.append( copy->splitAt( t ) );
|
|
delete copy;
|
|
}
|
|
|
|
|
|
double chord;
|
|
double poly;
|
|
|
|
double length = 0.0;
|
|
|
|
while( path.current() )
|
|
{
|
|
chord = path.current()->chordLength();
|
|
poly = path.current()->polyLength();
|
|
|
|
if(
|
|
poly &&
|
|
( poly - chord ) / poly > VGlobal::lengthTolerance )
|
|
{
|
|
// Split at midpoint.
|
|
path.insert(
|
|
path.current()->splitAt( 0.5 ) );
|
|
}
|
|
else
|
|
{
|
|
length += 0.5 * poly + 0.5 * chord;
|
|
path.next();
|
|
}
|
|
}
|
|
|
|
|
|
return length;
|
|
}
|
|
|
|
double
|
|
VSegment::chordLength() const
|
|
{
|
|
if( !prev() )
|
|
return 0.0;
|
|
|
|
|
|
KoPoint d = knot() - prev()->knot();
|
|
|
|
return sqrt( d * d );
|
|
}
|
|
|
|
double
|
|
VSegment::polyLength() const
|
|
{
|
|
if( !prev() )
|
|
return 0.0;
|
|
|
|
|
|
// Start with distance |first point - previous knot|.
|
|
KoPoint d = point( 0 ) - prev()->knot();
|
|
|
|
double length = sqrt( d * d );
|
|
|
|
// Iterate over remaining points.
|
|
for( unsigned short i = 1; i < degree(); ++i )
|
|
{
|
|
d = point( i ) - point( i - 1 );
|
|
length += sqrt( d * d );
|
|
}
|
|
|
|
|
|
return length;
|
|
}
|
|
|
|
double
|
|
VSegment::lengthParam( double len ) const
|
|
{
|
|
if(
|
|
!prev() ||
|
|
len == 0.0 ) // We divide by len below.
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
// Optimise the line case.
|
|
if( degree() == 1 )
|
|
{
|
|
return
|
|
len / chordLength();
|
|
}
|
|
|
|
|
|
// Perform a successive interval bisection.
|
|
double param1 = 0.0;
|
|
double paramMid = 0.5;
|
|
double param2 = 1.0;
|
|
|
|
double lengthMid = length( paramMid );
|
|
|
|
while( TQABS( lengthMid - len ) / len > VGlobal::paramLengthTolerance )
|
|
{
|
|
if( lengthMid < len )
|
|
param1 = paramMid;
|
|
else
|
|
param2 = paramMid;
|
|
|
|
paramMid = 0.5 * ( param2 + param1 );
|
|
|
|
lengthMid = length( paramMid );
|
|
}
|
|
|
|
return paramMid;
|
|
}
|
|
|
|
double
|
|
VSegment::nearestPointParam( const KoPoint& p ) const
|
|
{
|
|
if( !prev() )
|
|
{
|
|
return 1.0;
|
|
}
|
|
|
|
|
|
/* This function solves the "nearest point on curve" problem. That means, it
|
|
* calculates the point q (to be precise: it's parameter t) on this segment, which
|
|
* is located nearest to the input point P.
|
|
* The basic idea is best described (because it is freely available) in "Phoenix:
|
|
* An Interactive Curve Design System Based on the Automatic Fitting of
|
|
* Hand-Sketched Curves", Philip J. Schneider (Master thesis, University of
|
|
* Washington).
|
|
*
|
|
* For the nearest point q = C(t) on this segment, the first derivative is
|
|
* orthogonal to the distance vector "C(t) - P". In other words we are looking for
|
|
* solutions of f(t) = ( C(t) - P ) * C'(t) = 0.
|
|
* ( C(t) - P ) is a nth degree curve, C'(t) a n-1th degree curve => f(t) is a
|
|
* (2n - 1)th degree curve and thus has up to 2n - 1 distinct solutions.
|
|
* We solve the problem f(t) = 0 by using something called "Approximate Inversion Method".
