You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mlt/src/modules/core/transition_composite.c

1216 lines
37 KiB

/*
* transition_composite.c -- compose one image over another using alpha channel
* Copyright (C) 2003-2004 Ushodaya Enterprises Limited
* Author: Dan Dennedy <dan@dennedy.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "transition_composite.h"
#include <framework/mlt.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
/** Geometry struct.
*/
struct geometry_s
{
struct mlt_geometry_item_s item;
int nw; // normalised width
int nh; // normalised height
int sw; // scaled width, not including consumer scale based upon w/nw
int sh; // scaled height, not including consumer scale based upon h/nh
int halign; // horizontal alignment: 0=left, 1=center, 2=right
int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
};
/** Parse the alignment properties into the geometry.
*/
static int alignment_parse( char* align )
{
int ret = 0;
if ( align == NULL );
else if ( isdigit( align[ 0 ] ) )
ret = atoi( align );
else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
ret = 1;
else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
ret = 2;
return ret;
}
/** Calculate real geometry.
*/
static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
{
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
int length = mlt_geometry_get_length( geometry );
// Allow wrapping
if ( !repeat_off && position >= length && length != 0 )
{
int section = position / length;
position -= section * length;
if ( !mirror_off && section % 2 == 1 )
position = length - position;
}
// Fetch the key for the position
mlt_geometry_fetch( geometry, &output->item, position );
}
static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
{
// Loop variable for property interrogation
int i = 0;
// Get the properties of the transition
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
// Create an empty geometries object
mlt_geometry geometry = mlt_geometry_init( );
// Get the in and out position
mlt_position in = mlt_transition_get_in( this );
mlt_position out = mlt_transition_get_out( this );
int length = out - in + 1;
double cycle = mlt_properties_get_double( properties, "cycle" );
// Get the new style geometry string
char *property = mlt_properties_get( properties, "geometry" );
// Allow a geometry repeat cycle
if ( cycle >= 1 )
length = cycle;
else if ( cycle > 0 )
length *= cycle;
// Parse the geometry if we have one
mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
// Check if we're using the old style geometry
if ( property == NULL )
{
// DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
// practical use - while deprecated, it has been slightly extended too - keys can now
// be specified out of order, and can be blanked or NULL to simulate removal
// Structure to use for parsing and inserting
struct mlt_geometry_item_s item;
// Parse the start property
item.frame = 0;
if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
mlt_geometry_insert( geometry, &item );
// Parse the keys in between
for ( i = 0; i < mlt_properties_count( properties ); i ++ )
{
// Get the name of the property
char *name = mlt_properties_get_name( properties, i );
// Check that it's valid
if ( !strncmp( name, "key[", 4 ) )
{
// Get the value of the property
char *value = mlt_properties_get_value( properties, i );
// Determine the frame number
item.frame = atoi( name + 4 );
// Parse and add to the list
if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
mlt_geometry_insert( geometry, &item );
else
fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
}
}
// Parse the end
item.frame = -1;
if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
mlt_geometry_insert( geometry, &item );
}
return geometry;
}
/** Adjust position according to scaled size and alignment properties.
*/
static void alignment_calculate( struct geometry_s *geometry )
{
geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
}
/** Calculate the position for this frame.
*/
static int position_calculate( mlt_transition this, mlt_position position )
{
// Get the in and out position
mlt_position in = mlt_transition_get_in( this );
// Now do the calcs
return position - in;
}
/** Calculate the field delta for this frame - position between two frames.
*/
static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
{
// Get the in and out position
mlt_position in = mlt_transition_get_in( this );
mlt_position out = mlt_transition_get_out( this );
double length = out - in + 1;
// Now do the calcs
double x = ( double )( position - in ) / length;
double y = ( double )( position + 1 - in ) / length;
return length * ( y - x ) / 2.0;
}
static int get_value( mlt_properties properties, char *preferred, char *fallback )
{
int value = mlt_properties_get_int( properties, preferred );
if ( value == 0 )
value = mlt_properties_get_int( properties, fallback );
return value;
}
/** A linear threshold determination function.
