|
|
|
|
/****************************************************************************
|
|
|
|
|
**
|
|
|
|
|
** Implementation of QPolygonScanner class
|
|
|
|
|
**
|
|
|
|
|
** Created : 000120
|
|
|
|
|
**
|
|
|
|
|
** Copyright (C) 1999-2008 Trolltech ASA. All rights reserved.
|
|
|
|
|
**
|
|
|
|
|
** This file is part of the kernel module of the Qt GUI Toolkit.
|
|
|
|
|
**
|
|
|
|
|
** This file may be used under the terms of the GNU General
|
|
|
|
|
** Public License versions 2.0 or 3.0 as published by the Free
|
|
|
|
|
** Software Foundation and appearing in the files LICENSE.GPL2
|
|
|
|
|
** and LICENSE.GPL3 included in the packaging of this file.
|
|
|
|
|
** Alternatively you may (at your option) use any later version
|
|
|
|
|
** of the GNU General Public License if such license has been
|
|
|
|
|
** publicly approved by Trolltech ASA (or its successors, if any)
|
|
|
|
|
** and the KDE Free Qt Foundation.
|
|
|
|
|
**
|
|
|
|
|
** Please review the following information to ensure GNU General
|
|
|
|
|
** Public Licensing requirements will be met:
|
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
|
|
|
|
|
** If you are unsure which license is appropriate for your use, please
|
|
|
|
|
** review the following information:
|
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
|
|
|
|
|
** or contact the sales department at sales@trolltech.com.
|
|
|
|
|
**
|
|
|
|
|
** This file may be used under the terms of the Q Public License as
|
|
|
|
|
** defined by Trolltech ASA and appearing in the file LICENSE.QPL
|
|
|
|
|
** included in the packaging of this file. Licensees holding valid Qt
|
|
|
|
|
** Commercial licenses may use this file in accordance with the Qt
|
|
|
|
|
** Commercial License Agreement provided with the Software.
|
|
|
|
|
**
|
|
|
|
|
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
|
|
|
|
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
|
|
|
|
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
|
|
|
|
|
** herein.
|
|
|
|
|
**
|
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
|
|
#include "qpolygonscanner.h"
|
|
|
|
|
#include "qpointarray.h"
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Based on Xserver code miFillGeneralPoly...
|
|
|
|
|
/*
|
|
|
|
|
*
|
|
|
|
|
* Written by Brian Kelleher; Oct. 1985
|
|
|
|
|
*
|
|
|
|
|
* Routine to fill a polygon. Two fill rules are
|
|
|
|
|
* supported: frWINDING and frEVENODD.
|
|
|
|
|
*
|
|
|
|
|
* See fillpoly.h for a complete description of the algorithm.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* These are the data structures needed to scan
|
|
|
|
|
* convert regions. Two different scan conversion
|
|
|
|
|
* methods are available -- the even-odd method, and
|
|
|
|
|
* the winding number method.
|
|
|
|
|
* The even-odd rule states that a point is inside
|
|
|
|
|
* the polygon if a ray drawn from that point in any
|
|
|
|
|
* direction will pass through an odd number of
|
|
|
|
|
* path segments.
|
|
|
|
|
* By the winding number rule, a point is decided
|
|
|
|
|
* to be inside the polygon if a ray drawn from that
|
|
|
|
|
* point in any direction passes through a different
|
|
|
|
|
* number of clockwise and counterclockwise path
|
|
|
|
|
* segments.
|
|
|
|
|
*
|
|
|
|
|
* These data structures are adapted somewhat from
|
|
|
|
|
* the algorithm in (Foley/Van Dam) for scan converting
|
|
|
|
|
* polygons.
|
|
|
|
|
* The basic algorithm is to start at the top (smallest y)
|
|
|
|
|
* of the polygon, stepping down to the bottom of
|
|
|
|
|
* the polygon by incrementing the y coordinate. We
|
|
|
|
|
* keep a list of edges which the current scanline crosses,
|
|
|
|
|
* sorted by x. This list is called the Active Edge Table (AET)
|
|
|
|
|
* As we change the y-coordinate, we update each entry in
|
|
|
|
|
* in the active edge table to reflect the edges new xcoord.
|
|
|
|
|
* This list must be sorted at each scanline in case
|
|
|
|
|
* two edges intersect.
|
|
|
|
|
* We also keep a data structure known as the Edge Table (ET),
|
|
|
|
|
* which keeps track of all the edges which the current
|
|
|
|
|
* scanline has not yet reached. The ET is basically a
|
|
|
|
|
* list of ScanLineList structures containing a list of
|
|
|
|
|
* edges which are entered at a given scanline. There is one
|
|
|
|
|
* ScanLineList per scanline at which an edge is entered.