|
|
* Let's write f(t) explicitly (with c_i = p_i - P and d_j = p_{j+1} - p_j):
|
|
*
|
|
* n n-1
|
|
* f(t) = SUM c_i * B^n_i(t) * SUM d_j * B^{n-1}_j(t)
|
|
* i=0 j=0
|
|
*
|
|
* n n-1
|
|
* = SUM SUM w_{ij} * B^{2n-1}_{i+j}(t)
|
|
* i=0 j=0
|
|
*
|
|
* with w_{ij} = c_i * d_j * z_{ij} and
|
|
*
|
|
* BinomialCoeff( n, i ) * BinomialCoeff( n - i ,j )
|
|
* z_{ij} = -----------------------------------------------
|
|
* BinomialCoeff( 2n - 1, i + j )
|
|
*
|
|
* This Bernstein-Bezier polynom representation can now be solved for it's roots.
|
|
*/
|
|
|
|
|
|
// Calculate the c_i = point( i ) - P.
|
|
KoPoint* c = new KoPoint[ degree() + 1 ];
|
|
|
|
c[ 0 ] = prev()->knot() - p;
|
|
|
|
for( unsigned short i = 1; i <= degree(); ++i )
|
|
{
|
|
c[ i ] = point( i - 1 ) - p;
|
|
}
|
|
|
|
|
|
// Calculate the d_j = point( j + 1 ) - point( j ).
|
|
KoPoint* d = new KoPoint[ degree() ];
|
|
|
|
d[ 0 ] = point( 0 ) - prev()->knot();
|
|
|
|
for( unsigned short j = 1; j <= degree() - 1; ++j )
|
|
{
|
|
d[ j ] = 3.0 * ( point( j ) - point( j - 1 ) );
|
|
}
|
|
|
|
|
|
// Calculate the z_{ij}.
|
|
double* z = new double[ degree() * ( degree() + 1 ) ];
|
|
|
|
for( unsigned short j = 0; j <= degree() - 1; ++j )
|
|
{
|
|
for( unsigned short i = 0; i <= degree(); ++i )
|
|
{
|
|
z[ j * ( degree() + 1 ) + i ] =
|
|
static_cast<double>(
|
|
VGlobal::binomialCoeff( degree(), i ) *
|
|
VGlobal::binomialCoeff( degree() - i, j ) )
|
|
/
|
|
static_cast<double>(
|
|
VGlobal::binomialCoeff( 2 * degree() - 1, i + j ) );
|
|
}
|
|
}
|
|
|
|
|
|
// Calculate the dot products of c_i and d_i.
|
|
double* products = new double[ degree() * ( degree() + 1 ) ];
|
|
|
|
for( unsigned short j = 0; j <= degree() - 1; ++j )
|
|
{
|
|
for( unsigned short i = 0; i <= degree(); ++i )
|
|
{
|
|
products[ j * ( degree() + 1 ) + i ] =
|
|
d[ j ] * c[ i ];
|
|
}
|
|
}
|
|
|
|
// We don't need the c_i and d_i anymore.
|
|
delete[]( d );
|
|
delete[]( c );
|
|
|
|
|
|
// Calculate the control points of the new 2n-1th degree curve.
|
|
VSubpath newCurve( 0L );
|
|
newCurve.append( new VSegment( 2 * degree() - 1 ) );
|
|
|
|
// Set up control points in the ( u, f(u) )-plane.
|
|
for( unsigned short u = 0; u <= 2 * degree() - 1; ++u )
|
|
{
|
|
newCurve.current()->setP(
|
|
u,
|
|
KoPoint(
|
|
static_cast<double>( u ) / static_cast<double>( 2 * degree() - 1 ),
|
|
0.0 ) );
|
|
}
|
|
|
|
|
|
// Set f(u)-values.
|
|
for( unsigned short k = 0; k <= 2 * degree() - 1; ++k )
|
|
{
|
|
unsigned short min = kMin( k, degree() );
|
|
|
|
for(
|
|
unsigned short i = kMax( 0, k - ( degree() - 1 ) );
|
|
i <= min;
|
|
++i )
|
|
{
|
|
unsigned short j = k - i;
|
|
|
|
// p_k += products[j][i] * z[j][i].
|
|
newCurve.getLast()->setP(
|
|
k,
|
|
KoPoint(
|
|
newCurve.getLast()->p( k ).x(),
|
|
newCurve.getLast()->p( k ).y() +
|
|
products[ j * ( degree() + 1 ) + i ] *
|
|
z[ j * ( degree() + 1 ) + i ] ) );
|
|
}
|
|
}
|
|
|
|
// We don't need the c_i/d_i dot products and the z_{ij} anymore.
