You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/chalk/core/kis_brush.cc

1334 lines
40 KiB

/*
* Copyright (c) 1999 Matthias Elter <me@kde.org>
* Copyright (c) 2003 Patrick Julien <freak@codepimps.org>
* Copyright (c) 2004 Boudewijn Rempt <boud@valdyas.org>
* Copyright (c) 2004 Adrian Page <adrian@pagenet.plus.com>
* Copyright (c) 2005 Bart Coppens <kde@bartcoppens.be>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <netinet/in.h>
#include <limits.h>
#include <stdlib.h>
#include <cfloat>
#include <tqfile.h>
#include <tqimage.h>
#include <tqpoint.h>
#include <tqvaluevector.h>
#include <kdebug.h>
#include <tdelocale.h>
#include <kis_meta_registry.h>
#include "kis_paint_device.h"
#include "kis_global.h"
#include "kis_brush.h"
#include "kis_alpha_mask.h"
#include "kis_colorspace_factory_registry.h"
#include "kis_iterators_pixel.h"
#include "kis_image.h"
namespace {
struct GimpBrushV1Header {
TQ_UINT32 header_size; /* header_size = sizeof (BrushHeader) + brush name */
TQ_UINT32 version; /* brush file version # */
TQ_UINT32 width; /* width of brush */
TQ_UINT32 height; /* height of brush */
TQ_UINT32 bytes; /* depth of brush in bytes */
};
/// All fields are in MSB on disk!
struct GimpBrushHeader {
TQ_UINT32 header_size; /* header_size = sizeof (BrushHeader) + brush name */
TQ_UINT32 version; /* brush file version # */
TQ_UINT32 width; /* width of brush */
TQ_UINT32 height; /* height of brush */
TQ_UINT32 bytes; /* depth of brush in bytes */
/* The following are only defined in version 2 */
TQ_UINT32 magic_number; /* GIMP brush magic number */
TQ_UINT32 spacing; /* brush spacing as % of width & height, 0 - 1000 */
};
// Needed, or the GIMP won't open it!
TQ_UINT32 const GimpV2BrushMagic = ('G' << 24) + ('I' << 16) + ('M' << 8) + ('P' << 0);
}
#define DEFAULT_SPACING 0.25
#define MAXIMUM_SCALE 2
KisBrush::KisBrush(const TQString& filename) : super(filename)
{
m_brushType = INVALID;
m_ownData = true;
m_useColorAsMask = false;
m_hasColor = false;
m_spacing = DEFAULT_SPACING;
m_boundary = 0;
}
KisBrush::KisBrush(const TQString& filename,
const TQByteArray& data,
TQ_UINT32 & dataPos) : super(filename)
{
m_brushType = INVALID;
m_ownData = false;
m_useColorAsMask = false;
m_hasColor = false;
m_spacing = DEFAULT_SPACING;
m_boundary = 0;
m_data.setRawData(data.data() + dataPos, data.size() - dataPos);
init();
m_data.resetRawData(data.data() + dataPos, data.size() - dataPos);
dataPos += m_header_size + (width() * height() * m_bytes);
}
KisBrush::KisBrush(KisPaintDevice* image, int x, int y, int w, int h)
: super(TQString(""))
{
m_brushType = INVALID;
m_ownData = true;
m_useColorAsMask = false;
m_hasColor = true;
m_spacing = DEFAULT_SPACING;
m_boundary = 0;
initFromPaintDev(image, x, y, w, h);
}
KisBrush::KisBrush(const TQImage& image, const TQString& name)
: super(TQString(""))
{
m_ownData = false;
m_useColorAsMask = false;
m_hasColor = true;
m_spacing = DEFAULT_SPACING;
m_boundary = 0;
setImage(image);
setName(name);
setBrushType(IMAGE);
}
KisBrush::~KisBrush()
{
m_scaledBrushes.clear();
delete m_boundary;
}
bool KisBrush::load()
{
if (m_ownData) {
TQFile file(filename());
file.open(IO_ReadOnly);
m_data = file.readAll();
file.close();
}
return init();
}
bool KisBrush::init()
{
GimpBrushHeader bh;
if (sizeof(GimpBrushHeader) > m_data.size()) {
return false;
}
memcpy(&bh, &m_data[0], sizeof(GimpBrushHeader));
bh.header_size = ntohl(bh.header_size);
m_header_size = bh.header_size;
bh.version = ntohl(bh.version);
m_version = bh.version;
bh.width = ntohl(bh.width);
bh.height = ntohl(bh.height);
bh.bytes = ntohl(bh.bytes);
m_bytes = bh.bytes;
bh.magic_number = ntohl(bh.magic_number);
m_magic_number = bh.magic_number;
if (bh.version == 1) {
// No spacing in version 1 files so use Gimp default
bh.spacing = static_cast<int>(DEFAULT_SPACING * 100);
}
else {
bh.spacing = ntohl(bh.spacing);
if (bh.spacing > 1000) {
return false;
}
}
setSpacing(bh.spacing / 100.0);
if (bh.header_size > m_data.size() || bh.header_size == 0) {
return false;
}
TQString name;
if (bh.version == 1) {
// Version 1 has no magic number or spacing, so the name
// is at a different offset. Character encoding is undefined.
const char *text = &m_data[sizeof(GimpBrushV1Header)];
name = TQString::fromAscii(text, bh.header_size - sizeof(GimpBrushV1Header));
} else {
// ### Version = 3->cinepaint; may be float16 data!