|
|
|
|
|
* When we enter a new edge, we move it from the ET to the AET.
|
|
|
|
|
*
|
|
|
|
|
* From the AET, we can implement the even-odd rule as in
|
|
|
|
|
* (Foley/Van Dam).
|
|
|
|
|
* The winding number rule is a little trickier. We also
|
|
|
|
|
* keep the EdgeTableEntries in the AET linked by the
|
|
|
|
|
* nextWETE (winding EdgeTableEntry) link. This allows
|
|
|
|
|
* the edges to be linked just as before for updating
|
|
|
|
|
* purposes, but only uses the edges linked by the nextWETE
|
|
|
|
|
* link as edges representing spans of the polygon to
|
|
|
|
|
* drawn (as with the even-odd rule).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* $XConsortium: miscanfill.h,v 1.5 94/04/17 20:27:50 dpw Exp $ */
|
|
|
|
|
/*
|
|
|
|
|
|
|
|
|
|
Copyright (c) 1987 X Consortium
|
|
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
|
a copy of this software and associated documentation files (the
|
|
|
|
|
"Software"), to deal in the Software without restriction, including
|
|
|
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
|
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
|
the following conditions:
|
|
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
|
|
|
in all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
|
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
|
|
|
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
|
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
|
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
|
|
|
|
Except as contained in this notice, the name of the X Consortium shall
|
|
|
|
|
not be used in advertising or otherwise to promote the sale, use or
|
|
|
|
|
other dealings in this Software without prior written authorization
|
|
|
|
|
from the X Consortium.
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* scanfill.h
|
|
|
|
|
*
|
|
|
|
|
* Written by Brian Kelleher; Jan 1985
|
|
|
|
|
*
|
|
|
|
|
* This file contains a few macros to help track
|
|
|
|
|
* the edge of a filled object. The object is assumed
|
|
|
|
|
* to be filled in scanline order, and thus the
|
|
|
|
|
* algorithm used is an extension of Bresenham's line
|
|
|
|
|
* drawing algorithm which assumes that y is always the
|
|
|
|
|
* major axis.
|
|
|
|
|
* Since these pieces of code are the same for any filled shape,
|
|
|
|
|
* it is more convenient to gather the library in one
|
|
|
|
|
* place, but since these pieces of code are also in
|
|
|
|
|
* the inner loops of output primitives, procedure call
|
|
|
|
|
* overhead is out of the question.
|
|
|
|
|
* See the author for a derivation if needed.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* In scan converting polygons, we want to choose those pixels
|
|
|
|
|
* which are inside the polygon. Thus, we add .5 to the starting
|
|
|
|
|
* x coordinate for both left and right edges. Now we choose the
|
|
|
|
|
* first pixel which is inside the pgon for the left edge and the
|
|
|
|
|
* first pixel which is outside the pgon for the right edge.
|
|
|
|
|
* Draw the left pixel, but not the right.
|
|
|
|
|
*
|
|
|
|
|
* How to add .5 to the starting x coordinate:
|
|
|
|
|
* If the edge is moving to the right, then subtract dy from the
|
|
|
|
|
* error term from the general form of the algorithm.
|
|
|
|
|
* If the edge is moving to the left, then add dy to the error term.
|
|
|
|
|
*
|
|
|
|
|
* The reason for the difference between edges moving to the left
|
|
|
|
|
* and edges moving to the right is simple: If an edge is moving
|
|
|
|
|
* to the right, then we want the algorithm to flip immediately.
|
|
|
|
|
* If it is moving to the left, then we don't want it to flip until
|
|
|
|
|
* we traverse an entire pixel.