|
|
delete[]( products );
|
|
delete[]( z );
|
|
|
|
kdDebug(38000) << "results" << endl;
|
|
for( int i = 0; i <= 2 * degree() - 1; ++i )
|
|
{
|
|
kdDebug(38000) << newCurve.getLast()->p( i ).x() << " "
|
|
<< newCurve.getLast()->p( i ).y() << endl;
|
|
}
|
|
kdDebug(38000) << endl;
|
|
|
|
// Find roots.
|
|
TQValueList<double> params;
|
|
|
|
newCurve.getLast()->rootParams( params );
|
|
|
|
|
|
// Now compare the distances of the candidate points.
|
|
double resultParam;
|
|
double distanceSquared;
|
|
double oldDistanceSquared;
|
|
KoPoint dist;
|
|
|
|
// First candidate is the previous knot.
|
|
dist = prev()->knot() - p;
|
|
distanceSquared = dist * dist;
|
|
resultParam = 0.0;
|
|
|
|
// Iterate over the found candidate params.
|
|
for( TQValueListConstIterator<double> itr = params.begin(); itr != params.end(); ++itr )
|
|
{
|
|
pointDerivativesAt( *itr, &dist );
|
|
dist -= p;
|
|
oldDistanceSquared = distanceSquared;
|
|
distanceSquared = dist * dist;
|
|
|
|
if( distanceSquared < oldDistanceSquared )
|
|
resultParam = *itr;
|
|
}
|
|
|
|
// Last candidate is the knot.
|
|
dist = knot() - p;
|
|
oldDistanceSquared = distanceSquared;
|
|
distanceSquared = dist * dist;
|
|
|
|
if( distanceSquared < oldDistanceSquared )
|
|
resultParam = 1.0;
|
|
|
|
|
|
return resultParam;
|
|
}
|
|
|
|
void
|
|
VSegment::rootParams( TQValueList<double>& params ) const
|
|
{
|
|
if( !prev() )
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
// Calculate how often the control polygon crosses the x-axis
|
|
// This is the upper limit for the number of roots.
|
|
switch( controlPolygonZeros() )
|
|
{
|
|
// No solutions.
|
|
case 0:
|
|
return;
|
|
// Exactly one solution.
|
|
case 1:
|
|
if( isFlat( VGlobal::flatnessTolerance / chordLength() ) )
|
|
{
|
|
// Calculate intersection of chord with x-axis.
|
|
KoPoint chord = knot() - prev()->knot();
|
|
|
|
kdDebug(38000) << prev()->knot().x() << " " << prev()->knot().y()
|
|
<< knot().x() << " " << knot().y() << " ---> "
|
|
<< ( chord.x() * prev()->knot().y() - chord.y() * prev()->knot().x() ) / - chord.y() << endl;
|
|
params.append(
|
|
( chord.x() * prev()->knot().y() - chord.y() * prev()->knot().x() )
|
|
/ - chord.y() );
|
|
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Many solutions. Do recursive midpoint subdivision.
|
|
VSubpath path( *this );
|
|
path.insert( path.current()->splitAt( 0.5 ) );
|
|
|
|
path.current()->rootParams( params );
|
|
path.next()->rootParams( params );
|
|
}
|
|
|
|
int
|
|
VSegment::controlPolygonZeros() const
|
|
{
|
|
if( !prev() )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
int signChanges = 0;
|
|
|
|
int sign = VGlobal::sign( prev()->knot().y() );
|
|
int oldSign;
|
|
|
|
for( unsigned short i = 0; i < degree(); ++i )
|
|
{
|
|
oldSign = sign;
|
|
sign = VGlobal::sign( point( i ).y() );
|
|
|
|
if( sign != oldSign )
|
|
{
|
|
++signChanges;
|
|
}
|
|
}
|
|
|
|
|
|
return signChanges;
|
|
}
|
|
|
|
bool
|
|
VSegment::isSmooth( const VSegment& next ) const
|
|
{
|
|
// Return false if this segment is a "begin".
|
|
if( !prev() )
|
|
return false;
|
|
|
|
|
|
// Calculate tangents.
|
|
KoPoint t1;
|
|
KoPoint t2;
|
|
|
|
pointTangentNormalAt( 1.0, 0L, &t1 );
|
|
|
|
next.pointTangentNormalAt( 0.0, 0L, &t2 );
|
|
|
|
|
|
// Dot product.