// Version >=2: UTF-8 encoding is used
name = TQString::fromUtf8(&m_data[sizeof(GimpBrushHeader)],
bh.header_size - sizeof(GimpBrushHeader));
}
setName(i18n(name.ascii())); // Ascii? And what with real UTF-8 chars?
if (bh.width == 0 || bh.height == 0 || !m_img.create(bh.width, bh.height, 32)) {
return false;
}
TQ_INT32 k = bh.header_size;
if (bh.bytes == 1) {
// Grayscale
if (static_cast<TQ_UINT32>(k + bh.width * bh.height) > m_data.size()) {
return false;
}
m_brushType = MASK;
m_hasColor = false;
for (TQ_UINT32 y = 0; y < bh.height; y++) {
for (TQ_UINT32 x = 0; x < bh.width; x++, k++) {
TQ_INT32 val = 255 - static_cast<uchar>(m_data[k]);
m_img.setPixel(x, y, tqRgb(val, val, val));
}
}
} else if (bh.bytes == 4) {
// RGBA
if (static_cast<TQ_UINT32>(k + (bh.width * bh.height * 4)) > m_data.size()) {
return false;
}
m_brushType = IMAGE;
m_img.setAlphaBuffer(true);
m_hasColor = true;
for (TQ_UINT32 y = 0; y < bh.height; y++) {
for (TQ_UINT32 x = 0; x < bh.width; x++, k += 4) {
m_img.setPixel(x, y, tqRgba(m_data[k],
m_data[k+1],
m_data[k+2],
m_data[k+3]));
}
}
} else {
return false;
}
setWidth(m_img.width());
setHeight(m_img.height());
//createScaledBrushes();
if (m_ownData) {
m_data.resize(0); // Save some memory, we're using enough of it as it is.
}
if (m_img.width() == 0 || m_img.height() == 0)
setValid(false);
else
setValid(true);
return true;
}
bool KisBrush::initFromPaintDev(KisPaintDevice* image, int x, int y, int w, int h) {
// Forcefully convert to RGBA8
// XXX profile and exposure?
setImage(image->convertToTQImage(0, x, y, w, h));
setName(image->name());
m_brushType = IMAGE;
m_hasColor = true;
return true;
}
bool KisBrush::save()
{
TQFile file(filename());
file.open(IO_WriteOnly | IO_Truncate);
bool ok = saveToDevice(TQT_TQIODEVICE(&file));
file.close();
return ok;
}
bool KisBrush::saveToDevice(TQIODevice* dev) const
{
GimpBrushHeader bh;
TQCString utf8Name = name().utf8(); // Names in v2 brushes are in UTF-8
char const* name = utf8Name.data();
int nameLength = tqstrlen(name);
int wrote;
bh.header_size = htonl(sizeof(GimpBrushHeader) + nameLength);
bh.version = htonl(2); // Only RGBA8 data needed atm, no cinepaint stuff
bh.width = htonl(width());
bh.height = htonl(height());
// Hardcoded, 4 bytes RGBA or 1 byte GREY
if (!hasColor())
bh.bytes = htonl(1);
else
bh.bytes = htonl(4);
bh.magic_number = htonl(GimpV2BrushMagic);
bh.spacing = htonl(static_cast<TQ_UINT32>(spacing() * 100.0));
// Write header: first bh, then the name
TQByteArray bytes;
bytes.setRawData(reinterpret_cast<char*>(&bh), sizeof(GimpBrushHeader));
wrote = dev->writeBlock(bytes);
bytes.resetRawData(reinterpret_cast<char*>(&bh), sizeof(GimpBrushHeader));
if (wrote == -1)
return false;
wrote = dev->writeBlock(name, nameLength); // No +1 for the trailing NULL it seems...
