You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
libtdevnc/libvncserver/tight.c

1905 lines
70 KiB

24 years ago
/*
* tight.c
*
* Routines to implement Tight Encoding
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
*
* Our Tight encoder is based roughly on the TurboVNC v0.6 encoder with some
* additional enhancements from TurboVNC 1.1. For lower compression levels,
* this encoder provides a tremendous reduction in CPU usage (and subsequently,
* an increase in throughput for CPU-limited environments) relative to the
* TightVNC encoder, whereas Compression Level 9 provides a low-bandwidth mode
* that behaves similarly to Compression Levels 5-9 in the old TightVNC
* encoder.
24 years ago
*/
/*
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
* Copyright (C) 2010-2012 D. R. Commander. All Rights Reserved.
* Copyright (C) 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright (C) 2004 Landmark Graphics Corporation. All Rights Reserved.
24 years ago
* Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
* Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
24 years ago
* USA.
*/
#include <rfb/rfb.h>
#include "private.h"
#ifdef LIBVNCSERVER_HAVE_LIBPNG
#include <png.h>
#endif
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
#include "turbojpeg.h"
24 years ago
/* Note: The following constant should not be changed. */
#define TIGHT_MIN_TO_COMPRESS 12
/* The parameters below may be adjusted. */
#define MIN_SPLIT_RECT_SIZE 4096
#define MIN_SOLID_SUBRECT_SIZE 2048
#define MAX_SPLIT_TILE_SIZE 16
/*
* There is so much access of the Tight encoding static data buffers
* that we resort to using thread local storage instead of having
* per-client data.
*/
#if LIBVNCSERVER_HAVE_LIBPTHREAD && LIBVNCSERVER_HAVE_TLS && !defined(TLS) && defined(__linux__)
#define TLS __thread
#endif
#ifndef TLS
#define TLS
#endif
24 years ago
/* This variable is set on every rfbSendRectEncodingTight() call. */
static TLS rfbBool usePixelFormat24 = FALSE;
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
/* Compression level stuff. The following array contains various
encoder parameters for each of 10 compression levels (0..9).
Last three parameters correspond to JPEG quality levels (0..9). */
typedef struct TIGHT_CONF_s {
int maxRectSize, maxRectWidth;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
int monoMinRectSize;
int idxZlibLevel, monoZlibLevel, rawZlibLevel;
24 years ago
int idxMaxColorsDivisor;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
int palMaxColorsWithJPEG;
24 years ago
} TIGHT_CONF;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static TIGHT_CONF tightConf[4] = {
{ 65536, 2048, 6, 0, 0, 0, 4, 24 }, /* 0 (used only without JPEG) */
{ 65536, 2048, 32, 1, 1, 1, 96, 24 }, /* 1 */
{ 65536, 2048, 32, 3, 3, 2, 96, 96 }, /* 2 (used only with JPEG) */
{ 65536, 2048, 32, 7, 7, 5, 96, 256 } /* 9 */
24 years ago
};
#ifdef LIBVNCSERVER_HAVE_LIBPNG
typedef struct TIGHT_PNG_CONF_s {
int png_zlib_level, png_filters;
} TIGHT_PNG_CONF;
static TIGHT_PNG_CONF tightPngConf[10] = {
{ 0, PNG_NO_FILTERS },
{ 1, PNG_NO_FILTERS },
{ 2, PNG_NO_FILTERS },
{ 3, PNG_NO_FILTERS },
{ 4, PNG_NO_FILTERS },
{ 5, PNG_ALL_FILTERS },
{ 6, PNG_ALL_FILTERS },
{ 7, PNG_ALL_FILTERS },
{ 8, PNG_ALL_FILTERS },
{ 9, PNG_ALL_FILTERS },
};
#endif
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static TLS int compressLevel = 1;
static TLS int qualityLevel = 95;
static TLS int subsampLevel = TJ_444;
static const int subsampLevel2tjsubsamp[4] = {
TJ_444, TJ_420, TJ_422, TJ_GRAYSCALE
};
24 years ago
/* Stuff dealing with palettes. */
typedef struct COLOR_LIST_s {
struct COLOR_LIST_s *next;
int idx;
uint32_t rgb;
24 years ago
} COLOR_LIST;
typedef struct PALETTE_ENTRY_s {
COLOR_LIST *listNode;
int numPixels;
} PALETTE_ENTRY;
typedef struct PALETTE_s {
PALETTE_ENTRY entry[256];
COLOR_LIST *hash[256];
COLOR_LIST list[256];
} PALETTE;
/* TODO: move into rfbScreen struct */
static TLS int paletteNumColors = 0;
static TLS int paletteMaxColors = 0;
static TLS uint32_t monoBackground = 0;
static TLS uint32_t monoForeground = 0;
static TLS PALETTE palette;
24 years ago
/* Pointers to dynamically-allocated buffers. */
static TLS int tightBeforeBufSize = 0;
static TLS char *tightBeforeBuf = NULL;
24 years ago
static TLS int tightAfterBufSize = 0;
static TLS char *tightAfterBuf = NULL;
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static TLS tjhandle j = NULL;
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
void rfbTightCleanup (rfbScreenInfoPtr screen)
{
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tightBeforeBufSize) {
free (tightBeforeBuf);
tightBeforeBufSize = 0;
tightBeforeBuf = NULL;
}
if (tightAfterBufSize) {
free (tightAfterBuf);
tightAfterBufSize = 0;
tightAfterBuf = NULL;
}
10 years ago
if (j) {
tjDestroy(j);
/* Set freed resource handle to 0! */
10 years ago
j = 0;
}
}
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
/* Prototypes for static functions. */
static rfbBool SendRectEncodingTight(rfbClientPtr cl, int x, int y,
int w, int h);
24 years ago
static void FindBestSolidArea (rfbClientPtr cl, int x, int y, int w, int h,
uint32_t colorValue, int *w_ptr, int *h_ptr);
24 years ago
static void ExtendSolidArea (rfbClientPtr cl, int x, int y, int w, int h,
uint32_t colorValue,
24 years ago
int *x_ptr, int *y_ptr, int *w_ptr, int *h_ptr);
static rfbBool CheckSolidTile (rfbClientPtr cl, int x, int y, int w, int h,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
uint32_t *colorPtr, rfbBool needSameColor);
static rfbBool CheckSolidTile8 (rfbClientPtr cl, int x, int y, int w, int h,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
uint32_t *colorPtr, rfbBool needSameColor);
static rfbBool CheckSolidTile16 (rfbClientPtr cl, int x, int y, int w, int h,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
uint32_t *colorPtr, rfbBool needSameColor);
static rfbBool CheckSolidTile32 (rfbClientPtr cl, int x, int y, int w, int h,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
uint32_t *colorPtr, rfbBool needSameColor);
static rfbBool SendRectSimple (rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool SendSubrect (rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool SendTightHeader (rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool SendSolidRect (rfbClientPtr cl);
static rfbBool SendMonoRect (rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool SendIndexedRect (rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool SendFullColorRect (rfbClientPtr cl, int x, int y, int w, int h);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static rfbBool CompressData (rfbClientPtr cl, int streamId, int dataLen,
int zlibLevel, int zlibStrategy);
static rfbBool SendCompressedData (rfbClientPtr cl, char *buf,
int compressedLen);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static void FillPalette8 (int count);
static void FillPalette16 (int count);
static void FillPalette32 (int count);
static void FastFillPalette16 (rfbClientPtr cl, uint16_t *data, int w,
int pitch, int h);
static void FastFillPalette32 (rfbClientPtr cl, uint32_t *data, int w,
int pitch, int h);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static void PaletteReset (void);
static int PaletteInsert (uint32_t rgb, int numPixels, int bpp);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static void Pack24 (rfbClientPtr cl, char *buf, rfbPixelFormat *fmt,
int count);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static void EncodeIndexedRect16 (uint8_t *buf, int count);
static void EncodeIndexedRect32 (uint8_t *buf, int count);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static void EncodeMonoRect8 (uint8_t *buf, int w, int h);
static void EncodeMonoRect16 (uint8_t *buf, int w, int h);
static void EncodeMonoRect32 (uint8_t *buf, int w, int h);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static rfbBool SendJpegRect (rfbClientPtr cl, int x, int y, int w, int h,
int quality);
static void PrepareRowForImg(rfbClientPtr cl, uint8_t *dst, int x, int y, int count);
static void PrepareRowForImg24(rfbClientPtr cl, uint8_t *dst, int x, int y, int count);
static void PrepareRowForImg16(rfbClientPtr cl, uint8_t *dst, int x, int y, int count);
static void PrepareRowForImg32(rfbClientPtr cl, uint8_t *dst, int x, int y, int count);
24 years ago
#ifdef LIBVNCSERVER_HAVE_LIBPNG
static rfbBool SendPngRect(rfbClientPtr cl, int x, int y, int w, int h);
static rfbBool CanSendPngRect(rfbClientPtr cl, int w, int h);
#endif
24 years ago
/*
* Tight encoding implementation.