*/
static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
{
if ( a < edge1 )
return 0;
if ( a >= edge2 )
return 0x10000;
return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
}
/** A smoother, non-linear threshold determination function.
*/
static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
{
if ( a < edge1 )
return 0;
if ( a >= edge2 )
return 0x10000;
a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
}
/** Load the luma map from PGM stream.
*/
static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
{
uint8_t *data = NULL;
while (1)
{
char line[128];
char comment[128];
int i = 2;
int maxval;
int bpp;
uint16_t *p;
line[127] = '\0';
// get the magic code
if ( fgets( line, 127, f ) == NULL )
break;
// skip comments
while ( sscanf( line, " #%s", comment ) > 0 )
if ( fgets( line, 127, f ) == NULL )
break;
if ( line[0] != 'P' || line[1] != '5' )
break;
// skip white space and see if a new line must be fetched
for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
break;
// skip comments
while ( sscanf( line, " #%s", comment ) > 0 )
if ( fgets( line, 127, f ) == NULL )
break;
// get the dimensions
if ( line[0] == 'P' )
i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
else
i = sscanf( line, "%d %d %d", width, height, &maxval );
// get the height value, if not yet
if ( i < 2 )
{
if ( fgets( line, 127, f ) == NULL )
break;
// skip comments
while ( sscanf( line, " #%s", comment ) > 0 )
if ( fgets( line, 127, f ) == NULL )
break;
i = sscanf( line, "%d", height );
if ( i == 0 )
break;
else
i = 2;
}
// get the maximum gray value, if not yet
if ( i < 3 )
{
if ( fgets( line, 127, f ) == NULL )
break;
// skip comments
while ( sscanf( line, " #%s", comment ) > 0 )
if ( fgets( line, 127, f ) == NULL )
break;
i = sscanf( line, "%d", &maxval );
if ( i == 0 )
break;
}
// determine if this is one or two bytes per pixel
bpp = maxval > 255 ? 2 : 1;
// allocate temporary storage for the raw data
data = mlt_pool_alloc( *width * *height * bpp );
if ( data == NULL )
break;
// read the raw data
if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
break;
// allocate the luma bitmap
*map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
if ( *map == NULL )
break;
// proces the raw data into the luma bitmap
for ( i = 0; i < *width * *height * bpp; i += bpp )
{
if ( bpp == 1 )
*p++ = data[ i ] << 8;
else
*p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
}
break;
}
if ( data != NULL )
mlt_pool_release( data );
}
/** Generate a luma map from any YUV image.
*/
static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
{
int i;
// allocate the luma bitmap
uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
if ( *map == NULL )
return;
// proces the image data into the luma bitmap
for ( i = 0; i < width * height * 2; i += 2 )
*p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
}
static inline int calculate_mix( uint16_t *luma, int j, int soft, int weight, int alpha )
{
return ( ( ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + soft, weight + soft ) ) * alpha ) >> 8;
}
static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
{
return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
}
/** Composite a source line over a destination line
*/
static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
{
register int j;
register int mix;
for ( j = 0; j < width; j ++ )
{
mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ );
*dest = sample_mix( *dest, *src++, mix );
dest++;
*dest = sample_mix( *dest, *src++, mix );
dest++;
*alpha_a = ( mix >> 8 ) | *alpha_a;
alpha_a ++;
}
}
static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
{
register int j;
register int mix;
for ( j = 0; j < width; j ++ )
{
mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a );
*dest = sample_mix( *dest, *src++, mix );
dest++;
*dest = sample_mix( *dest, *src++, mix );
dest++;
*alpha_a ++ = mix >> 8;
}
}
static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
{
register int j;
register int mix;
for ( j = 0; j < width; j ++ )
{
mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a );
*dest = sample_mix( *dest, *src++, mix );
dest++;
*dest = sample_mix( *dest, *src++, mix );
dest++;
*alpha_a ++ = mix >> 8;
}
}
static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
{
register int j;
register int mix;
for ( j = 0; j < width; j ++ )
{
mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a );
*dest = sample_mix( *dest, *src++, mix );
dest++;
*dest = sample_mix( *dest, *src++, mix );
dest++;
*alpha_a ++ = mix >> 8;
}
}
/** Composite function.