if (wrote == -1)
return false;
int k = 0;
if (!hasColor()) {
bytes.resize(width() * height());
for (TQ_INT32 y = 0; y < height(); y++) {
for (TQ_INT32 x = 0; x < width(); x++) {
TQRgb c = m_img.pixel(x, y);
bytes[k++] = static_cast<char>(255 - tqRed(c)); // red == blue == green
}
}
} else {
bytes.resize(width() * height() * 4);
for (TQ_INT32 y = 0; y < height(); y++) {
for (TQ_INT32 x = 0; x < width(); x++) {
// order for gimp brushes, v2 is: RGBA
TQRgb pixel = m_img.pixel(x,y);
bytes[k++] = static_cast<char>(tqRed(pixel));
bytes[k++] = static_cast<char>(tqGreen(pixel));
bytes[k++] = static_cast<char>(tqBlue(pixel));
bytes[k++] = static_cast<char>(tqAlpha(pixel));
}
}
}
wrote = dev->writeBlock(bytes);
if (wrote == -1)
return false;
return true;
}
TQImage KisBrush::img()
{
TQImage image = m_img;
if (hasColor() && useColorAsMask()) {
image.detach();
for (int x = 0; x < image.width(); x++) {
for (int y = 0; y < image.height(); y++) {
TQRgb c = image.pixel(x, y);
int a = (tqGray(c) * tqAlpha(c)) / 255;
image.setPixel(x, y, tqRgba(a, 0, a, a));
}
}
}
return image;
}
KisAlphaMaskSP KisBrush::mask(const KisPaintInformation& info, double subPixelX, double subPixelY) const
{
if (m_scaledBrushes.isEmpty()) {
createScaledBrushes();
}
double scale = scaleForPressure(info.pressure);
const ScaledBrush *aboveBrush = 0;
const ScaledBrush *belowBrush = 0;
findScaledBrushes(scale, &aboveBrush, &belowBrush);
Q_ASSERT(aboveBrush != 0);
KisAlphaMaskSP outputMask = 0;
if (belowBrush != 0) {
// We're in between two masks. Interpolate between them.
KisAlphaMaskSP scaledAboveMask = scaleMask(aboveBrush, scale, subPixelX, subPixelY);
KisAlphaMaskSP scaledBelowMask = scaleMask(belowBrush, scale, subPixelX, subPixelY);
double t = (scale - belowBrush->scale()) / (aboveBrush->scale() - belowBrush->scale());
outputMask = KisAlphaMask::interpolate(scaledBelowMask, scaledAboveMask, t);
} else {
if (fabs(scale - aboveBrush->scale()) < DBL_EPSILON) {
// Exact match.
outputMask = scaleMask(aboveBrush, scale, subPixelX, subPixelY);
} else {
// We are smaller than the smallest mask, which is always 1x1.
double s = scale / aboveBrush->scale();
outputMask = scaleSinglePixelMask(s, aboveBrush->mask()->alphaAt(0, 0), subPixelX, subPixelY);
}
}
return outputMask;
}
KisPaintDeviceSP KisBrush::image(KisColorSpace * /*colorSpace*/, const KisPaintInformation& info, double subPixelX, double subPixelY) const
{
if (m_scaledBrushes.isEmpty()) {
createScaledBrushes();
}
double scale = scaleForPressure(info.pressure);
const ScaledBrush *aboveBrush = 0;
const ScaledBrush *belowBrush = 0;
findScaledBrushes(scale, &aboveBrush, &belowBrush);
Q_ASSERT(aboveBrush != 0);
TQImage outputImage;
if (belowBrush != 0) {
// We're in between two brushes. Interpolate between them.
TQImage scaledAboveImage = scaleImage(aboveBrush, scale, subPixelX, subPixelY);
TQImage scaledBelowImage = scaleImage(belowBrush, scale, subPixelX, subPixelY);
double t = (scale - belowBrush->scale()) / (aboveBrush->scale() - belowBrush->scale());
outputImage = interpolate(scaledBelowImage, scaledAboveImage, t);
} else {
if (fabs(scale - aboveBrush->scale()) < DBL_EPSILON) {
// Exact match.
outputImage = scaleImage(aboveBrush, scale, subPixelX, subPixelY);
} else {
// We are smaller than the smallest brush, which is always 1x1.
double s = scale / aboveBrush->scale();
outputImage = scaleSinglePixelImage(s, aboveBrush->image().pixel(0, 0), subPixelX, subPixelY);
}
}
int outputWidth = outputImage.width();
int outputHeight = outputImage.height();
KisPaintDevice *layer = new KisPaintDevice(KisMetaRegistry::instance()->csRegistry()->getRGB8(), "brush");
TQ_CHECK_PTR(layer);
for (int y = 0; y < outputHeight; y++) {
KisHLineIterator iter = layer->createHLineIterator( 0, y, outputWidth, true);
for (int x = 0; x < outputWidth; x++) {
TQ_UINT8 * p = iter.rawData();
TQRgb pixel = outputImage.pixel(x, y);
int red = tqRed(pixel);
int green = tqGreen(pixel);
int blue = tqBlue(pixel);
int alpha = tqAlpha(pixel);
// Scaled images are in pre-multiplied alpha form so
// divide by alpha.
// channel order is BGRA
if (alpha != 0) {
p[2] = (red * 255) / alpha;
p[1] = (green * 255) / alpha;
p[0] = (blue * 255) / alpha;
p[3] = alpha;
}
++iter;
}
}
return layer;
}
void KisBrush::setHotSpot(KisPoint pt)
{
double x = pt.x();
double y = pt.y();
if (x < 0)
x = 0;
else if (x >= width())
x = width() - 1;
if (y < 0)
y = 0;
else if (y >= height())
y = height() - 1;
m_hotSpot = KisPoint(x, y);
}
KisPoint KisBrush::hotSpot(const KisPaintInformation& info) const
{
double scale = scaleForPressure(info.pressure);
double w = width() * scale;
double h = height() * scale;
// The smallest brush we can produce is a single pixel.
if (w < 1) {
w = 1;
}
if (h < 1) {
h = 1;
}
// XXX: This should take m_hotSpot into account, though it
// isn't specified by gimp brushes so it would default to the centre
// anyway.