*/
int
rfbNumCodedRectsTight(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
int maxRectSize, maxRectWidth;
int subrectMaxWidth, subrectMaxHeight;
/* No matter how many rectangles we will send if LastRect markers
are used to terminate rectangle stream. */
if (cl->enableLastRectEncoding && w * h >= MIN_SPLIT_RECT_SIZE)
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
return 0;
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
maxRectSize = tightConf[compressLevel].maxRectSize;
maxRectWidth = tightConf[compressLevel].maxRectWidth;
24 years ago
if (w > maxRectWidth || w * h > maxRectSize) {
subrectMaxWidth = (w > maxRectWidth) ? maxRectWidth : w;
subrectMaxHeight = maxRectSize / subrectMaxWidth;
return (((w - 1) / maxRectWidth + 1) *
((h - 1) / subrectMaxHeight + 1));
} else {
return 1;
}
}
rfbBool
rfbSendRectEncodingTight(rfbClientPtr cl,
int x,
int y,
int w,
int h)
{
cl->tightEncoding = rfbEncodingTight;
return SendRectEncodingTight(cl, x, y, w, h);
}
rfbBool
rfbSendRectEncodingTightPng(rfbClientPtr cl,
int x,
int y,
int w,
int h)
{
cl->tightEncoding = rfbEncodingTightPng;
return SendRectEncodingTight(cl, x, y, w, h);
}
rfbBool
SendRectEncodingTight(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
int nMaxRows;
uint32_t colorValue;
24 years ago
int dx, dy, dw, dh;
int x_best, y_best, w_best, h_best;
char *fbptr;
rfbSendUpdateBuf(cl);
compressLevel = cl->tightCompressLevel;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
qualityLevel = cl->turboQualityLevel;
subsampLevel = cl->turboSubsampLevel;
/* We only allow compression levels that have a demonstrable performance
benefit. CL 0 with JPEG reduces CPU usage for workloads that have low
numbers of unique colors, but the same thing can be accomplished by
using CL 0 without JPEG (AKA "Lossless Tight.") For those same
low-color workloads, CL 2 can provide typically 20-40% better
compression than CL 1 (with a commensurate increase in CPU usage.) For
high-color workloads, CL 1 should always be used, as higher compression
levels increase CPU usage for these workloads without providing any
significant reduction in bandwidth. */
if (qualityLevel != -1) {
if (compressLevel < 1) compressLevel = 1;
if (compressLevel > 2) compressLevel = 2;
}
/* With JPEG disabled, CL 2 offers no significant bandwidth savings over
CL 1, so we don't include it. */
else if (compressLevel > 1) compressLevel = 1;
/* CL 9 (which maps internally to CL 3) is included mainly for backward
compatibility with TightVNC Compression Levels 5-9. It should be used
only in extremely low-bandwidth cases in which it can be shown to have a
benefit. For low-color workloads, it provides typically only 10-20%
better compression than CL 2 with JPEG and CL 1 without JPEG, and it
uses, on average, twice as much CPU time. */
if (cl->tightCompressLevel == 9) compressLevel = 3;
24 years ago
if ( cl->format.depth == 24 && cl->format.redMax == 0xFF &&
cl->format.greenMax == 0xFF && cl->format.blueMax == 0xFF ) {
usePixelFormat24 = TRUE;
} else {
usePixelFormat24 = FALSE;
}
if (!cl->enableLastRectEncoding || w * h < MIN_SPLIT_RECT_SIZE)
return SendRectSimple(cl, x, y, w, h);
/* Make sure we can write at least one pixel into tightBeforeBuf. */
24 years ago
if (tightBeforeBufSize < 4) {
tightBeforeBufSize = 4;
if (tightBeforeBuf == NULL)
tightBeforeBuf = (char *)malloc(tightBeforeBufSize);
24 years ago
else
tightBeforeBuf = (char *)realloc(tightBeforeBuf,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
tightBeforeBufSize);
24 years ago
}
/* Calculate maximum number of rows in one non-solid rectangle. */
{
int maxRectSize, maxRectWidth, nMaxWidth;
maxRectSize = tightConf[compressLevel].maxRectSize;
maxRectWidth = tightConf[compressLevel].maxRectWidth;
nMaxWidth = (w > maxRectWidth) ? maxRectWidth : w;
nMaxRows = maxRectSize / nMaxWidth;
}
24 years ago
/* Try to find large solid-color areas and send them separately. */
for (dy = y; dy < y + h; dy += MAX_SPLIT_TILE_SIZE) {
/* If a rectangle becomes too large, send its upper part now. */
if (dy - y >= nMaxRows) {
if (!SendRectSimple(cl, x, y, w, nMaxRows))
return 0;
y += nMaxRows;
h -= nMaxRows;
}
24 years ago
dh = (dy + MAX_SPLIT_TILE_SIZE <= y + h) ?
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
MAX_SPLIT_TILE_SIZE : (y + h - dy);
24 years ago
for (dx = x; dx < x + w; dx += MAX_SPLIT_TILE_SIZE) {
dw = (dx + MAX_SPLIT_TILE_SIZE <= x + w) ?
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
MAX_SPLIT_TILE_SIZE : (x + w - dx);
24 years ago
if (CheckSolidTile(cl, dx, dy, dw, dh, &colorValue, FALSE)) {
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (subsampLevel == TJ_GRAYSCALE && qualityLevel != -1) {
uint32_t r = (colorValue >> 16) & 0xFF;
uint32_t g = (colorValue >> 8) & 0xFF;
uint32_t b = (colorValue) & 0xFF;
double y = (0.257 * (double)r) + (0.504 * (double)g)
+ (0.098 * (double)b) + 16.;
colorValue = (int)y + (((int)y) << 8) + (((int)y) << 16);
}
24 years ago
/* Get dimensions of solid-color area. */
FindBestSolidArea(cl, dx, dy, w - (dx - x), h - (dy - y),
colorValue, &w_best, &h_best);
/* Make sure a solid rectangle is large enough
(or the whole rectangle is of the same color). */
if ( w_best * h_best != w * h &&
w_best * h_best < MIN_SOLID_SUBRECT_SIZE )
continue;
/* Try to extend solid rectangle to maximum size. */
x_best = dx; y_best = dy;
ExtendSolidArea(cl, x, y, w, h, colorValue,
&x_best, &y_best, &w_best, &h_best);
/* Send rectangles at top and left to solid-color area. */
if ( y_best != y &&
!SendRectSimple(cl, x, y, w, y_best-y) )
return FALSE;
if ( x_best != x &&
!SendRectEncodingTight(cl, x, y_best,
24 years ago
x_best-x, h_best) )
return FALSE;
/* Send solid-color rectangle. */
if (!SendTightHeader(cl, x_best, y_best, w_best, h_best))
return FALSE;
fbptr = (cl->scaledScreen->frameBuffer +
(cl->scaledScreen->paddedWidthInBytes * y_best) +
(x_best * (cl->scaledScreen->bitsPerPixel / 8)));
24 years ago
(*cl->translateFn)(cl->translateLookupTable, &cl->screen->serverFormat,
24 years ago
&cl->format, fbptr, tightBeforeBuf,
cl->scaledScreen->paddedWidthInBytes, 1, 1);
24 years ago
if (!SendSolidRect(cl))
return FALSE;
/* Send remaining rectangles (at right and bottom). */
if ( x_best + w_best != x + w &&
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
!SendRectEncodingTight(cl, x_best + w_best, y_best,
w - (x_best-x) - w_best, h_best) )
24 years ago
return FALSE;
if ( y_best + h_best != y + h &&
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
!SendRectEncodingTight(cl, x, y_best + h_best,
w, h - (y_best-y) - h_best) )
24 years ago
return FALSE;
/* Return after all recursive calls are done. */
return TRUE;
}
}
}
/* No suitable solid-color rectangles found. */
return SendRectSimple(cl, x, y, w, h);
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
static void
FindBestSolidArea(rfbClientPtr cl,
int x,
int y,
int w,
int h,
uint32_t colorValue,
int *w_ptr,
int *h_ptr)
24 years ago
{
int dx, dy, dw, dh;
int w_prev;
int w_best = 0, h_best = 0;
w_prev = w;
for (dy = y; dy < y + h; dy += MAX_SPLIT_TILE_SIZE) {
dh = (dy + MAX_SPLIT_TILE_SIZE <= y + h) ?
