You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/chalk/core/kis_convolution_painter.cc

427 lines
15 KiB

/*
* Copyright (c) 2005 Cyrille Berger <cberger@cberger.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <string.h>
#include <cfloat>
#include "tqbrush.h"
#include "tqcolor.h"
#include "tqfontinfo.h"
#include "tqfontmetrics.h"
#include "tqpen.h"
#include "tqregion.h"
#include "tqwmatrix.h"
#include <tqimage.h>
#include <tqmap.h>
#include <tqpainter.h>
#include <tqpixmap.h>
#include <tqpointarray.h>
#include <tqrect.h>
#include <tqstring.h>
#include <kdebug.h>
#include <klocale.h>
#include <tqcolor.h>
#include "kis_brush.h"
#include "kis_global.h"
#include "kis_image.h"
#include "kis_iterators_pixel.h"
#include "kis_layer.h"
#include "kis_paint_device.h"
#include "kis_painter.h"
#include "kis_pattern.h"
#include "kis_rect.h"
#include "kis_colorspace.h"
#include "kis_types.h"
#include "kis_vec.h"
#include "kis_selection.h"
#include "kis_convolution_painter.h"
KisKernelSP KisKernel::fromTQImage(const TQImage& img)
{
KisKernelSP k = new KisKernel;
k->width = img.width();
k->height = img.height();
k->offset = 0;
uint count = k->width * k->height;
k->data = new TQ_INT32[count];
TQ_INT32* itData = k->data;
TQ_UINT8* itImg = (TQ_UINT8*)img.bits();
k->factor = 0;
for(uint i = 0; i < count; ++i , ++itData, itImg+=4)
{
*itData = 255 - ( *itImg + *(itImg+1) + *(itImg+2) ) / 3;
k->factor += *itData;
}
return k;
}
KisConvolutionPainter::KisConvolutionPainter()
: super()
{
}
KisConvolutionPainter::KisConvolutionPainter(KisPaintDeviceSP device) : super(device)
{
}
void KisConvolutionPainter::applyMatrix(KisKernelSP kernel, TQ_INT32 x, TQ_INT32 y, TQ_INT32 w, TQ_INT32 h,
KisConvolutionBorderOp borderOp,
KisChannelInfo::enumChannelFlags channelFlags )
{
// Make the area we cover as small as possible
if (m_device->hasSelection()) {
TQRect r = m_device->selection()->selectedRect().intersect(TQRect(x, y, w, h));
x = r.x();
y = r.y();
w = r.width();
h = r.height();
}
if ( w == 0 && h == 0 ) return;
// Determine the kernel's extent from the center pixel
TQ_INT32 kw, kh, khalfWidth, khalfHeight, xLastMinuskhw, yLastMinuskhh;
kw = kernel->width;
kh = kernel->height;
khalfWidth = (kw - 1) / 2;
khalfHeight = (kh - 1) / 2;
xLastMinuskhw = x + (w - khalfWidth);
yLastMinuskhh = y + (h - khalfHeight);
// Don't try to convolve on an area smaller than the kernel, or with a kernel that is not square or has no center pixel.
if (w < kw || h < kh || (kw&1) == 0 || (kh&1) == 0 || kernel->factor == 0 ) return;
m_cancelRequested = false;
int lastProgressPercent = 0;
emit notifyProgress(0);
KisColorSpace * cs = m_device->colorSpace();
// Determine whether we convolve border pixels, or not.
switch (borderOp) {
case BORDER_DEFAULT_FILL :
break;
case BORDER_REPEAT:
applyMatrixRepeat(kernel, x, y, w, h, channelFlags);
return;
case BORDER_WRAP:
case BORDER_AVOID:
default :
x += khalfWidth;
y += khalfHeight;
w -= kw - 1;
h -= kh - 1;
}
// Iterate over all pixels in our rect, create a cache of pixels around the current pixel and convolve them in the colorstrategy.