|
|
if( t1 * t2 >= VGlobal::parallelTolerance )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
KoRect
|
|
VSegment::boundingBox() const
|
|
{
|
|
// Initialize with knot.
|
|
KoRect rect( knot(), knot() );
|
|
|
|
// Add p0, if it exists.
|
|
if( prev() )
|
|
{
|
|
if( prev()->knot().x() < rect.left() )
|
|
rect.setLeft( prev()->knot().x() );
|
|
|
|
if( prev()->knot().x() > rect.right() )
|
|
rect.setRight( prev()->knot().x() );
|
|
|
|
if( prev()->knot().y() < rect.top() )
|
|
rect.setTop( prev()->knot().y() );
|
|
|
|
if( prev()->knot().y() > rect.bottom() )
|
|
rect.setBottom( prev()->knot().y() );
|
|
}
|
|
|
|
if( degree() == 3 )
|
|
{
|
|
/*
|
|
The basic idea for calculating the axis aligned bounding box (AABB) for bezier segments
|
|
was found in comp.graphics.algorithms:
|
|
|
|
Both the x coordinate and the y coordinate are polynomial. Newton told
|
|
us that at a maximum or minimum the derivative will be zero. Take all
|
|
those points, and take the ends; their AABB will be that of the curve.
|
|
|
|
We have a helpful trick for the derivatives: use the curve defined by
|
|
differences of successive control points.
|
|
This is a quadratic Bezier curve:
|
|
|
|
2
|
|
r(t) = Sum Bi,2(t) *Pi = B0,2(t) * P0 + B1,2(t) * P1 + B2,2(t) * P2
|
|
i=0
|
|
|
|
r(t) = (1-t)^2 * P0 + 2t(1-t) * P1 + t^2 * P2
|
|
|
|
r(t) = (P2 - 2*P1 + P0) * t^2 + (2*P1 - 2*P0) * t + P0
|
|
|
|
Setting r(t) to zero and using the x and y coordinates of differences of
|
|
successive control points lets us find the paramters t, where the original
|
|
bezier curve has a minimum or a maximum.
|
|
*/
|
|
double t[4];
|
|
|
|
// calcualting the differnces between successive control points
|
|
KoPoint x0 = p(1)-p(0);
|
|
KoPoint x1 = p(2)-p(1);
|
|
KoPoint x2 = p(3)-p(2);
|
|
|
|
// calculating the coefficents
|
|
KoPoint a = x2 - 2.0*x1 + x0;
|
|
KoPoint b = 2.0*x1 - 2.0*x0;
|
|
KoPoint c = x0;
|
|
|
|
// calculating parameter t at minimum/maximum in x-direction
|
|
if( a.x() == 0.0 )
|
|
{
|
|
t[0] = - c.x() / b.x();
|
|
t[1] = -1.0;
|
|
}
|
|
else
|
|
{
|
|
double rx = b.x()*b.x() - 4.0*a.x()*c.x();
|
|
if( rx < 0.0 )
|
|
rx = 0.0;
|
|
t[0] = ( -b.x() + sqrt( rx ) ) / (2.0*a.x());
|
|
t[1] = ( -b.x() - sqrt( rx ) ) / (2.0*a.x());
|
|
}
|
|
|
|
// calculating parameter t at minimum/maximum in y-direction
|
|
if( a.y() == 0.0 )
|
|
{
|
|
t[2] = - c.y() / b.y();
|
|
t[3] = -1.0;
|
|
}
|
|
else
|
|
{
|
|
double ry = b.y()*b.y() - 4.0*a.y()*c.y();
|
|
if( ry < 0.0 )
|
|
ry = 0.0;
|
|
t[2] = ( -b.y() + sqrt( ry ) ) / (2.0*a.y());
|
|
t[3] = ( -b.y() - sqrt( ry ) ) / (2.0*a.y());
|
|
}
|
|
|
|
// calculate points at found minimum/maximum and update bounding box
|
|
for( int i = 0; i < 4; ++i )
|
|
{
|
|
if( t[i] >= 0.0 && t[i] <= 1.0 )
|
|
{
|
|
KoPoint p = pointAt( t[i] );
|
|
|
|
if( p.x() < rect.left() )
|
|
rect.setLeft( p.x() );
|
|
|
|
if( p.x() > rect.right() )
|
|
rect.setRight( p.x() );
|
|
|
|
if( p.y() < rect.top() )
|
|
rect.setTop( p.y() );
|
|
|
|
if( p.y() > rect.bottom() )
|
|
rect.setBottom( p.y() );
|
|
}
|
|
}
|
|
|
|
return rect;
|
|
}
|
|
|
|
for( unsigned short i = 0; i < degree() - 1; ++i )
|
|
{
|
|
if( point( i ).x() < rect.left() )
|
|
rect.setLeft( point( i ).x() );
|
|
|
|
if( point( i ).x() > rect.right() )
|
|
rect.setRight( point( i ).x() );
|
|
|
|
if( point( i ).y() < rect.top() )
|
|
rect.setTop( point( i ).y() );
|
|
|
|
if( point( i ).y() > rect.bottom() )
|
|
rect.setBottom( point( i ).y() );
|
|
}
|
|
|
|
|
|
return rect;
|
|
}
|
|
|
|
VSegment*
|
|
VSegment::splitAt( double t )
|
|
{
|
|
if( !prev() )
|
|
{
|
|
return 0L;
|
|
}
|
|
|
|
|
|
// Create new segment.