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
MAX_SPLIT_TILE_SIZE : (y + h - dy);
24 years ago
dw = (w_prev > MAX_SPLIT_TILE_SIZE) ?
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
MAX_SPLIT_TILE_SIZE : w_prev;
24 years ago
if (!CheckSolidTile(cl, x, dy, dw, dh, &colorValue, TRUE))
break;
for (dx = x + dw; dx < x + w_prev;) {
dw = (dx + MAX_SPLIT_TILE_SIZE <= x + w_prev) ?
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
MAX_SPLIT_TILE_SIZE : (x + w_prev - dx);
24 years ago
if (!CheckSolidTile(cl, dx, dy, dw, dh, &colorValue, TRUE))
break;
dx += dw;
}
w_prev = dx - x;
if (w_prev * (dy + dh - y) > w_best * h_best) {
w_best = w_prev;
h_best = dy + dh - y;
}
}
*w_ptr = w_best;
*h_ptr = h_best;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
static void
ExtendSolidArea(rfbClientPtr cl,
int x,
int y,
int w,
int h,
uint32_t colorValue,
int *x_ptr,
int *y_ptr,
int *w_ptr,
int *h_ptr)
24 years ago
{
int cx, cy;
/* Try to extend the area upwards. */
for ( cy = *y_ptr - 1;
cy >= y && CheckSolidTile(cl, *x_ptr, cy, *w_ptr, 1, &colorValue, TRUE);
cy-- );
*h_ptr += *y_ptr - (cy + 1);
*y_ptr = cy + 1;
/* ... downwards. */
for ( cy = *y_ptr + *h_ptr;
cy < y + h &&
CheckSolidTile(cl, *x_ptr, cy, *w_ptr, 1, &colorValue, TRUE);
cy++ );
*h_ptr += cy - (*y_ptr + *h_ptr);
/* ... to the left. */
for ( cx = *x_ptr - 1;
cx >= x && CheckSolidTile(cl, cx, *y_ptr, 1, *h_ptr, &colorValue, TRUE);
cx-- );
*w_ptr += *x_ptr - (cx + 1);
*x_ptr = cx + 1;
/* ... to the right. */
for ( cx = *x_ptr + *w_ptr;
cx < x + w &&
CheckSolidTile(cl, cx, *y_ptr, 1, *h_ptr, &colorValue, TRUE);
cx++ );
*w_ptr += cx - (*x_ptr + *w_ptr);
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
/*
* Check if a rectangle is all of the same color. If needSameColor is
* set to non-zero, then also check that its color equals to the
* *colorPtr value. The result is 1 if the test is successful, and in
* that case new color will be stored in *colorPtr.
*/
static rfbBool CheckSolidTile(rfbClientPtr cl, int x, int y, int w, int h, uint32_t* colorPtr, rfbBool needSameColor)
24 years ago
{
switch(cl->screen->serverFormat.bitsPerPixel) {
24 years ago
case 32:
return CheckSolidTile32(cl, x, y, w, h, colorPtr, needSameColor);
case 16:
return CheckSolidTile16(cl, x, y, w, h, colorPtr, needSameColor);
default:
return CheckSolidTile8(cl, x, y, w, h, colorPtr, needSameColor);
}
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
#define DEFINE_CHECK_SOLID_FUNCTION(bpp) \
\
static rfbBool \
CheckSolidTile##bpp(rfbClientPtr cl, int x, int y, int w, int h, \
uint32_t* colorPtr, rfbBool needSameColor) \
24 years ago
{ \
uint##bpp##_t *fbptr; \
uint##bpp##_t colorValue; \
24 years ago
int dx, dy; \
\
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
fbptr = (uint##bpp##_t *)&cl->scaledScreen->frameBuffer \
[y * cl->scaledScreen->paddedWidthInBytes + x * (bpp/8)]; \
24 years ago
\
colorValue = *fbptr; \
if (needSameColor && (uint32_t)colorValue != *colorPtr) \
24 years ago
return FALSE; \
\
for (dy = 0; dy < h; dy++) { \
for (dx = 0; dx < w; dx++) { \
if (colorValue != fbptr[dx]) \
return FALSE; \
} \
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
fbptr = (uint##bpp##_t *)((uint8_t *)fbptr \
+ cl->scaledScreen->paddedWidthInBytes); \
24 years ago
} \
\
*colorPtr = (uint32_t)colorValue; \
24 years ago
return TRUE; \
}
DEFINE_CHECK_SOLID_FUNCTION(8)
DEFINE_CHECK_SOLID_FUNCTION(16)
DEFINE_CHECK_SOLID_FUNCTION(32)
static rfbBool
SendRectSimple(rfbClientPtr cl, int x, int y, int w, int h)
24 years ago
{
int maxBeforeSize, maxAfterSize;
int maxRectSize, maxRectWidth;
int subrectMaxWidth, subrectMaxHeight;
int dx, dy;
int rw, rh;
maxRectSize = tightConf[compressLevel].maxRectSize;
maxRectWidth = tightConf[compressLevel].maxRectWidth;
maxBeforeSize = maxRectSize * (cl->format.bitsPerPixel / 8);
maxAfterSize = maxBeforeSize + (maxBeforeSize + 99) / 100 + 12;
if (tightBeforeBufSize < maxBeforeSize) {
tightBeforeBufSize = maxBeforeSize;
if (tightBeforeBuf == NULL)
tightBeforeBuf = (char *)malloc(tightBeforeBufSize);
24 years ago
else
tightBeforeBuf = (char *)realloc(tightBeforeBuf,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
tightBeforeBufSize);
24 years ago
}
if (tightAfterBufSize < maxAfterSize) {
tightAfterBufSize = maxAfterSize;
if (tightAfterBuf == NULL)
tightAfterBuf = (char *)malloc(tightAfterBufSize);
24 years ago
else
tightAfterBuf = (char *)realloc(tightAfterBuf,
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
tightAfterBufSize);
24 years ago
}
if (w > maxRectWidth || w * h > maxRectSize) {
subrectMaxWidth = (w > maxRectWidth) ? maxRectWidth : w;
subrectMaxHeight = maxRectSize / subrectMaxWidth;
for (dy = 0; dy < h; dy += subrectMaxHeight) {
for (dx = 0; dx < w; dx += maxRectWidth) {
rw = (dx + maxRectWidth < w) ? maxRectWidth : w - dx;
rh = (dy + subrectMaxHeight < h) ? subrectMaxHeight : h - dy;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (!SendSubrect(cl, x + dx, y + dy, rw, rh))
24 years ago
return FALSE;
}
}
} else {
if (!SendSubrect(cl, x, y, w, h))
return FALSE;
}
return TRUE;
}
static rfbBool
SendSubrect(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
char *fbptr;
rfbBool success = FALSE;
24 years ago
/* Send pending data if there is more than 128 bytes. */
if (cl->ublen > 128) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
24 years ago
if (!SendTightHeader(cl, x, y, w, h))
return FALSE;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
fbptr = (cl->scaledScreen->frameBuffer
+ (cl->scaledScreen->paddedWidthInBytes * y)
+ (x * (cl->scaledScreen->bitsPerPixel / 8)));
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (subsampLevel == TJ_GRAYSCALE && qualityLevel != -1)
return SendJpegRect(cl, x, y, w, h, qualityLevel);
24 years ago
paletteMaxColors = w * h / tightConf[compressLevel].idxMaxColorsDivisor;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if(qualityLevel != -1)
paletteMaxColors = tightConf[compressLevel].palMaxColorsWithJPEG;
24 years ago
if ( paletteMaxColors < 2 &&
w * h >= tightConf[compressLevel].monoMinRectSize ) {
paletteMaxColors = 2;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (cl->format.bitsPerPixel == cl->screen->serverFormat.bitsPerPixel &&
cl->format.redMax == cl->screen->serverFormat.redMax &&
cl->format.greenMax == cl->screen->serverFormat.greenMax &&
cl->format.blueMax == cl->screen->serverFormat.blueMax &&
cl->format.bitsPerPixel >= 16) {
/* This is so we can avoid translating the pixels when compressing
with JPEG, since it is unnecessary */
switch (cl->format.bitsPerPixel) {
case 16:
FastFillPalette16(cl, (uint16_t *)fbptr, w,
cl->scaledScreen->paddedWidthInBytes / 2, h);