KisPoint p(w / 2, h / 2);
return p;
}
enumBrushType KisBrush::brushType() const
{
if (m_brushType == IMAGE && useColorAsMask()) {
return MASK;
}
else {
return m_brushType;
}
}
bool KisBrush::hasColor() const
{
return m_hasColor;
}
void KisBrush::createScaledBrushes() const
{
if (!m_scaledBrushes.isEmpty())
m_scaledBrushes.clear();
// Construct a series of brushes where each one's dimensions are
// half the size of the previous one.
int width = m_img.width() * MAXIMUM_SCALE;
int height = m_img.height() * MAXIMUM_SCALE;
TQImage scaledImage;
while (true) {
if (width >= m_img.width() && height >= m_img.height()) {
scaledImage = scaleImage(m_img, width, height);
}
else {
// Scale down the previous image once we're below 1:1.
scaledImage = scaleImage(scaledImage, width, height);
}
KisAlphaMaskSP scaledMask = new KisAlphaMask(scaledImage, hasColor());
TQ_CHECK_PTR(scaledMask);
double xScale = static_cast<double>(width) / m_img.width();
double yScale = static_cast<double>(height) / m_img.height();
double scale = xScale;
m_scaledBrushes.append(ScaledBrush(scaledMask, hasColor() ? scaledImage : TQImage(), scale, xScale, yScale));
if (width == 1 && height == 1) {
break;
}
// Round up so that we never have to scale an image by less than 1/2.
width = (width + 1) / 2;
height = (height + 1) / 2;
}
}
double KisBrush::xSpacing(double pressure) const
{
return width() * scaleForPressure(pressure) * m_spacing;
}
double KisBrush::ySpacing(double pressure) const
{
return height() * scaleForPressure(pressure) * m_spacing;
}
double KisBrush::scaleForPressure(double pressure)
{
double scale = pressure / PRESSURE_DEFAULT;
if (scale < 0) {
scale = 0;
}
if (scale > MAXIMUM_SCALE) {
scale = MAXIMUM_SCALE;
}
return scale;
}
TQ_INT32 KisBrush::maskWidth(const KisPaintInformation& info) const
{
// Add one for sub-pixel shift
return static_cast<TQ_INT32>(ceil(width() * scaleForPressure(info.pressure)) + 1);
}
TQ_INT32 KisBrush::maskHeight(const KisPaintInformation& info) const
{
// Add one for sub-pixel shift
return static_cast<TQ_INT32>(ceil(height() * scaleForPressure(info.pressure)) + 1);
}
KisAlphaMaskSP KisBrush::scaleMask(const ScaledBrush *srcBrush, double scale, double subPixelX, double subPixelY) const
{
// Add one pixel for sub-pixel shifting
int dstWidth = static_cast<int>(ceil(scale * width())) + 1;
int dstHeight = static_cast<int>(ceil(scale * height())) + 1;
KisAlphaMaskSP dstMask = new KisAlphaMask(dstWidth, dstHeight);
TQ_CHECK_PTR(dstMask);
KisAlphaMaskSP srcMask = srcBrush->mask();
// Compute scales to map the scaled brush onto the required scale.
double xScale = srcBrush->xScale() / scale;
double yScale = srcBrush->yScale() / scale;
int srcWidth = srcMask->width();
int srcHeight = srcMask->height();
for (int dstY = 0; dstY < dstHeight; dstY++) {
for (int dstX = 0; dstX < dstWidth; dstX++) {
double srcX = (dstX - subPixelX + 0.5) * xScale;
double srcY = (dstY - subPixelY + 0.5) * yScale;
srcX -= 0.5;
srcY -= 0.5;
int leftX = static_cast<int>(srcX);
if (srcX < 0) {
leftX--;
}
double xInterp = srcX - leftX;
int topY = static_cast<int>(srcY);
if (srcY < 0) {
topY--;
}
double yInterp = srcY - topY;
TQ_UINT8 topLeft = (leftX >= 0 && leftX < srcWidth && topY >= 0 && topY < srcHeight) ? srcMask->alphaAt(leftX, topY) : OPACITY_TRANSPARENT;
TQ_UINT8 bottomLeft = (leftX >= 0 && leftX < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcMask->alphaAt(leftX, topY + 1) : OPACITY_TRANSPARENT;
TQ_UINT8 topRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY >= 0 && topY < srcHeight) ? srcMask->alphaAt(leftX + 1, topY) : OPACITY_TRANSPARENT;
TQ_UINT8 bottomRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcMask->alphaAt(leftX + 1, topY + 1) : OPACITY_TRANSPARENT;
double a = 1 - xInterp;
double b = 1 - yInterp;
// Bi-linear interpolation
int d = static_cast<int>(a * b * topLeft
+ a * (1 - b) * bottomLeft
+ (1 - a) * b * topRight
+ (1 - a) * (1 - b) * bottomRight + 0.5);
if (d < OPACITY_TRANSPARENT) {
d = OPACITY_TRANSPARENT;
}
else
if (d > OPACITY_OPAQUE) {
d = OPACITY_OPAQUE;
}
dstMask->setAlphaAt(dstX, dstY, static_cast<TQ_UINT8>(d));
}
}
return dstMask;
}
TQImage KisBrush::scaleImage(const ScaledBrush *srcBrush, double scale, double subPixelX, double subPixelY) const
{
// Add one pixel for sub-pixel shifting
int dstWidth = static_cast<int>(ceil(scale * width())) + 1;
int dstHeight = static_cast<int>(ceil(scale * height())) + 1;
TQImage dstImage(dstWidth, dstHeight, 32);
dstImage.setAlphaBuffer(true);
const TQImage srcImage = srcBrush->image();
// Compute scales to map the scaled brush onto the required scale.