|
|
VSegment* segment = new VSegment( degree() );
|
|
|
|
// Set segment state.
|
|
segment->m_state = m_state;
|
|
|
|
|
|
// Lines are easy: no need to modify the current segment.
|
|
if( degree() == 1 )
|
|
{
|
|
segment->setKnot(
|
|
prev()->knot() +
|
|
( knot() - prev()->knot() ) * t );
|
|
|
|
return segment;
|
|
}
|
|
|
|
|
|
// Beziers.
|
|
|
|
// Copy points.
|
|
KoPoint* q = new KoPoint[ degree() + 1 ];
|
|
|
|
q[ 0 ] = prev()->knot();
|
|
|
|
for( unsigned short i = 0; i < degree(); ++i )
|
|
{
|
|
q[ i + 1 ] = point( i );
|
|
}
|
|
|
|
|
|
// The De Casteljau algorithm.
|
|
for( unsigned short j = 1; j <= degree(); ++j )
|
|
{
|
|
for( unsigned short i = 0; i <= degree() - j; ++i )
|
|
{
|
|
q[ i ] = ( 1.0 - t ) * q[ i ] + t * q[ i + 1 ];
|
|
}
|
|
|
|
// Modify the new segment.
|
|
segment->setPoint( j - 1, q[ 0 ] );
|
|
}
|
|
|
|
// Modify the current segment (no need to modify the knot though).
|
|
for( unsigned short i = 1; i < degree(); ++i )
|
|
{
|
|
setPoint( i - 1, q[ i ] );
|
|
}
|
|
|
|
|
|
delete[]( q );
|
|
|
|
|
|
return segment;
|
|
}
|
|
|
|
double
|
|
VSegment::height(
|
|
const KoPoint& a,
|
|
const KoPoint& p,
|
|
const KoPoint& b )
|
|
{
|
|
// Calculate determinant of AP and AB to obtain projection of vector AP to
|
|
// the orthogonal vector of AB.
|
|
const double det =
|
|
p.x() * a.y() + b.x() * p.y() - p.x() * b.y() -
|
|
a.x() * p.y() + a.x() * b.y() - b.x() * a.y();
|
|
|
|
// Calculate norm = length(AB).
|
|
const KoPoint ab = b - a;
|
|
const double norm = sqrt( ab * ab );
|
|
|
|
// If norm is very small, simply use distance AP.
|
|
if( norm < VGlobal::verySmallNumber )
|
|
return
|
|
sqrt(
|
|
( p.x() - a.x() ) * ( p.x() - a.x() ) +
|
|
( p.y() - a.y() ) * ( p.y() - a.y() ) );
|
|
|
|
// Normalize.