break;
default:
FastFillPalette32(cl, (uint32_t *)fbptr, w,
cl->scaledScreen->paddedWidthInBytes / 4, h);
}
if(paletteNumColors != 0 || qualityLevel == -1) {
(*cl->translateFn)(cl->translateLookupTable,
&cl->screen->serverFormat, &cl->format, fbptr,
tightBeforeBuf,
cl->scaledScreen->paddedWidthInBytes, w, h);
}
}
else {
(*cl->translateFn)(cl->translateLookupTable, &cl->screen->serverFormat,
&cl->format, fbptr, tightBeforeBuf,
cl->scaledScreen->paddedWidthInBytes, w, h);
switch (cl->format.bitsPerPixel) {
case 8:
FillPalette8(w * h);
break;
case 16:
FillPalette16(w * h);
break;
default:
FillPalette32(w * h);
}
24 years ago
}
switch (paletteNumColors) {
case 0:
/* Truecolor image */
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (qualityLevel != -1) {
success = SendJpegRect(cl, x, y, w, h, qualityLevel);
24 years ago
} else {
success = SendFullColorRect(cl, x, y, w, h);
24 years ago
}
break;
case 1:
/* Solid rectangle */
success = SendSolidRect(cl);
break;
case 2:
/* Two-color rectangle */
success = SendMonoRect(cl, x, y, w, h);
24 years ago
break;
default:
/* Up to 256 different colors */
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
success = SendIndexedRect(cl, x, y, w, h);
24 years ago
}
return success;
}
static rfbBool
SendTightHeader(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
rfbFramebufferUpdateRectHeader rect;
if (cl->ublen + sz_rfbFramebufferUpdateRectHeader > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
rect.r.x = Swap16IfLE(x);
rect.r.y = Swap16IfLE(y);
rect.r.w = Swap16IfLE(w);
rect.r.h = Swap16IfLE(h);
rect.encoding = Swap32IfLE(cl->tightEncoding);
24 years ago
memcpy(&cl->updateBuf[cl->ublen], (char *)&rect,
sz_rfbFramebufferUpdateRectHeader);
cl->ublen += sz_rfbFramebufferUpdateRectHeader;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
rfbStatRecordEncodingSent(cl, cl->tightEncoding,
sz_rfbFramebufferUpdateRectHeader,
sz_rfbFramebufferUpdateRectHeader
+ w * (cl->format.bitsPerPixel / 8) * h);
24 years ago
return TRUE;
}
/*
* Subencoding implementations.
*/
static rfbBool
SendSolidRect(rfbClientPtr cl)
24 years ago
{
int len;
if (usePixelFormat24) {
Pack24(cl, tightBeforeBuf, &cl->format, 1);
len = 3;
} else
len = cl->format.bitsPerPixel / 8;
if (cl->ublen + 1 + len > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
cl->updateBuf[cl->ublen++] = (char)(rfbTightFill << 4);
memcpy (&cl->updateBuf[cl->ublen], tightBeforeBuf, len);
cl->ublen += len;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, len + 1);
24 years ago
return TRUE;
}
static rfbBool
SendMonoRect(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
int streamId = 1;
int paletteLen, dataLen;
#ifdef LIBVNCSERVER_HAVE_LIBPNG
if (CanSendPngRect(cl, w, h)) {
/* TODO: setup palette maybe */
return SendPngRect(cl, x, y, w, h);
/* TODO: destroy palette maybe */
}
#endif
if ( cl->ublen + TIGHT_MIN_TO_COMPRESS + 6 +
2 * cl->format.bitsPerPixel / 8 > UPDATE_BUF_SIZE ) {
24 years ago
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
/* Prepare tight encoding header. */
dataLen = (w + 7) / 8;
dataLen *= h;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tightConf[compressLevel].monoZlibLevel == 0 &&
cl->tightEncoding != rfbEncodingTightPng)
cl->updateBuf[cl->ublen++] =
(char)((rfbTightNoZlib | rfbTightExplicitFilter) << 4);
else
cl->updateBuf[cl->ublen++] = (streamId | rfbTightExplicitFilter) << 4;
24 years ago
cl->updateBuf[cl->ublen++] = rfbTightFilterPalette;
cl->updateBuf[cl->ublen++] = 1;
/* Prepare palette, convert image. */
switch (cl->format.bitsPerPixel) {
case 32:
EncodeMonoRect32((uint8_t *)tightBeforeBuf, w, h);
24 years ago
((uint32_t *)tightAfterBuf)[0] = monoBackground;
((uint32_t *)tightAfterBuf)[1] = monoForeground;
24 years ago
if (usePixelFormat24) {
Pack24(cl, tightAfterBuf, &cl->format, 2);
paletteLen = 6;
} else
paletteLen = 8;
memcpy(&cl->updateBuf[cl->ublen], tightAfterBuf, paletteLen);
cl->ublen += paletteLen;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 3 + paletteLen);
24 years ago
break;
case 16:
EncodeMonoRect16((uint8_t *)tightBeforeBuf, w, h);
24 years ago
((uint16_t *)tightAfterBuf)[0] = (uint16_t)monoBackground;
((uint16_t *)tightAfterBuf)[1] = (uint16_t)monoForeground;
24 years ago
memcpy(&cl->updateBuf[cl->ublen], tightAfterBuf, 4);
cl->ublen += 4;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 7);
24 years ago
break;
default:
EncodeMonoRect8((uint8_t *)tightBeforeBuf, w, h);
24 years ago
cl->updateBuf[cl->ublen++] = (char)monoBackground;
cl->updateBuf[cl->ublen++] = (char)monoForeground;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 5);
24 years ago
}
return CompressData(cl, streamId, dataLen,
tightConf[compressLevel].monoZlibLevel,
Z_DEFAULT_STRATEGY);
}
static rfbBool
SendIndexedRect(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
int streamId = 2;
int i, entryLen;
#ifdef LIBVNCSERVER_HAVE_LIBPNG
if (CanSendPngRect(cl, w, h)) {
return SendPngRect(cl, x, y, w, h);
}
#endif
if ( cl->ublen + TIGHT_MIN_TO_COMPRESS + 6 +
paletteNumColors * cl->format.bitsPerPixel / 8 >
24 years ago
UPDATE_BUF_SIZE ) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
/* Prepare tight encoding header. */
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tightConf[compressLevel].idxZlibLevel == 0 &&
cl->tightEncoding != rfbEncodingTightPng)
cl->updateBuf[cl->ublen++] =
(char)((rfbTightNoZlib | rfbTightExplicitFilter) << 4);
else
cl->updateBuf[cl->ublen++] = (streamId | rfbTightExplicitFilter) << 4;
24 years ago
cl->updateBuf[cl->ublen++] = rfbTightFilterPalette;
cl->updateBuf[cl->ublen++] = (char)(paletteNumColors - 1);
/* Prepare palette, convert image. */
switch (cl->format.bitsPerPixel) {
case 32:
EncodeIndexedRect32((uint8_t *)tightBeforeBuf, w * h);
24 years ago
for (i = 0; i < paletteNumColors; i++) {
((uint32_t *)tightAfterBuf)[i] =
24 years ago
palette.entry[i].listNode->rgb;
}
if (usePixelFormat24) {
Pack24(cl, tightAfterBuf, &cl->format, paletteNumColors);
entryLen = 3;
} else
entryLen = 4;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
memcpy(&cl->updateBuf[cl->ublen], tightAfterBuf,
paletteNumColors * entryLen);
24 years ago
cl->ublen += paletteNumColors * entryLen;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding,
3 + paletteNumColors * entryLen);
24 years ago
break;
case 16:
EncodeIndexedRect16((uint8_t *)tightBeforeBuf, w * h);
24 years ago
for (i = 0; i < paletteNumColors; i++) {
((uint16_t *)tightAfterBuf)[i] =
(uint16_t)palette.entry[i].listNode->rgb;
24 years ago
}
memcpy(&cl->updateBuf[cl->ublen], tightAfterBuf, paletteNumColors * 2);
cl->ublen += paletteNumColors * 2;
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding,