double xScale = srcBrush->xScale() / scale;
double yScale = srcBrush->yScale() / scale;
int srcWidth = srcImage.width();
int srcHeight = srcImage.height();
for (int dstY = 0; dstY < dstHeight; dstY++) {
for (int dstX = 0; dstX < dstWidth; dstX++) {
double srcX = (dstX - subPixelX + 0.5) * xScale;
double srcY = (dstY - subPixelY + 0.5) * yScale;
srcX -= 0.5;
srcY -= 0.5;
int leftX = static_cast<int>(srcX);
if (srcX < 0) {
leftX--;
}
double xInterp = srcX - leftX;
int topY = static_cast<int>(srcY);
if (srcY < 0) {
topY--;
}
double yInterp = srcY - topY;
TQRgb topLeft = (leftX >= 0 && leftX < srcWidth && topY >= 0 && topY < srcHeight) ? srcImage.pixel(leftX, topY) : tqRgba(0, 0, 0, 0);
TQRgb bottomLeft = (leftX >= 0 && leftX < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcImage.pixel(leftX, topY + 1) : tqRgba(0, 0, 0, 0);
TQRgb topRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY >= 0 && topY < srcHeight) ? srcImage.pixel(leftX + 1, topY) : tqRgba(0, 0, 0, 0);
TQRgb bottomRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcImage.pixel(leftX + 1, topY + 1) : tqRgba(0, 0, 0, 0);
double a = 1 - xInterp;
double b = 1 - yInterp;
// Bi-linear interpolation. Image is pre-multiplied by alpha.
int red = static_cast<int>(a * b * tqRed(topLeft)
+ a * (1 - b) * tqRed(bottomLeft)
+ (1 - a) * b * tqRed(topRight)
+ (1 - a) * (1 - b) * tqRed(bottomRight) + 0.5);
int green = static_cast<int>(a * b * tqGreen(topLeft)
+ a * (1 - b) * tqGreen(bottomLeft)
+ (1 - a) * b * tqGreen(topRight)
+ (1 - a) * (1 - b) * tqGreen(bottomRight) + 0.5);
int blue = static_cast<int>(a * b * tqBlue(topLeft)
+ a * (1 - b) * tqBlue(bottomLeft)
+ (1 - a) * b * tqBlue(topRight)
+ (1 - a) * (1 - b) * tqBlue(bottomRight) + 0.5);
int alpha = static_cast<int>(a * b * tqAlpha(topLeft)
+ a * (1 - b) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqAlpha(bottomRight) + 0.5);
if (red < 0) {
red = 0;
}
else
if (red > 255) {
red = 255;
}
if (green < 0) {
green = 0;
}
else
if (green > 255) {
green = 255;
}
if (blue < 0) {
blue = 0;
}
else
if (blue > 255) {
blue = 255;
}
if (alpha < 0) {
alpha = 0;
}
else
if (alpha > 255) {
alpha = 255;
}
dstImage.setPixel(dstX, dstY, tqRgba(red, green, blue, alpha));
}
}
return dstImage;
}
TQImage KisBrush::scaleImage(const TQImage& srcImage, int width, int height)
{
TQImage scaledImage;
//TQString filename;
int srcWidth = srcImage.width();
int srcHeight = srcImage.height();
double xScale = static_cast<double>(srcWidth) / width;
double yScale = static_cast<double>(srcHeight) / height;
if (xScale > 2 + DBL_EPSILON || yScale > 2 + DBL_EPSILON || xScale < 1 - DBL_EPSILON || yScale < 1 - DBL_EPSILON) {
// smoothScale gives better results when scaling an image up
// or scaling it to less than half size.