|
|
return TQABS( det ) / norm;
|
|
}
|
|
|
|
bool
|
|
VSegment::linesIntersect(
|
|
const KoPoint& a0,
|
|
const KoPoint& a1,
|
|
const KoPoint& b0,
|
|
const KoPoint& b1 )
|
|
{
|
|
const KoPoint delta_a = a1 - a0;
|
|
const double det_a = a1.x() * a0.y() - a1.y() * a0.x();
|
|
|
|
const double r_b0 = delta_a.y() * b0.x() - delta_a.x() * b0.y() + det_a;
|
|
const double r_b1 = delta_a.y() * b1.x() - delta_a.x() * b1.y() + det_a;
|
|
|
|
if( r_b0 != 0.0 && r_b1 != 0.0 && r_b0 * r_b1 > 0.0 )
|
|
return false;
|
|
|
|
const KoPoint delta_b = b1 - b0;
|
|
|
|
const double det_b = b1.x() * b0.y() - b1.y() * b0.x();
|
|
|
|
const double r_a0 = delta_b.y() * a0.x() - delta_b.x() * a0.y() + det_b;
|
|
const double r_a1 = delta_b.y() * a1.x() - delta_b.x() * a1.y() + det_b;
|
|
|
|
if( r_a0 != 0.0 && r_a1 != 0.0 && r_a0 * r_a1 > 0.0 )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
VSegment::intersects( const VSegment& segment ) const
|
|
{
|
|
if(
|
|
!prev() ||
|
|
!segment.prev() )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
|
|
//TODO: this just dumbs down beziers to lines!
|
|
return linesIntersect( segment.prev()->knot(), segment.knot(), prev()->knot(), knot() );
|
|
}
|
|
|
|
// TODO: Move this function into "userland"
|
|
uint
|
|
VSegment::nodeNear( const KoPoint& p, double isNearRange ) const
|
|
{
|
|
int index = 0;
|
|
|
|
for( unsigned short i = 0; i < degree(); ++i )
|
|
{
|
|
if( point( 0 ).isNear( p, isNearRange ) )
|
|
{
|
|
index = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
VSegment*
|
|
VSegment::revert() const
|
|
{
|
|
if( !prev() )
|
|
return 0L;
|
|
|
|
// Create new segment.
|
|
VSegment* segment = new VSegment( degree() );
|
|
|
|
segment->m_state = m_state;
|
|
|
|
|
|
// Swap points.
|
|
for( unsigned short i = 0; i < degree() - 1; ++i )
|
|
{
|
|
segment->setPoint( i, point( degree() - 2 - i ) );
|
|
}
|
|
|
|
segment->setKnot( prev()->knot() );
|
|
|
|
|
|
// TODO swap node attributes (selected)
|
|
|
|
return segment;
|
|
}
|
|
|
|
VSegment*
|
|
VSegment::prev() const
|
|
{
|
|
VSegment* segment = m_prev;
|
|
|
|
while( segment && segment->state() == deleted )
|
|
{
|
|
segment = segment->m_prev;
|
|
}
|
|
|
|
return segment;
|
|
}
|
|
|
|
VSegment*
|
|
VSegment::next() const
|
|
{
|
|
VSegment* segment = m_next;
|
|
|
|
while( segment && segment->state() == deleted )
|
|
{
|
|
segment = segment->m_next;
|
|
}
|
|
|
|
return segment;
|
|
}
|
|
|
|
// TODO: remove this backward compatibility function after koffice 1.3.x
|
|
void
|
|
VSegment::load( const TQDomElement& element )
|
|
{
|
|
if( element.tagName() == "CURVE" )
|
|
{
|
|
setDegree( 3 );
|
|
|
|
setPoint(
|
|
0,
|
|
KoPoint(
|
|
element.attribute( "x1" ).toDouble(),
|
|
element.attribute( "y1" ).toDouble() ) );
|
|
|
|
setPoint(
|
|
1,
|
|
KoPoint(
|
|
element.attribute( "x2" ).toDouble(),
|
|
element.attribute( "y2" ).toDouble() ) );
|
|
|
|
setKnot(
|
|
KoPoint(
|
|
element.attribute( "x3" ).toDouble(),
|
|
element.attribute( "y3" ).toDouble() ) );
|
|
}
|
|
else if( element.tagName() == "LINE" )
|
|
{
|
|
setDegree( 1 );
|
|
|
|
setKnot(
|
|
KoPoint(
|
|
element.attribute( "x" ).toDouble(),
|
|
element.attribute( "y" ).toDouble() ) );
|
|
}
|
|
else if( element.tagName() == "MOVE" )
|
|
{
|
|
setDegree( 1 );
|
|
|
|
setKnot(
|
|
KoPoint(
|
|
element.attribute( "x" ).toDouble(),
|
|
element.attribute( "y" ).toDouble() ) );
|
|
}
|
|
}
|
|
|
|
VSegment*
|
|
VSegment::clone() const
|
|
{
|
|
return new VSegment( *this );
|
|
}
|
|
|