int cacheSize = kw * kh;
int cdepth = cs -> pixelSize();
TQ_UINT8** pixelPtrCache = new TQ_UINT8*[cacheSize];
for (int i = 0; i < cacheSize; i++)
pixelPtrCache[i] = new TQ_UINT8[cdepth];
// pixelPtrCache.fill(0);
// row == the y position of the pixel we want to change in the paint device
int row = y;
for (; row < y + h; ++row) {
// col = the x position of the pixel we want to change
int col = x;
KisHLineIteratorPixel hit = m_device->createHLineIterator(x, row, w, true);
bool needFull = true;
while (!hit.isDone()) {
// Iterate over all contributing pixels that are covered by the kernel
// krow = the y position in the kernel matrix
if(needFull)
{
TQ_INT32 i = 0;
for (TQ_INT32 krow = 0; krow < kh; ++krow) {
// col - khalfWidth = the left starting point of the kernel as centered on our pixel
// krow - khalfHeight = the offset for the top of the kernel as centered on our pixel
// kw = the width of the kernel
// Fill the cache with pointers to the pixels under the kernel
KisHLineIteratorPixel kit = m_device->createHLineIterator(col - khalfWidth, (row - khalfHeight) + krow, kw, false);
while (!kit.isDone()) {
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
++kit;
++i;
}
}
needFull = false;
Q_ASSERT (i==kw*kh);
} else {
for (TQ_INT32 krow = 0; krow < kh; ++krow) { // shift the cache to the left
TQ_UINT8** d = pixelPtrCache + krow * kw;
//memmove( d, d + 1, (kw-1)*sizeof(TQ_UINT8*));
for (int i = 0; i < (kw-1); i++) {
memcpy(d[i], d[i+1], cdepth);
}
}
TQ_INT32 i = kw - 1;
KisVLineIteratorPixel kit = m_device->createVLineIterator(col + khalfWidth, row - khalfHeight, kh, false);
while (!kit.isDone()) {
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
++kit;
i += kw;
}
}
if (hit.isSelected()) {
cs->convolveColors(pixelPtrCache, kernel->data, channelFlags, hit.rawData(), kernel->factor, kernel->offset, kw * kh);
// pixelPtrCache.fill(0);
}
++col;
++hit;
}
int progressPercent = 100 - ((((y + h) - row) * 100) / h);
if (progressPercent > lastProgressPercent) {
emit notifyProgress(progressPercent);
lastProgressPercent = progressPercent;
if (m_cancelRequested) {
for (int i = 0; i < cacheSize; i++)
delete[] pixelPtrCache[i];
delete[] pixelPtrCache;
return;
}
}
}
addDirtyRect(TQRect(x, y, w, h));
emit notifyProgressDone();
for (int i = 0; i < cacheSize; i++)
delete[] pixelPtrCache[i];
delete[] pixelPtrCache;
}
void KisConvolutionPainter::applyMatrixRepeat(KisKernelSP kernel, TQ_INT32 x, TQ_INT32 y, TQ_INT32 w, TQ_INT32 h,
KisChannelInfo::enumChannelFlags channelFlags)
{
int lastProgressPercent = 0;
// Determine the kernel's extent from the center pixel
TQ_INT32 kw, kh, khalfWidth, khalfHeight, xLastMinuskhw, yLastMinuskhh;
kw = kernel->width;
kh = kernel->height;
khalfWidth = (kw - 1) / 2;
khalfHeight = (kh - 1) / 2;
xLastMinuskhw = x + (w - khalfWidth);
yLastMinuskhh = y + (h - khalfHeight);
KisColorSpace * cs = m_device->colorSpace();
// Iterate over all pixels in our rect, create a cache of pixels around the current pixel and convolve them in the colorstrategy.
int cacheSize = kw * kh;
int cdepth = cs -> pixelSize();
TQ_UINT8** pixelPtrCache = new TQ_UINT8*[cacheSize];
for (int i = 0; i < cacheSize; i++)
pixelPtrCache[i] = new TQ_UINT8[cdepth];
// row == the y position of the pixel we want to change in the paint device
int row = y;
for (; row < y + h; ++row) {
// col = the x position of the pixel we want to change
int col = x;
KisHLineIteratorPixel hit = m_device->createHLineIterator(x, row, w, true);
bool needFull = true;
TQ_INT32 itStart = row - khalfHeight;
TQ_INT32 itH = kh;
if(itStart < 0)
{
itH += itStart;
itStart = 0;
} else if(itStart + kh > yLastMinuskhh)
{
itH -= itStart + kh - yLastMinuskhh;
}
KisVLineIteratorPixel kit = m_device->createVLineIterator(col + khalfWidth, itStart, itH, false);
while (!hit.isDone()) {
// Iterate over all contributing pixels that are covered by the kernel