scaledImage = srcImage.smoothScale(width, height);
//filename = TQString("smoothScale_%1x%2.png").arg(width).arg(height);
}
else {
scaledImage.create(width, height, 32);
scaledImage.setAlphaBuffer(srcImage.hasAlphaBuffer());
for (int dstY = 0; dstY < height; dstY++) {
for (int dstX = 0; dstX < width; dstX++) {
double srcX = (dstX + 0.5) * xScale;
double srcY = (dstY + 0.5) * yScale;
srcX -= 0.5;
srcY -= 0.5;
int leftX = static_cast<int>(srcX);
if (srcX < 0) {
leftX--;
}
double xInterp = srcX - leftX;
int topY = static_cast<int>(srcY);
if (srcY < 0) {
topY--;
}
double yInterp = srcY - topY;
TQRgb topLeft = (leftX >= 0 && leftX < srcWidth && topY >= 0 && topY < srcHeight) ? srcImage.pixel(leftX, topY) : tqRgba(0, 0, 0, 0);
TQRgb bottomLeft = (leftX >= 0 && leftX < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcImage.pixel(leftX, topY + 1) : tqRgba(0, 0, 0, 0);
TQRgb topRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY >= 0 && topY < srcHeight) ? srcImage.pixel(leftX + 1, topY) : tqRgba(0, 0, 0, 0);
TQRgb bottomRight = (leftX + 1 >= 0 && leftX + 1 < srcWidth && topY + 1 >= 0 && topY + 1 < srcHeight) ? srcImage.pixel(leftX + 1, topY + 1) : tqRgba(0, 0, 0, 0);
double a = 1 - xInterp;
double b = 1 - yInterp;
int red;
int green;
int blue;
int alpha;
if (srcImage.hasAlphaBuffer()) {
red = static_cast<int>(a * b * tqRed(topLeft) * tqAlpha(topLeft)
+ a * (1 - b) * tqRed(bottomLeft) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqRed(topRight) * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqRed(bottomRight) * tqAlpha(bottomRight) + 0.5);
green = static_cast<int>(a * b * tqGreen(topLeft) * tqAlpha(topLeft)
+ a * (1 - b) * tqGreen(bottomLeft) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqGreen(topRight) * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqGreen(bottomRight) * tqAlpha(bottomRight) + 0.5);
blue = static_cast<int>(a * b * tqBlue(topLeft) * tqAlpha(topLeft)
+ a * (1 - b) * tqBlue(bottomLeft) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqBlue(topRight) * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqBlue(bottomRight) * tqAlpha(bottomRight) + 0.5);
alpha = static_cast<int>(a * b * tqAlpha(topLeft)
+ a * (1 - b) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqAlpha(bottomRight) + 0.5);
if (alpha != 0) {
red /= alpha;
green /= alpha;
blue /= alpha;
}
}
else {
red = static_cast<int>(a * b * tqRed(topLeft)
+ a * (1 - b) * tqRed(bottomLeft)
+ (1 - a) * b * tqRed(topRight)
+ (1 - a) * (1 - b) * tqRed(bottomRight) + 0.5);
green = static_cast<int>(a * b * tqGreen(topLeft)
+ a * (1 - b) * tqGreen(bottomLeft)
+ (1 - a) * b * tqGreen(topRight)
+ (1 - a) * (1 - b) * tqGreen(bottomRight) + 0.5);
blue = static_cast<int>(a * b * tqBlue(topLeft)
+ a * (1 - b) * tqBlue(bottomLeft)
+ (1 - a) * b * tqBlue(topRight)
+ (1 - a) * (1 - b) * tqBlue(bottomRight) + 0.5);
alpha = 255;
}
if (red < 0) {
red = 0;
}
else
if (red > 255) {
red = 255;
}
if (green < 0) {
green = 0;
}
else
if (green > 255) {
green = 255;
}
if (blue < 0) {
blue = 0;
}
else
if (blue > 255) {
blue = 255;
}
if (alpha < 0) {
alpha = 0;
}
else
if (alpha > 255) {
alpha = 255;
}
scaledImage.setPixel(dstX, dstY, tqRgba(red, green, blue, alpha));
}
}
//filename = TQString("bilinear_%1x%2.png").arg(width).arg(height);
}
//scaledImage.save(filename, "PNG");
return scaledImage;
}
void KisBrush::findScaledBrushes(double scale, const ScaledBrush **aboveBrush, const ScaledBrush **belowBrush) const
{
uint current = 0;
while (true) {
*aboveBrush = &(m_scaledBrushes[current]);
if (fabs((*aboveBrush)->scale() - scale) < DBL_EPSILON) {
// Scale matches exactly
break;
}
if (current == m_scaledBrushes.count() - 1) {
// This is the last one
break;
}
if (scale > m_scaledBrushes[current + 1].scale() + DBL_EPSILON) {
// We fit in between the two.
*belowBrush = &(m_scaledBrushes[current + 1]);
break;
}
current++;
}
}
KisAlphaMaskSP KisBrush::scaleSinglePixelMask(double scale, TQ_UINT8 maskValue, double subPixelX, double subPixelY)
{
int srcWidth = 1;
int srcHeight = 1;
int dstWidth = 2;
int dstHeight = 2;
KisAlphaMaskSP outputMask = new KisAlphaMask(dstWidth, dstHeight);
TQ_CHECK_PTR(outputMask);
double a = subPixelX;
double b = subPixelY;
for (int y = 0; y < dstHeight; y++) {
for (int x = 0; x < dstWidth; x++) {
TQ_UINT8 topLeft = (x > 0 && y > 0) ? maskValue : OPACITY_TRANSPARENT;
TQ_UINT8 bottomLeft = (x > 0 && y < srcHeight) ? maskValue : OPACITY_TRANSPARENT;
TQ_UINT8 topRight = (x < srcWidth && y > 0) ? maskValue : OPACITY_TRANSPARENT;
TQ_UINT8 bottomRight = (x < srcWidth && y < srcHeight) ? maskValue : OPACITY_TRANSPARENT;
// Bi-linear interpolation
int d = static_cast<int>(a * b * topLeft
+ a * (1 - b) * bottomLeft
+ (1 - a) * b * topRight
+ (1 - a) * (1 - b) * bottomRight + 0.5);
// Multiply by the square of the scale because a 0.5x0.5 pixel
// has 0.25 the value of the 1x1.