*/
static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
{
int ret = 0;
int i;
int x_src = 0, y_src = 0;
int32_t weight = ( ( 1 << 16 ) - 1 ) * ( geometry.item.mix / 100 );
int step = ( field > -1 ) ? 2 : 1;
int bpp = 2;
int stride_src = width_src * bpp;
int stride_dest = width_dest * bpp;
// Adjust to consumer scale
int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
int uneven_x = ( x % 2 );
// optimization points - no work to do
if ( width_src <= 0 || height_src <= 0 )
return ret;
if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
return ret;
// crop overlay off the left edge of frame
if ( x < 0 )
{
x_src = -x;
width_src -= x_src;
x = 0;
}
// crop overlay beyond right edge of frame
if ( x + width_src > width_dest )
width_src = width_dest - x;
// crop overlay off the top edge of the frame
if ( y < 0 )
{
y_src = -y;
height_src -= y_src;
y = 0;
}
// crop overlay below bottom edge of frame
if ( y + height_src > height_dest )
height_src = height_dest - y;
// offset pointer into overlay buffer based on cropping
p_src += x_src * bpp + y_src * stride_src;
// offset pointer into frame buffer based upon positive coordinates only!
p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
// offset pointer into alpha channel based upon cropping
alpha_b += x_src + y_src * stride_src / bpp;
alpha_a += x + y * stride_dest / bpp;
// offset pointer into luma channel based upon cropping
if ( p_luma )
p_luma += x_src + y_src * stride_src / bpp;
// Assuming lower field first
// Special care is taken to make sure the b_frame is aligned to the correct field.
// field 0 = lower field and y should be odd (y is 0-based).
// field 1 = upper field and y should be even.
if ( ( field > -1 ) && ( y % 2 == field ) )
{
if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
p_dest += stride_dest;
else
p_dest -= stride_dest;
}
// On the second field, use the other lines from b_frame
if ( field == 1 )
{
p_src += stride_src;
alpha_b += stride_src / bpp;
alpha_a += stride_dest / bpp;
height_src--;
}
stride_src *= step;
stride_dest *= step;
int alpha_b_stride = stride_src / bpp;
int alpha_a_stride = stride_dest / bpp;
p_src += uneven_x * 2;
width_src -= 2 * uneven_x;
alpha_b += uneven_x;
uneven_x = 0;
// now do the compositing only to cropped extents
for ( i = 0; i < height_src; i += step )
{
line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
p_src += stride_src;
p_dest += stride_dest;
alpha_b += alpha_b_stride;
alpha_a += alpha_a_stride;
if ( p_luma )
p_luma += alpha_b_stride;
}
return ret;
}
/** Scale 16bit greyscale luma map using nearest neighbor.