3 + paletteNumColors * 2);
24 years ago
break;
default:
return FALSE; /* Should never happen. */
}
return CompressData(cl, streamId, w * h,
tightConf[compressLevel].idxZlibLevel,
Z_DEFAULT_STRATEGY);
}
static rfbBool
SendFullColorRect(rfbClientPtr cl,
int x,
int y,
int w,
int h)
24 years ago
{
int streamId = 0;
int len;
#ifdef LIBVNCSERVER_HAVE_LIBPNG
if (CanSendPngRect(cl, w, h)) {
return SendPngRect(cl, x, y, w, h);
}
#endif
24 years ago
if (cl->ublen + TIGHT_MIN_TO_COMPRESS + 1 > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tightConf[compressLevel].rawZlibLevel == 0 &&
cl->tightEncoding != rfbEncodingTightPng)
cl->updateBuf[cl->ublen++] = (char)(rfbTightNoZlib << 4);
else
cl->updateBuf[cl->ublen++] = 0x00; /* stream id = 0, no flushing, no filter */
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
24 years ago
if (usePixelFormat24) {
Pack24(cl, tightBeforeBuf, &cl->format, w * h);
len = 3;
} else
len = cl->format.bitsPerPixel / 8;
return CompressData(cl, streamId, w * h * len,
tightConf[compressLevel].rawZlibLevel,
Z_DEFAULT_STRATEGY);
}
static rfbBool
CompressData(rfbClientPtr cl,
int streamId,
int dataLen,
int zlibLevel,
int zlibStrategy)
24 years ago
{
z_streamp pz;
int err;
if (dataLen < TIGHT_MIN_TO_COMPRESS) {
memcpy(&cl->updateBuf[cl->ublen], tightBeforeBuf, dataLen);
cl->ublen += dataLen;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, dataLen);
24 years ago
return TRUE;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (zlibLevel == 0)
return SendCompressedData (cl, tightBeforeBuf, dataLen);
24 years ago
pz = &cl->zsStruct[streamId];
/* Initialize compression stream if needed. */
if (!cl->zsActive[streamId]) {
pz->zalloc = Z_NULL;
pz->zfree = Z_NULL;
pz->opaque = Z_NULL;
err = deflateInit2 (pz, zlibLevel, Z_DEFLATED, MAX_WBITS,
MAX_MEM_LEVEL, zlibStrategy);
if (err != Z_OK)
return FALSE;
cl->zsActive[streamId] = TRUE;
cl->zsLevel[streamId] = zlibLevel;
}
/* Prepare buffer pointers. */
pz->next_in = (Bytef *)tightBeforeBuf;
pz->avail_in = dataLen;
pz->next_out = (Bytef *)tightAfterBuf;
pz->avail_out = tightAfterBufSize;
/* Change compression parameters if needed. */
if (zlibLevel != cl->zsLevel[streamId]) {
if (deflateParams (pz, zlibLevel, zlibStrategy) != Z_OK) {
return FALSE;
}
cl->zsLevel[streamId] = zlibLevel;
}
/* Actual compression. */
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (deflate(pz, Z_SYNC_FLUSH) != Z_OK ||
pz->avail_in != 0 || pz->avail_out == 0) {
24 years ago
return FALSE;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
return SendCompressedData(cl, tightAfterBuf,
tightAfterBufSize - pz->avail_out);
24 years ago
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static rfbBool SendCompressedData(rfbClientPtr cl, char *buf,
int compressedLen)
24 years ago
{
int i, portionLen;
cl->updateBuf[cl->ublen++] = compressedLen & 0x7F;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
24 years ago
if (compressedLen > 0x7F) {
cl->updateBuf[cl->ublen-1] |= 0x80;
cl->updateBuf[cl->ublen++] = compressedLen >> 7 & 0x7F;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
24 years ago
if (compressedLen > 0x3FFF) {
cl->updateBuf[cl->ublen-1] |= 0x80;
cl->updateBuf[cl->ublen++] = compressedLen >> 14 & 0xFF;
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
24 years ago
}
}
portionLen = UPDATE_BUF_SIZE;
for (i = 0; i < compressedLen; i += portionLen) {
if (i + portionLen > compressedLen) {
portionLen = compressedLen - i;
}
if (cl->ublen + portionLen > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
memcpy(&cl->updateBuf[cl->ublen], &buf[i], portionLen);
24 years ago
cl->ublen += portionLen;
}
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, compressedLen);
24 years ago
return TRUE;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
/*
* Code to determine how many different colors used in rectangle.
*/
static void
FillPalette8(int count)
24 years ago
{
uint8_t *data = (uint8_t *)tightBeforeBuf;
uint8_t c0, c1;
24 years ago
int i, n0, n1;
paletteNumColors = 0;
c0 = data[0];
for (i = 1; i < count && data[i] == c0; i++);
if (i == count) {
paletteNumColors = 1;
return; /* Solid rectangle */
}
if (paletteMaxColors < 2)
return;
n0 = i;
c1 = data[i];
n1 = 0;
for (i++; i < count; i++) {
if (data[i] == c0) {
n0++;
} else if (data[i] == c1) {
n1++;
} else
break;
}
if (i == count) {
if (n0 > n1) {
monoBackground = (uint32_t)c0;
monoForeground = (uint32_t)c1;
24 years ago
} else {
monoBackground = (uint32_t)c1;
monoForeground = (uint32_t)c0;
24 years ago
}
paletteNumColors = 2; /* Two colors */
}
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
#define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
\
static void \
FillPalette##bpp(int count) { \
uint##bpp##_t *data = (uint##bpp##_t *)tightBeforeBuf; \
uint##bpp##_t c0, c1, ci; \
24 years ago
int i, n0, n1, ni; \
\
c0 = data[0]; \
for (i = 1; i < count && data[i] == c0; i++); \
if (i >= count) { \
24 years ago
paletteNumColors = 1; /* Solid rectangle */ \
return; \
} \
\
if (paletteMaxColors < 2) { \
paletteNumColors = 0; /* Full-color encoding preferred */ \
return; \
} \
\
n0 = i; \
c1 = data[i]; \
n1 = 0; \
for (i++; i < count; i++) { \
ci = data[i]; \
if (ci == c0) { \
n0++; \
} else if (ci == c1) { \
n1++; \
} else \
break; \
} \
if (i >= count) { \
24 years ago
if (n0 > n1) { \
monoBackground = (uint32_t)c0; \
monoForeground = (uint32_t)c1; \
24 years ago
} else { \
monoBackground = (uint32_t)c1; \
monoForeground = (uint32_t)c0; \
24 years ago
} \
paletteNumColors = 2; /* Two colors */ \
return; \
} \
\
PaletteReset(); \
PaletteInsert (c0, (uint32_t)n0, bpp); \
PaletteInsert (c1, (uint32_t)n1, bpp); \
24 years ago
\
ni = 1; \
for (i++; i < count; i++) { \
if (data[i] == ci) { \
ni++; \
} else { \
if (!PaletteInsert (ci, (uint32_t)ni, bpp)) \
24 years ago
return; \
ci = data[i]; \
ni = 1; \
} \
} \
PaletteInsert (ci, (uint32_t)ni, bpp); \
24 years ago
}
DEFINE_FILL_PALETTE_FUNCTION(16)
DEFINE_FILL_PALETTE_FUNCTION(32)
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
#define DEFINE_FAST_FILL_PALETTE_FUNCTION(bpp) \
\
static void \
FastFillPalette##bpp(rfbClientPtr cl, uint##bpp##_t *data, int w, \
int pitch, int h) \
{ \
uint##bpp##_t c0, c1, ci, mask, c0t, c1t, cit; \
int i, j, i2 = 0, j2, n0, n1, ni; \
\
if (cl->translateFn != rfbTranslateNone) { \
mask = cl->screen->serverFormat.redMax \
<< cl->screen->serverFormat.redShift; \
mask |= cl->screen->serverFormat.greenMax \
<< cl->screen->serverFormat.greenShift; \
mask |= cl->screen->serverFormat.blueMax \
<< cl->screen->serverFormat.blueShift; \
} else mask = ~0; \
\
c0 = data[0] & mask; \
for (j = 0; j < h; j++) { \