d = static_cast<int>(d * scale * scale + 0.5);
if (d < OPACITY_TRANSPARENT) {
d = OPACITY_TRANSPARENT;
}
else
if (d > OPACITY_OPAQUE) {
d = OPACITY_OPAQUE;
}
outputMask->setAlphaAt(x, y, static_cast<TQ_UINT8>(d));
}
}
return outputMask;
}
TQImage KisBrush::scaleSinglePixelImage(double scale, TQRgb pixel, double subPixelX, double subPixelY)
{
int srcWidth = 1;
int srcHeight = 1;
int dstWidth = 2;
int dstHeight = 2;
TQImage outputImage(dstWidth, dstHeight, 32);
outputImage.setAlphaBuffer(true);
double a = subPixelX;
double b = subPixelY;
for (int y = 0; y < dstHeight; y++) {
for (int x = 0; x < dstWidth; x++) {
TQRgb topLeft = (x > 0 && y > 0) ? pixel : tqRgba(0, 0, 0, 0);
TQRgb bottomLeft = (x > 0 && y < srcHeight) ? pixel : tqRgba(0, 0, 0, 0);
TQRgb topRight = (x < srcWidth && y > 0) ? pixel : tqRgba(0, 0, 0, 0);
TQRgb bottomRight = (x < srcWidth && y < srcHeight) ? pixel : tqRgba(0, 0, 0, 0);
// Bi-linear interpolation. Images are in pre-multiplied form.
int red = static_cast<int>(a * b * tqRed(topLeft)
+ a * (1 - b) * tqRed(bottomLeft)
+ (1 - a) * b * tqRed(topRight)
+ (1 - a) * (1 - b) * tqRed(bottomRight) + 0.5);
int green = static_cast<int>(a * b * tqGreen(topLeft)
+ a * (1 - b) * tqGreen(bottomLeft)
+ (1 - a) * b * tqGreen(topRight)
+ (1 - a) * (1 - b) * tqGreen(bottomRight) + 0.5);
int blue = static_cast<int>(a * b * tqBlue(topLeft)
+ a * (1 - b) * tqBlue(bottomLeft)
+ (1 - a) * b * tqBlue(topRight)
+ (1 - a) * (1 - b) * tqBlue(bottomRight) + 0.5);
int alpha = static_cast<int>(a * b * tqAlpha(topLeft)
+ a * (1 - b) * tqAlpha(bottomLeft)
+ (1 - a) * b * tqAlpha(topRight)
+ (1 - a) * (1 - b) * tqAlpha(bottomRight) + 0.5);
// Multiply by the square of the scale because a 0.5x0.5 pixel
// has 0.25 the value of the 1x1.
alpha = static_cast<int>(alpha * scale * scale + 0.5);
// Apply to the colour channels too since we are
// storing pre-multiplied by alpha.
red = static_cast<int>(red * scale * scale + 0.5);
green = static_cast<int>(green * scale * scale + 0.5);
blue = static_cast<int>(blue * scale * scale + 0.5);
if (red < 0) {
red = 0;
}
else
if (red > 255) {
red = 255;
}
if (green < 0) {
green = 0;
}
else
if (green > 255) {
green = 255;
}
if (blue < 0) {
blue = 0;
}
else
if (blue > 255) {
blue = 255;
}
if (alpha < 0) {
alpha = 0;
}
else
if (alpha > 255) {
alpha = 255;
}
outputImage.setPixel(x, y, tqRgba(red, green, blue, alpha));
}
}
return outputImage;
}
TQImage KisBrush::interpolate(const TQImage& image1, const TQImage& image2, double t)
{
Q_ASSERT((image1.width() == image2.width()) && (image1.height() == image2.height()));
Q_ASSERT(t > -DBL_EPSILON && t < 1 + DBL_EPSILON);
int width = image1.width();
int height = image1.height();
TQImage outputImage(width, height, 32);
outputImage.setAlphaBuffer(true);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
TQRgb image1pixel = image1.pixel(x, y);
TQRgb image2pixel = image2.pixel(x, y);
// Images are in pre-multiplied alpha format.