*/
static inline void
scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
{
register int i, j;
register int x_step = ( src_width << 16 ) / dest_width;
register int y_step = ( src_height << 16 ) / dest_height;
register int x, y = 0;
for ( i = 0; i < dest_height; i++ )
{
const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
x = 0;
for ( j = 0; j < dest_width; j++ )
{
*dest_buf++ = src[ x >> 16 ] ^ invert;
x += x_step;
}
y += y_step;
}
}
static uint16_t* get_luma( mlt_properties properties, int width, int height )
{
// The cached luma map information
int luma_width = mlt_properties_get_int( properties, "_luma.width" );
int luma_height = mlt_properties_get_int( properties, "_luma.height" );
uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
int invert = mlt_properties_get_int( properties, "luma_invert" );
// If the filename property changed, reload the map
char *resource = mlt_properties_get( properties, "luma" );
char temp[ 512 ];
if ( luma_width == 0 || luma_height == 0 )
{
luma_width = width;
luma_height = height;
}
if ( resource != NULL && strchr( resource, '%' ) )
{
// TODO: Clean up quick and dirty compressed/existence check
FILE *test;
sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
test = fopen( temp, "r" );
if ( test == NULL )
strcat( temp, ".png" );
else
fclose( test );
resource = temp;
}
if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
{
uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
// Load the original luma once
if ( orig_bitmap == NULL )
{
char *extension = strrchr( resource, '.' );
// See if it is a PGM
if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
{
// Open PGM
FILE *f = fopen( resource, "r" );
if ( f != NULL )
{
// Load from PGM
luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
fclose( f );
// Remember the original size for subsequent scaling
mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
}
}
else
{
// Get the factory producer service
char *factory = mlt_properties_get( properties, "factory" );
// Create the producer
mlt_producer producer = mlt_factory_producer( factory, resource );
// If we have one
if ( producer != NULL )
{
// Get the producer properties
mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
// Ensure that we loop
mlt_properties_set( producer_properties, "eof", "loop" );
// Now pass all producer. properties on the transition down
mlt_properties_pass( producer_properties, properties, "luma." );
// We will get the alpha frame from the producer
mlt_frame luma_frame = NULL;
// Get the luma frame
if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
{
uint8_t *luma_image;
mlt_image_format luma_format = mlt_image_yuv422;
// Get image from the luma producer
mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
// Generate the luma map
if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
// Remember the original size for subsequent scaling
mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
// Cleanup the luma frame
mlt_frame_close( luma_frame );
}
// Cleanup the luma producer
mlt_producer_close( producer );
}
}
}
// Scale luma map
luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
// Remember the scaled luma size to prevent unnecessary scaling
mlt_properties_set_int( properties, "_luma.width", width );
mlt_properties_set_int( properties, "_luma.height", height );
mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
}
return luma_bitmap;
}
/** Get the properly sized image from b_frame.
*/
static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
{
int ret = 0;
mlt_image_format format = mlt_image_yuv422;
// Get the properties objects
mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
{
// Adjust b_frame pixel aspect
int normalised_width = geometry->item.w;
int normalised_height = geometry->item.h;
int real_width = get_value( b_props, "real_width", "width" );
int real_height = get_value( b_props, "real_height", "height" );
double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
int scaled_width = rint( 0.5 + ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
int scaled_height = real_height;
// Now ensure that our images fit in the normalised frame
if ( scaled_width > normalised_width )
{
scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
scaled_width = normalised_width;
}
if ( scaled_height > normalised_height )
{
scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
scaled_height = normalised_height;
}
// Honour the fill request - this will scale the image to fill width or height while maintaining a/r
// ????: Shouln't this be the default behaviour?
if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
{
if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
{
scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
scaled_height = normalised_height;
}
else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
{
scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
scaled_width = normalised_width;
}
}
// Save the new scaled dimensions
geometry->sw = scaled_width;
geometry->sh = scaled_height;
}
else
{
geometry->sw = geometry->item.w;
geometry->sh = geometry->item.h;
}
// We want to ensure that we bypass resize now...