// krow = the y position in the kernel matrix
if(needFull) // The cache has not been fill, so we need to fill it
{
TQ_INT32 i = 0;
TQ_INT32 krow = 0;
if( row < khalfHeight )
{
// We are just outside the layer, all the row in the cache will be identical
// so we need to create them only once, and then to copy them
if( x < khalfWidth)
{ // the left pixels are outside of the layer, in the corner
TQ_INT32 kcol = 0;
KisHLineIteratorPixel kit = m_device->createHLineIterator(0, 0, kw, false);
for(; kcol < (khalfWidth - x) + 1; ++kcol)
{ // First copy the address of the topleft pixel
memcpy(pixelPtrCache[kcol], kit.oldRawData(), cdepth);
}
for(; kcol < kw; ++kcol)
{ // Then copy the address of the rest of the line
++kit;
memcpy(pixelPtrCache[kcol], kit.oldRawData(), cdepth);
}
} else {
uint kcol = 0;
KisHLineIteratorPixel kit = m_device->createHLineIterator(col - khalfWidth, 0, kw, false);
while (!kit.isDone()) {
memcpy(pixelPtrCache[kcol], kit.oldRawData(), cdepth);
++kit;
++kcol;
}
}
krow = 1; // we have allready done the first krow
for(;krow < (khalfHeight - row); ++krow)
{
// Copy the first line in the current line
for (int i = 0; i < kw; i++)
memcpy(pixelPtrCache[krow * kw + i], pixelPtrCache[i], cdepth);
}
i = krow * kw;
}
TQ_INT32 itH = kh;
if(row + khalfHeight > yLastMinuskhh)
{
itH += yLastMinuskhh - row - khalfHeight;
}
for (; krow < itH; ++krow) {
// col - khalfWidth = the left starting point of the kernel as centered on our pixel
// krow - khalfHeight = the offset for the top of the kernel as centered on our pixel
// kw = the width of the kernel
// Fill the cache with pointers to the pixels under the kernel
TQ_INT32 itHStart = col - khalfWidth;
TQ_INT32 itW = kw;
if(itHStart < 0)
{
itW += itHStart;
itHStart = 0;
}
KisHLineIteratorPixel kit = m_device->createHLineIterator(itHStart, (row - khalfHeight) + krow, itW, false);
if( col < khalfWidth )
{
for(; i < krow * kw + ( kw - itW ); i+= 1)
{
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
}
}
while (!kit.isDone()) {
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
++kit;
++i;
}
}
TQ_INT32 lastvalid = i - kw;
for(; krow < kh; ++krow) {
// Copy the last valid line in the current line
for (int i = 0; i < kw; i++)
memcpy(pixelPtrCache[krow * kw + i], pixelPtrCache[lastvalid + i],
cdepth);
}
needFull = false;
} else {
/* for (TQ_INT32 krow = 0; krow < kh; ++krow) { // shift the cache to the left
TQ_UINT8** d = pixelPtrCache + krow * kw;
// memmove( d, d + 1, (kw-1)*sizeof(TQ_UINT8*));
for (int i = 0; i < (kw-1); i++) {
memcpy(d[i], d[i+1], cdepth);
}
}*/
TQ_UINT8* firstincache = pixelPtrCache[0];
memmove(pixelPtrCache, pixelPtrCache + 1, (cacheSize - 1) * sizeof(TQ_UINT8*) );
pixelPtrCache[cacheSize - 1] = firstincache;
if(col < xLastMinuskhw)
{
TQ_INT32 i = kw - 1;
// KisVLineIteratorPixel kit = m_device->createVLineIterator(col + khalfWidth, itStart, itH, false);
kit.nextCol();
if( row < khalfHeight )
{
for(; i < (khalfHeight- row ) * kw; i+=kw)
{
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
}
}
while (!kit.isDone()) {
memcpy(pixelPtrCache[i], kit.oldRawData(), cdepth);
++kit;
i += kw;
}
TQ_INT32 lastvalid = i - kw;
for(;i < kw*kh; i+=kw)
{
memcpy(pixelPtrCache[i], pixelPtrCache[lastvalid], cdepth);
}
}
}
if (hit.isSelected()) {
cs->convolveColors(pixelPtrCache, kernel->data, channelFlags, hit.rawData(), kernel->factor, kernel->offset, kw * kh);
}
++col;
++hit;
}
int progressPercent = 100 - ((((y + h) - row) * 100) / h);
if (progressPercent > lastProgressPercent) {
emit notifyProgress(progressPercent);
lastProgressPercent = progressPercent;
if (m_cancelRequested) {
for (int i = 0; i < cacheSize; i++)
delete[] pixelPtrCache[i];
delete[] pixelPtrCache;
return;
}
}
}
addDirtyRect(TQRect(x, y, w, h));
emit notifyProgressDone();
for (int i = 0; i < cacheSize; i++)
delete[] pixelPtrCache[i];
delete[] pixelPtrCache;
}