int red = static_cast<int>((1 - t) * tqRed(image1pixel) + t * tqRed(image2pixel) + 0.5);
int green = static_cast<int>((1 - t) * tqGreen(image1pixel) + t * tqGreen(image2pixel) + 0.5);
int blue = static_cast<int>((1 - t) * tqBlue(image1pixel) + t * tqBlue(image2pixel) + 0.5);
int alpha = static_cast<int>((1 - t) * tqAlpha(image1pixel) + t * tqAlpha(image2pixel) + 0.5);
if (red < 0) {
red = 0;
}
else
if (red > 255) {
red = 255;
}
if (green < 0) {
green = 0;
}
else
if (green > 255) {
green = 255;
}
if (blue < 0) {
blue = 0;
}
else
if (blue > 255) {
blue = 255;
}
if (alpha < 0) {
alpha = 0;
}
else
if (alpha > 255) {
alpha = 255;
}
outputImage.setPixel(x, y, tqRgba(red, green, blue, alpha));
}
}
return outputImage;
}
KisBrush::ScaledBrush::ScaledBrush()
{
m_mask = 0;
m_image = TQImage();
m_scale = 1;
m_xScale = 1;
m_yScale = 1;
}
KisBrush::ScaledBrush::ScaledBrush(KisAlphaMaskSP scaledMask, const TQImage& scaledImage, double scale, double xScale, double yScale)
{
m_mask = scaledMask;
m_image = scaledImage;
m_scale = scale;
m_xScale = xScale;
m_yScale = yScale;
if (!m_image.isNull()) {
// Convert image to pre-multiplied by alpha.
m_image.detach();
for (int y = 0; y < m_image.height(); y++) {
for (int x = 0; x < m_image.width(); x++) {
TQRgb pixel = m_image.pixel(x, y);
int red = tqRed(pixel);
int green = tqGreen(pixel);
int blue = tqBlue(pixel);
int alpha = tqAlpha(pixel);
red = (red * alpha) / 255;
green = (green * alpha) / 255;
blue = (blue * alpha) / 255;
m_image.setPixel(x, y, tqRgba(red, green, blue, alpha));
}
}
}
}
void KisBrush::setImage(const TQImage& img)
{
m_img = img;
m_img.detach();
setWidth(img.width());
setHeight(img.height());
m_scaledBrushes.clear();
setValid(true);
}
TQ_INT32 KisBrush::width() const
{
return m_width;
}
void KisBrush::setWidth(TQ_INT32 w)
{
m_width = w;
}
TQ_INT32 KisBrush::height() const
{
return m_height;
}
void KisBrush::setHeight(TQ_INT32 h)
{
m_height = h;
}
/*TQImage KisBrush::outline(double pressure) {
KisLayerSP layer = image(KisMetaRegistry::instance()->csRegistry()->getColorSpace(KisID("RGBA",""),""),
KisPaintInformation(pressure));
KisBoundary bounds(layer.data());
int w = maskWidth(pressure);
int h = maskHeight(pressure);
bounds.generateBoundary(w, h);
TQPixmap pix(bounds.pixmap(w, h));
TQImage result;
result = pix;
return result;
}*/
void KisBrush::generateBoundary() {
KisPaintDeviceSP dev;
int w = maskWidth(KisPaintInformation());
int h = maskHeight(KisPaintInformation());
if (brushType() == IMAGE || brushType() == PIPE_IMAGE) {
dev = image(KisMetaRegistry::instance()->csRegistry() ->getColorSpace(KisID("RGBA",""),""), KisPaintInformation());
} else {
KisAlphaMaskSP amask = mask(KisPaintInformation());
KisColorSpace* cs = KisMetaRegistry::instance()->csRegistry()->getColorSpace(KisID("RGBA",""),"");
dev = new KisPaintDevice(cs, "tmp for generateBoundary");
for (int y = 0; y < h; y++) {
KisHLineIteratorPixel it = dev->createHLineIterator(0, y, w, true);
int x = 0;
while(!it.isDone()) {
cs->setAlpha(it.rawData(), amask->alphaAt(x++, y), 1);
++it;
}
}
}
m_boundary = new KisBoundary(dev);
m_boundary->generateBoundary(w, h);
}
KisBoundary KisBrush::boundary() {
if (!m_boundary)
generateBoundary();
return *m_boundary;
}
void KisBrush::makeMaskImage() {
if (!hasColor())
return;
TQImage img;
img.create(width(), height(), 32);
if (m_img.width() == img.width() && m_img.height() == img.height()) {
for (int x = 0; x < width(); x++) {
for (int y = 0; y < height(); y++) {
TQRgb c = m_img.pixel(x, y);
int a = (tqGray(c) * tqAlpha(c)) / 255; // tqGray(black) = 0
img.setPixel(x, y, tqRgba(a, a, a, 255));
}
}
m_img = img;
}
m_brushType = MASK;
m_hasColor = false;
m_useColorAsMask = false;
delete m_boundary;
m_boundary = 0;
m_scaledBrushes.clear();
}
KisBrush* KisBrush::clone() const {
KisBrush* c = new KisBrush("");
c->m_spacing = m_spacing;
c->m_useColorAsMask = m_useColorAsMask;
c->m_hasColor = m_useColorAsMask;
c->m_img = m_img;
c->m_width = m_width;
c->m_height = m_height;
c->m_ownData = false;
c->m_hotSpot = m_hotSpot;
c->m_brushType = m_brushType;
c->setValid(true);
return c;
}
#include "kis_brush.moc"