for (i = 0; i < w; i++) { \
if ((data[j * pitch + i] & mask) != c0) \
goto done; \
} \
} \
done: \
if (j >= h) { \
paletteNumColors = 1; /* Solid rectangle */ \
return; \
} \
if (paletteMaxColors < 2) { \
paletteNumColors = 0; /* Full-color encoding preferred */ \
return; \
} \
\
n0 = j * w + i; \
c1 = data[j * pitch + i] & mask; \
n1 = 0; \
i++; if (i >= w) {i = 0; j++;} \
for (j2 = j; j2 < h; j2++) { \
for (i2 = i; i2 < w; i2++) { \
ci = data[j2 * pitch + i2] & mask; \
if (ci == c0) { \
n0++; \
} else if (ci == c1) { \
n1++; \
} else \
goto done2; \
} \
i = 0; \
} \
done2: \
(*cl->translateFn)(cl->translateLookupTable, \
&cl->screen->serverFormat, &cl->format, \
(char *)&c0, (char *)&c0t, bpp/8, 1, 1); \
(*cl->translateFn)(cl->translateLookupTable, \
&cl->screen->serverFormat, &cl->format, \
(char *)&c1, (char *)&c1t, bpp/8, 1, 1); \
if (j2 >= h) { \
if (n0 > n1) { \
monoBackground = (uint32_t)c0t; \
monoForeground = (uint32_t)c1t; \
} else { \
monoBackground = (uint32_t)c1t; \
monoForeground = (uint32_t)c0t; \
} \
paletteNumColors = 2; /* Two colors */ \
return; \
} \
\
PaletteReset(); \
PaletteInsert (c0t, (uint32_t)n0, bpp); \
PaletteInsert (c1t, (uint32_t)n1, bpp); \
\
ni = 1; \
i2++; if (i2 >= w) {i2 = 0; j2++;} \
for (j = j2; j < h; j++) { \
for (i = i2; i < w; i++) { \
if ((data[j * pitch + i] & mask) == ci) { \
ni++; \
} else { \
(*cl->translateFn)(cl->translateLookupTable, \
&cl->screen->serverFormat, \
&cl->format, (char *)&ci, \
(char *)&cit, bpp/8, 1, 1); \
if (!PaletteInsert (cit, (uint32_t)ni, bpp)) \
return; \
ci = data[j * pitch + i] & mask; \
ni = 1; \
} \
} \
i2 = 0; \
} \
\
(*cl->translateFn)(cl->translateLookupTable, \
&cl->screen->serverFormat, &cl->format, \
(char *)&ci, (char *)&cit, bpp/8, 1, 1); \
PaletteInsert (cit, (uint32_t)ni, bpp); \
}
DEFINE_FAST_FILL_PALETTE_FUNCTION(16)
DEFINE_FAST_FILL_PALETTE_FUNCTION(32)
24 years ago
/*
* Functions to operate with palette structures.
*/
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
#define HASH_FUNC16(rgb) ((int)((((rgb) >> 8) + (rgb)) & 0xFF))
#define HASH_FUNC32(rgb) ((int)((((rgb) >> 16) + ((rgb) >> 8)) & 0xFF))
24 years ago
static void
PaletteReset(void)
{
paletteNumColors = 0;
memset(palette.hash, 0, 256 * sizeof(COLOR_LIST *));
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
static int
PaletteInsert(uint32_t rgb,
int numPixels,
int bpp)
24 years ago
{
COLOR_LIST *pnode;
COLOR_LIST *prev_pnode = NULL;
int hash_key, idx, new_idx, count;
hash_key = (bpp == 16) ? HASH_FUNC16(rgb) : HASH_FUNC32(rgb);
pnode = palette.hash[hash_key];
while (pnode != NULL) {
if (pnode->rgb == rgb) {
/* Such palette entry already exists. */
new_idx = idx = pnode->idx;
count = palette.entry[idx].numPixels + numPixels;
if (new_idx && palette.entry[new_idx-1].numPixels < count) {
do {
palette.entry[new_idx] = palette.entry[new_idx-1];
palette.entry[new_idx].listNode->idx = new_idx;
new_idx--;
}
while (new_idx && palette.entry[new_idx-1].numPixels < count);
palette.entry[new_idx].listNode = pnode;
pnode->idx = new_idx;
}
palette.entry[new_idx].numPixels = count;
return paletteNumColors;
}
prev_pnode = pnode;
pnode = pnode->next;
}
/* Check if palette is full. */
if (paletteNumColors == 256 || paletteNumColors == paletteMaxColors) {
paletteNumColors = 0;
return 0;
}
/* Move palette entries with lesser pixel counts. */
for ( idx = paletteNumColors;
idx > 0 && palette.entry[idx-1].numPixels < numPixels;
idx-- ) {
palette.entry[idx] = palette.entry[idx-1];
palette.entry[idx].listNode->idx = idx;
}
/* Add new palette entry into the freed slot. */
pnode = &palette.list[paletteNumColors];
if (prev_pnode != NULL) {
prev_pnode->next = pnode;
} else {
palette.hash[hash_key] = pnode;
}
pnode->next = NULL;
pnode->idx = idx;
pnode->rgb = rgb;
palette.entry[idx].listNode = pnode;
palette.entry[idx].numPixels = numPixels;
return (++paletteNumColors);
}
/*
* Converting 32-bit color samples into 24-bit colors.
* Should be called only when redMax, greenMax and blueMax are 255.
* Color components assumed to be byte-aligned.
*/
static void Pack24(rfbClientPtr cl,
char *buf,
rfbPixelFormat *fmt,
int count)
24 years ago
{
uint32_t *buf32;
uint32_t pix;
24 years ago
int r_shift, g_shift, b_shift;
buf32 = (uint32_t *)buf;
24 years ago
if (!cl->screen->serverFormat.bigEndian == !fmt->bigEndian) {
24 years ago
r_shift = fmt->redShift;
g_shift = fmt->greenShift;
b_shift = fmt->blueShift;
} else {
r_shift = 24 - fmt->redShift;
g_shift = 24 - fmt->greenShift;
b_shift = 24 - fmt->blueShift;
}
while (count--) {
pix = *buf32++;
*buf++ = (char)(pix >> r_shift);
*buf++ = (char)(pix >> g_shift);
*buf++ = (char)(pix >> b_shift);
}
}
/*
* Converting truecolor samples into palette indices.
*/
#define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
\
static void \
EncodeIndexedRect##bpp(uint8_t *buf, int count) { \
24 years ago
COLOR_LIST *pnode; \
uint##bpp##_t *src; \
uint##bpp##_t rgb; \
24 years ago
int rep = 0; \
\
src = (uint##bpp##_t *) buf; \
24 years ago
\
while (count--) { \
rgb = *src++; \
while (count && *src == rgb) { \
rep++, src++, count--; \
} \
pnode = palette.hash[HASH_FUNC##bpp(rgb)]; \
while (pnode != NULL) { \
if ((uint##bpp##_t)pnode->rgb == rgb) { \
*buf++ = (uint8_t)pnode->idx; \
24 years ago
while (rep) { \
*buf++ = (uint8_t)pnode->idx; \
24 years ago
rep--; \
} \
break; \
} \
pnode = pnode->next; \
} \
} \
}
DEFINE_IDX_ENCODE_FUNCTION(16)
DEFINE_IDX_ENCODE_FUNCTION(32)
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
24 years ago
#define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
\
static void \
EncodeMonoRect##bpp(uint8_t *buf, int w, int h) { \
uint##bpp##_t *ptr; \
uint##bpp##_t bg; \
24 years ago
unsigned int value, mask; \
int aligned_width; \
int x, y, bg_bits; \
\
ptr = (uint##bpp##_t *) buf; \
bg = (uint##bpp##_t) monoBackground; \
24 years ago
aligned_width = w - w % 8; \
\
for (y = 0; y < h; y++) { \
for (x = 0; x < aligned_width; x += 8) { \
for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
if (*ptr++ != bg) \
break; \
} \
if (bg_bits == 8) { \
*buf++ = 0; \
continue; \
} \
mask = 0x80 >> bg_bits; \
value = mask; \
for (bg_bits++; bg_bits < 8; bg_bits++) { \
mask >>= 1; \
if (*ptr++ != bg) { \
value |= mask; \
} \
} \
*buf++ = (uint8_t)value; \
24 years ago
} \
\
mask = 0x80; \
value = 0; \
if (x >= w) \
continue; \
\
for (; x < w; x++) { \
if (*ptr++ != bg) { \
value |= mask; \
} \
mask >>= 1; \
} \
*buf++ = (uint8_t)value; \
24 years ago
} \
}
DEFINE_MONO_ENCODE_FUNCTION(8)
DEFINE_MONO_ENCODE_FUNCTION(16)
DEFINE_MONO_ENCODE_FUNCTION(32)
/*
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
* JPEG compression stuff.