if ( resize_alpha == 0 )
mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
// If we're not aligned, we want a non-transparent background
if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
mlt_properties_set_int( b_props, "resize_alpha", 255 );
// Take into consideration alignment for optimisation (titles are a special case)
if ( !mlt_properties_get_int( properties, "titles" ) )
alignment_calculate( geometry );
// Adjust to consumer scale
*width = rint( 0.5 + geometry->sw * *width / geometry->nw );
*height = rint( 0.5 + geometry->sh * *height / geometry->nh );
ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
// Set the frame back
mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
return ret && image != NULL;
}
static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
{
// Get the properties from the transition
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
// Get the properties from the frame
mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
// Structures for geometry
mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
// Obtain the normalised width and height from the a_frame
int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
char *name = mlt_properties_get( properties, "_unique_id" );
char key[ 256 ];
sprintf( key, "%s.in", name );
if ( mlt_properties_get( a_props, key ) )
{
sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
}
else
{
// Now parse the geometries
if ( start == NULL )
{
// Parse the transitions properties
start = transition_parse_keys( this, normalised_width, normalised_height );
// Assign to properties to ensure we get destroyed
mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
}
else
{
int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
double cycle = mlt_properties_get_double( properties, "cycle" );
if ( cycle > 1 )
length = cycle;
else if ( cycle > 0 )
length *= cycle;
mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
}
// Do the calculation
geometry_calculate( this, result, position );
// Assign normalised info
result->nw = normalised_width;
result->nh = normalised_height;
}
// Now parse the alignment
result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
return start;
}
mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
{
// Create a frame to return
mlt_frame b_frame = mlt_frame_init( );
// Get the properties of the a frame
mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
// Get the properties of the b frame
mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
// Get the position
int position = position_calculate( this, frame_position );
// Get the unique id of the transition
char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
char key[ 256 ];
// Destination image
uint8_t *dest = NULL;
// Get the image and dimensions
uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
int width = mlt_properties_get_int( a_props, "width" );
int height = mlt_properties_get_int( a_props, "height" );
int format = mlt_properties_get_int( a_props, "format" );
// Pointers for copy operation
uint8_t *p;
// Coordinates
int w = 0;
int h = 0;
int x = 0;
int y = 0;
int ss = 0;
int ds = 0;
// Will need to know region to copy
struct geometry_s result;
// Calculate the region now
composite_calculate( this, &result, a_frame, position );
// Need to scale down to actual dimensions
x = rint( 0.5 + result.item.x * width / result.nw );
y = rint( 0.5 + result.item.y * height / result.nh );
w = rint( 0.5 + result.item.w * width / result.nw );
h = rint( 0.5 + result.item.h * height / result.nh );
if ( x % 2 )
{
x --;
w ++;
}
// Store the key
sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
mlt_properties_parse( a_props, key );
sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
mlt_properties_parse( a_props, key );
ds = w * 2;
ss = width * 2;
// Now we need to create a new destination image
dest = mlt_pool_alloc( w * h * 2 );
// Assign to the new frame
mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
mlt_properties_set_int( b_props, "width", w );
mlt_properties_set_int( b_props, "height", h );
mlt_properties_set_int( b_props, "format", format );
if ( y < 0 )
{
dest += ( ds * -y );
h += y;
y = 0;
}
if ( y + h > height )
h -= ( y + h - height );
if ( x < 0 )
{
dest += -x * 2;
w += x;
x = 0;
}
if ( w > 0 && h > 0 )
{
// Copy the region of the image
p = image + y * ss + x * 2;
while ( h -- )
{
memcpy( dest, p, w * 2 );
dest += ds;
p += ss;
}
}
// Assign this position to the b frame
mlt_frame_set_position( b_frame, frame_position );
mlt_properties_set_int( b_props, "distort", 1 );
// Return the frame
return b_frame;
}
/** Get the image.
*/
static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
{
// Get the b frame from the stack
mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
// Get the transition from the a frame
mlt_transition this = mlt_frame_pop_service( a_frame );
// Get in and out
double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
int out = mlt_frame_pop_service_int( a_frame );
int in = mlt_frame_pop_service_int( a_frame );
// Get the properties from the transition
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
// TODO: clean up always_active behaviour
if ( mlt_properties_get_int( properties, "always_active" ) )
{
mlt_events_block( properties, properties );
mlt_properties_set_int( properties, "in", in );
mlt_properties_set_int( properties, "out", out );
mlt_events_unblock( properties, properties );
}
// This compositer is yuv422 only
*format = mlt_image_yuv422;
if ( b_frame != NULL )
{
// Get the properties of the a frame
mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
// Get the properties of the b frame
mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
// Structures for geometry
struct geometry_s result;
// Calculate the position
double delta = delta_calculate( this, a_frame, position );
// Get the image from the b frame
uint8_t *image_b = NULL;
int width_b = *width;
int height_b = *height;
// Vars for alphas
uint8_t *alpha_a = NULL;
uint8_t *alpha_b = NULL;
// Composites always need scaling... defaulting to lowest
char *rescale = mlt_properties_get( a_props, "rescale.interp" );
if ( rescale == NULL || !strcmp( rescale, "none" ) )
rescale = "nearest";
mlt_properties_set( a_props, "rescale.interp", rescale );
mlt_properties_set( b_props, "rescale.interp", rescale );
// Do the calculation
// NB: Locks needed here since the properties are being modified
mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
composite_calculate( this, &result, a_frame, position );
mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
// Since we are the consumer of the b_frame, we must pass along these
// consumer properties from the a_frame
mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
// TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
if ( mlt_properties_get_int( properties, "no_alpha" ) &&
result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
{
mlt_frame_get_image( b_frame, image, format, width, height, 1 );
if ( !mlt_frame_is_test_card( a_frame ) )
mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
return 0;
}
if ( a_frame == b_frame )
{
double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
alpha_b = mlt_frame_get_alpha_mask( b_frame );
mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
}
// Get the image from the a frame
mlt_frame_get_image( a_frame, image, format, width, height, 1 );
alpha_a = mlt_frame_get_alpha_mask( a_frame );
// Optimisation - no compositing required
if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
return 0;
// Need to keep the width/height of the a_frame on the b_frame for titling
if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
{
mlt_properties_set_int( a_props, "dest_width", *width );
mlt_properties_set_int( a_props, "dest_height", *height );
mlt_properties_set_int( b_props, "dest_width", *width );
mlt_properties_set_int( b_props, "dest_height", *height );
}
else
{
mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
}
// Special case for titling...
if ( mlt_properties_get_int( properties, "titles" ) )
{
if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
mlt_properties_set( b_props, "rescale.interp", "hyper" );
width_b = mlt_properties_get_int( a_props, "dest_width" );
height_b = mlt_properties_get_int( a_props, "dest_height" );
}
if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
{
uint8_t *dest = *image;
uint8_t *src = image_b;
int progressive =
mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
mlt_properties_get_int( properties, "progressive" );
int field;
int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
char *operator = mlt_properties_get( properties, "operator" );
alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
composite_line_fn line_fn = composite_line_yuv;
// Replacement and override
if ( operator != NULL )
{
if ( !strcmp( operator, "or" ) )
line_fn = composite_line_yuv_or;
if ( !strcmp( operator, "and" ) )
line_fn = composite_line_yuv_and;
if ( !strcmp( operator, "xor" ) )
line_fn = composite_line_yuv_xor;
}
// Allow the user to completely obliterate the alpha channels from both frames
if ( mlt_properties_get( properties, "alpha_a" ) )
memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
if ( mlt_properties_get( properties, "alpha_b" ) )
memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
{
// Assume lower field (0) first
double field_position = position + field * delta;
// Do the calculation if we need to
// NB: Locks needed here since the properties are being modified
mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
composite_calculate( this, &result, a_frame, field_position );
mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
if ( mlt_properties_get_int( properties, "titles" ) )
{
result.item.w = rint( 0.5 + *width * ( result.item.w / result.nw ) );
result.nw = result.item.w;
result.item.h = rint( 0.5 + *height * ( result.item.h / result.nh ) );
result.nh = *height;
result.sw = width_b;
result.sh = height_b;
}
// Align
alignment_calculate( &result );
// Composite the b_frame on the a_frame
composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
}
}
}
else
{
mlt_frame_get_image( a_frame, image, format, width, height, 1 );
}
return 0;
}
/** Composition transition processing.
*/
static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
{
// UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
{
mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
}
else
{
mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
}
mlt_frame_push_service( a_frame, this );
mlt_frame_push_frame( a_frame, b_frame );
mlt_frame_push_get_image( a_frame, transition_get_image );
return a_frame;
}
/** Constructor for the filter.
*/
mlt_transition transition_composite_init( char *arg )
{
mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
{
mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
this->process = composite_process;
// Default starting motion and zoom
mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
// Default factory
mlt_properties_set( properties, "factory", "fezzik" );
// Use alignment (and hence alpha of b frame)
mlt_properties_set_int( properties, "aligned", 1 );
// Inform apps and framework that this is a video only transition
mlt_properties_set_int( properties, "_transition_type", 1 );
}
return this;
}