24 years ago
*/
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
static rfbBool
SendJpegRect(rfbClientPtr cl, int x, int y, int w, int h, int quality)
24 years ago
{
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
unsigned char *srcbuf;
int ps = cl->screen->serverFormat.bitsPerPixel / 8;
int subsamp = subsampLevel2tjsubsamp[subsampLevel];
unsigned long size = 0;
int flags = 0, pitch;
unsigned char *tmpbuf = NULL;
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (cl->screen->serverFormat.bitsPerPixel == 8)
return SendFullColorRect(cl, x, y, w, h);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (ps < 2) {
rfbLog("Error: JPEG requires 16-bit, 24-bit, or 32-bit pixel format.\n");
24 years ago
return 0;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (!j) {
if ((j = tjInitCompress()) == NULL) {
rfbLog("JPEG Error: %s\n", tjGetErrorStr());
24 years ago
return 0;
}
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tightAfterBufSize < TJBUFSIZE(w, h)) {
if (tightAfterBuf == NULL)
tightAfterBuf = (char *)malloc(TJBUFSIZE(w, h));
else
tightAfterBuf = (char *)realloc(tightAfterBuf,
TJBUFSIZE(w, h));
if (!tightAfterBuf) {
rfbLog("Memory allocation failure!\n");
return 0;
24 years ago
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
tightAfterBufSize = TJBUFSIZE(w, h);
}
if (ps == 2) {
uint16_t *srcptr, pix;
unsigned char *dst;
int inRed, inGreen, inBlue, i, j;
if((tmpbuf = (unsigned char *)malloc(w * h * 3)) == NULL)
rfbLog("Memory allocation failure!\n");
srcptr = (uint16_t *)&cl->scaledScreen->frameBuffer
[y * cl->scaledScreen->paddedWidthInBytes + x * ps];
dst = tmpbuf;
for(j = 0; j < h; j++) {
uint16_t *srcptr2 = srcptr;
unsigned char *dst2 = dst;
for (i = 0; i < w; i++) {
pix = *srcptr2++;
inRed = (int) (pix >> cl->screen->serverFormat.redShift
& cl->screen->serverFormat.redMax);
inGreen = (int) (pix >> cl->screen->serverFormat.greenShift
& cl->screen->serverFormat.greenMax);
inBlue = (int) (pix >> cl->screen->serverFormat.blueShift
& cl->screen->serverFormat.blueMax);
*dst2++ = (uint8_t)((inRed * 255
+ cl->screen->serverFormat.redMax / 2)
/ cl->screen->serverFormat.redMax);
*dst2++ = (uint8_t)((inGreen * 255
+ cl->screen->serverFormat.greenMax / 2)
/ cl->screen->serverFormat.greenMax);
*dst2++ = (uint8_t)((inBlue * 255
+ cl->screen->serverFormat.blueMax / 2)
/ cl->screen->serverFormat.blueMax);
24 years ago
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
srcptr += cl->scaledScreen->paddedWidthInBytes / ps;
dst += w * 3;
24 years ago
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
srcbuf = tmpbuf;
pitch = w * 3;
ps = 3;
} else {
if (cl->screen->serverFormat.bigEndian && ps == 4)
flags |= TJ_ALPHAFIRST;
if (cl->screen->serverFormat.redShift == 16
&& cl->screen->serverFormat.blueShift == 0)
flags |= TJ_BGR;
if (cl->screen->serverFormat.bigEndian)
flags ^= TJ_BGR;
pitch = cl->scaledScreen->paddedWidthInBytes;
srcbuf = (unsigned char *)&cl->scaledScreen->frameBuffer
[y * pitch + x * ps];
}
if (tjCompress(j, srcbuf, w, pitch, h, ps, (unsigned char *)tightAfterBuf,
&size, subsamp, quality, flags) == -1) {
rfbLog("JPEG Error: %s\n", tjGetErrorStr());
if (tmpbuf) {
free(tmpbuf);
tmpbuf = NULL;
24 years ago
}
return 0;
}
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
if (tmpbuf) {
free(tmpbuf);
tmpbuf = NULL;
24 years ago
}
if (cl->ublen + TIGHT_MIN_TO_COMPRESS + 1 > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
cl->updateBuf[cl->ublen++] = (char)(rfbTightJpeg << 4);
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
24 years ago
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
return SendCompressedData(cl, tightAfterBuf, (int)size);
24 years ago
}
static void
PrepareRowForImg(rfbClientPtr cl,
uint8_t *dst,
int x,
int y,
int count)
24 years ago
{
if (cl->screen->serverFormat.bitsPerPixel == 32) {
if ( cl->screen->serverFormat.redMax == 0xFF &&
cl->screen->serverFormat.greenMax == 0xFF &&
cl->screen->serverFormat.blueMax == 0xFF ) {
PrepareRowForImg24(cl, dst, x, y, count);
24 years ago
} else {
PrepareRowForImg32(cl, dst, x, y, count);
24 years ago
}
} else {
/* 16 bpp assumed. */
PrepareRowForImg16(cl, dst, x, y, count);
24 years ago
}
}
static void
PrepareRowForImg24(rfbClientPtr cl,
uint8_t *dst,
int x,
int y,
int count)
24 years ago
{
uint32_t *fbptr;
uint32_t pix;
24 years ago
fbptr = (uint32_t *)
&cl->scaledScreen->frameBuffer[y * cl->scaledScreen->paddedWidthInBytes + x * 4];
24 years ago
while (count--) {
pix = *fbptr++;
*dst++ = (uint8_t)(pix >> cl->screen->serverFormat.redShift);
*dst++ = (uint8_t)(pix >> cl->screen->serverFormat.greenShift);
*dst++ = (uint8_t)(pix >> cl->screen->serverFormat.blueShift);
24 years ago
}
}
#define DEFINE_JPEG_GET_ROW_FUNCTION(bpp) \
\
static void \
PrepareRowForImg##bpp(rfbClientPtr cl, uint8_t *dst, int x, int y, int count) { \
uint##bpp##_t *fbptr; \
uint##bpp##_t pix; \
24 years ago
int inRed, inGreen, inBlue; \
\
fbptr = (uint##bpp##_t *) \
&cl->scaledScreen->frameBuffer[y * cl->scaledScreen->paddedWidthInBytes + \
24 years ago
x * (bpp / 8)]; \
\
while (count--) { \
pix = *fbptr++; \
\
inRed = (int) \
(pix >> cl->screen->serverFormat.redShift & cl->screen->serverFormat.redMax); \
24 years ago
inGreen = (int) \
(pix >> cl->screen->serverFormat.greenShift & cl->screen->serverFormat.greenMax); \
24 years ago
inBlue = (int) \
(pix >> cl->screen->serverFormat.blueShift & cl->screen->serverFormat.blueMax); \
24 years ago
\
*dst++ = (uint8_t)((inRed * 255 + cl->screen->serverFormat.redMax / 2) / \
cl->screen->serverFormat.redMax); \
*dst++ = (uint8_t)((inGreen * 255 + cl->screen->serverFormat.greenMax / 2) / \
cl->screen->serverFormat.greenMax); \
*dst++ = (uint8_t)((inBlue * 255 + cl->screen->serverFormat.blueMax / 2) / \
cl->screen->serverFormat.blueMax); \
24 years ago
} \
}
DEFINE_JPEG_GET_ROW_FUNCTION(16)
DEFINE_JPEG_GET_ROW_FUNCTION(32)
/*
* PNG compression stuff.
*/
#ifdef LIBVNCSERVER_HAVE_LIBPNG
static TLS int pngDstDataLen = 0;
static rfbBool CanSendPngRect(rfbClientPtr cl, int w, int h) {
if (cl->tightEncoding != rfbEncodingTightPng) {
return FALSE;
}
if ( cl->screen->serverFormat.bitsPerPixel == 8 ||
cl->format.bitsPerPixel == 8) {
return FALSE;
}
return TRUE;
}
static void pngWriteData(png_structp png_ptr, png_bytep data,
png_size_t length)
{
#if 0
rfbClientPtr cl = png_get_io_ptr(png_ptr);
buffer_reserve(&vs->tight.png, vs->tight.png.offset + length);
memcpy(vs->tight.png.buffer + vs->tight.png.offset, data, length);
#endif
memcpy(tightAfterBuf + pngDstDataLen, data, length);
pngDstDataLen += length;
}
static void pngFlushData(png_structp png_ptr)
{
}
static void *pngMalloc(png_structp png_ptr, png_size_t size)
{
return malloc(size);
}
static void pngFree(png_structp png_ptr, png_voidp ptr)
{
free(ptr);
}
static rfbBool SendPngRect(rfbClientPtr cl, int x, int y, int w, int h) {
/* rfbLog(">> SendPngRect x:%d, y:%d, w:%d, h:%d\n", x, y, w, h); */
png_byte color_type;
png_structp png_ptr;
png_infop info_ptr;
png_colorp png_palette = NULL;
int level = tightPngConf[cl->tightCompressLevel].png_zlib_level;
int filters = tightPngConf[cl->tightCompressLevel].png_filters;
uint8_t *buf;
int dy;
pngDstDataLen = 0;
png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL,
NULL, pngMalloc, pngFree);
if (png_ptr == NULL)
return FALSE;
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL) {
png_destroy_write_struct(&png_ptr, NULL);
return FALSE;
}
png_set_write_fn(png_ptr, (void *) cl, pngWriteData, pngFlushData);
png_set_compression_level(png_ptr, level);
png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, filters);
#if 0
/* TODO: */
if (palette) {
color_type = PNG_COLOR_TYPE_PALETTE;
} else {
color_type = PNG_COLOR_TYPE_RGB;
}
#else
color_type = PNG_COLOR_TYPE_RGB;
#endif
png_set_IHDR(png_ptr, info_ptr, w, h,
8, color_type, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
#if 0
if (color_type == PNG_COLOR_TYPE_PALETTE) {
struct palette_cb_priv priv;
png_palette = pngMalloc(png_ptr, sizeof(*png_palette) *
palette_size(palette));
priv.vs = vs;
priv.png_palette = png_palette;
palette_iter(palette, write_png_palette, &priv);
png_set_PLTE(png_ptr, info_ptr, png_palette, palette_size(palette));
offset = vs->tight.tight.offset;
if (vs->clientds.pf.bytes_per_pixel == 4) {
tight_encode_indexed_rect32(vs->tight.tight.buffer, w * h, palette);
} else {
tight_encode_indexed_rect16(vs->tight.tight.buffer, w * h, palette);
}
}
buffer_reserve(&vs->tight.png, 2048);
#endif
png_write_info(png_ptr, info_ptr);
buf = malloc(w * 3);
for (dy = 0; dy < h; dy++)
{
#if 0
if (color_type == PNG_COLOR_TYPE_PALETTE) {
memcpy(buf, vs->tight.tight.buffer + (dy * w), w);
} else {
PrepareRowForImg(cl, buf, x, y + dy, w);
}
#else
PrepareRowForImg(cl, buf, x, y + dy, w);
#endif
png_write_row(png_ptr, buf);
}
free(buf);
png_write_end(png_ptr, NULL);
if (color_type == PNG_COLOR_TYPE_PALETTE) {
pngFree(png_ptr, png_palette);
}
png_destroy_write_struct(&png_ptr, &info_ptr);
/* done v */
if (cl->ublen + TIGHT_MIN_TO_COMPRESS + 1 > UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
cl->updateBuf[cl->ublen++] = (char)(rfbTightPng << 4);
rfbStatRecordEncodingSentAdd(cl, cl->tightEncoding, 1);
/* rfbLog("<< SendPngRect\n"); */
Replace TightVNC encoder with TurboVNC encoder. This patch is the result of further research and discussion that revealed the following: -- TightPng encoding and the rfbTightNoZlib extension need not conflict. Since TightPng is a separate encoding type, not supported by TurboVNC-compatible viewers, then the rfbTightNoZlib extension can be used solely whenever the encoding type is Tight and disabled with the encoding type is TightPng. -- In the TightVNC encoder, compression levels above 5 are basically useless. On the set of 20 low-level datasets that were used to design the TurboVNC encoder (these include the eight 2D application captures that were also used when designing the TightVNC encoder, as well as 12 3D application captures provided by the VirtualGL Project-- see http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf), moving from Compression Level (CL) 5 to CL 9 in the TightVNC encoder did not increase the compression ratio of any datasets more than 10%, and the compression ratio only increased by more than 5% on four of them. The compression ratio actually decreased a few percent on five of them. In exchange for this paltry increase in compression ratio, the CPU usage, on average, went up by a factor of 5. Thus, for all intents and purposes, TightVNC CL 5 provides the "best useful compression" for that encoder. -- TurboVNC's best compression level (CL 2) compresses 3D and video workloads significantly more "tightly" than TightVNC CL 5 (~70% better, in the aggregate) but does not quite achieve the same level of compression with 2D workloads (~20% worse, in the aggregate.) This decrease in compression ratio may or may not be noticeable, since many of the datasets it affects are not performance-critical (such as the console output of a compilation, etc.) However, for peace of mind, it was still desirable to have a mode that compressed with equal "tightness" to TightVNC CL 5, since we proposed to replace that encoder entirely. -- A new mode was discovered in the TurboVNC encoder that produces, in the aggregate, similar compression ratios on 2D datasets as TightVNC CL 5. That new mode involves using Zlib level 7 (the same level used by TightVNC CL 5) but setting the "palette threshold" to 256, so that indexed color encoding is used whenever possible. This mode reduces bandwidth only marginally (typically 10-20%) relative to TurboVNC CL 2 on low-color workloads, in exchange for nearly doubling CPU usage, and it does not benefit high-color workloads at all (since those are usually encoded with JPEG.) However, it provides a means of reproducing the same "tightness" as the TightVNC encoder on 2D workloads without sacrificing any compression for 3D/video workloads, and without using any more CPU time than necessary. -- The TurboVNC encoder still performs as well or better than the TightVNC encoder when plain libjpeg is used instead of libjpeg-turbo. Specific notes follow: common/turbojpeg.c common/turbojpeg.h: Added code to emulate the libjpeg-turbo colorspace extensions, so that the TurboJPEG wrapper can be used with plain libjpeg as well. This required updating the TurboJPEG wrapper to the latest code from libjpeg-turbo 1.2.0, mainly because the TurboJPEG 1.2 API handles pixel formats in a much cleaner way, which made the conversion code easier to write. It also eases the maintenance to have the wrapper synced as much as possible with the upstream code base (so I can merge any relevant bug fixes that are discovered upstream.) The libvncserver version of the TurboJPEG wrapper is a "lite" version, containing only the JPEG compression/decompression code and not the lossless transform, YUV encoding/decoding, and dynamic buffer allocation features from TurboJPEG 1.2. configure.ac: Removed the --with-turbovnc option. configure still checks for the presence of libjpeg-turbo, but only for the purposes of printing a performance warning if it isn't available. rfb/rfb.h: Fix a bug introduced with the initial TurboVNC encoder patch. We cannot use tightQualityLevel for the TurboVNC 1-100 quality level, because tightQualityLevel is also used by ZRLE. Thus, a new parameter (turboQualityLevel) was created. rfb/rfbproto.h: Remove TurboVNC-specific #ifdefs and language libvncserver/rfbserver.c: Remove TurboVNC-specific #ifdefs. Fix afore-mentioned tightQualityLevel bug. libvncserver/tight.c: Replaced the TightVNC encoder with the TurboVNC encoder. Relative to the initial TurboVNC encoder patch, this patch also: -- Adds TightPng support to the TurboVNC encoder -- Adds the afore-mentioned low-bandwidth mode, which is mapped externally to Compression Level 9 test/*: Included TJUnitTest (a regression test for the TurboJPEG wrapper) as well as TJBench (a benchmark for same.) These are useful for ensuring that the wrapper still functions correctly and performantly if it needs to be modified for whatever reason. Both of these programs are derived from libjpeg-turbo 1.2.0. As with the TurboJPEG wrapper, they do not contain the more advanced features of TurboJPEG 1.2, such as YUV encoding/decoding and lossless transforms.
13 years ago
return SendCompressedData(cl, tightAfterBuf, pngDstDataLen);
}
#endif