|
|
|
|
|
*/
|
|
|
|
|
#define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
|
|
|
|
|
int dx; /* local storage */ \
|
|
|
|
|
\
|
|
|
|
|
/* \
|
|
|
|
|
* if the edge is horizontal, then it is ignored \
|
|
|
|
|
* and assumed not to be processed. Otherwise, do this stuff. \
|
|
|
|
|
*/ \
|
|
|
|
|
if ((dy) != 0) { \
|
|
|
|
|
xStart = (x1); \
|
|
|
|
|
dx = (x2) - xStart; \
|
|
|
|
|
if (dx < 0) { \
|
|
|
|
|
m = dx / (dy); \
|
|
|
|
|
m1 = m - 1; \
|
|
|
|
|
incr1 = -2 * dx + 2 * (dy) * m1; \
|
|
|
|
|
incr2 = -2 * dx + 2 * (dy) * m; \
|
|
|
|
|
d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
|
|
|
|
|
} else { \
|
|
|
|
|
m = dx / (dy); \
|
|
|
|
|
m1 = m + 1; \
|
|
|
|
|
incr1 = 2 * dx - 2 * (dy) * m1; \
|
|
|
|
|
incr2 = 2 * dx - 2 * (dy) * m; \
|
|
|
|
|
d = -2 * m * (dy) + 2 * dx; \
|
|
|
|
|
} \
|
|
|
|
|
} \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
|
|
|
|
|
if (m1 > 0) { \
|
|
|
|
|
if (d > 0) { \
|
|
|
|
|
minval += m1; \
|
|
|
|
|
d += incr1; \
|
|
|
|
|
} \
|
|
|
|
|
else { \
|
|
|
|
|
minval += m; \
|
|
|
|
|
d += incr2; \
|
|
|
|
|
} \
|
|
|
|
|
} else {\
|
|
|
|
|
if (d >= 0) { \
|
|
|
|
|
minval += m1; \
|
|
|
|
|
d += incr1; \
|
|
|
|
|
} \
|
|
|
|
|
else { \
|
|
|
|
|
minval += m; \
|
|
|
|
|
d += incr2; \
|
|
|
|
|
} \
|
|
|
|
|
} \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This structure contains all of the information needed
|
|
|
|
|
* to run the bresenham algorithm.
|
|
|
|
|
* The variables may be hardcoded into the declarations
|
|
|
|
|
* instead of using this structure to make use of
|
|
|
|
|
* register declarations.
|
|
|
|
|
*/
|
|
|
|
|
typedef struct {
|
|
|
|
|
int minor; /* minor axis */
|
|
|
|
|
int d; /* decision variable */
|
|
|
|
|
int m, m1; /* slope and slope+1 */
|
|
|
|
|
int incr1, incr2; /* error increments */
|
|
|
|
|
} BRESINFO;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
|
|
|
|
|
BRESINITPGON(dmaj, min1, min2, bres.minor, bres.d, \
|
|
|
|
|
bres.m, bres.m1, bres.incr1, bres.incr2)
|
|
|
|
|
|
|
|
|
|
#define BRESINCRPGONSTRUCT(bres) \
|
|
|
|
|
BRESINCRPGON(bres.d, bres.minor, bres.m, bres.m1, bres.incr1, bres.incr2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct _EdgeTableEntry {
|
|
|
|
|
int ymax; /* ycoord at which we exit this edge. */
|
|
|
|
|
BRESINFO bres; /* Bresenham info to run the edge */
|
|
|
|
|
struct _EdgeTableEntry *next; /* next in the list */
|
|
|
|
|
struct _EdgeTableEntry *back; /* for insertion sort */
|
|
|
|
|
struct _EdgeTableEntry *nextWETE; /* for winding num rule */
|
|
|
|
|
int ClockWise; /* flag for winding number rule */
|
|
|
|
|
} EdgeTableEntry;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct _ScanLineList{
|
|
|
|
|
int scanline; /* the scanline represented */
|
|
|
|
|
EdgeTableEntry *edgelist; /* header node */
|
|
|
|
|
struct _ScanLineList *next; /* next in the list */
|
|
|
|
|
} ScanLineList;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
int ymax; /* ymax for the polygon */
|
|
|
|
|
int ymin; /* ymin for the polygon */
|
|
|
|
|
ScanLineList scanlines; /* header node */
|
|
|
|
|
} EdgeTable;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Here is a struct to help with storage allocation
|
|
|
|
|
* so we can allocate a big chunk at a time, and then take
|
|
|
|
|
* pieces from this heap when we need to.
|
|
|
|
|
*/
|
|
|
|
|
#define SLLSPERBLOCK 25
|
|
|
|
|
|
|
|
|
|
typedef struct _ScanLineListBlock {
|
|
|
|
|
ScanLineList SLLs[SLLSPERBLOCK];
|
|
|
|
|
struct _ScanLineListBlock *next;
|
|
|
|
|
} ScanLineListBlock;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* number of points to buffer before sending them off
|
|
|
|
|
* to scanlines() : Must be an even number
|
|
|
|
|
*/
|
|
|
|
|
#define NUMPTSTOBUFFER 200
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
*
|
|
|
|
|
* a few macros for the inner loops of the fill code where
|
|
|
|
|
* performance considerations don't allow a procedure call.
|
|
|
|
|
*
|
|
|
|
|
* Evaluate the given edge at the given scanline.
|
|
|
|
|
* If the edge has expired, then we leave it and fix up
|
|
|
|
|
* the active edge table; otherwise, we increment the
|
|
|
|
|
* x value to be ready for the next scanline.
|
|
|
|
|
* The winding number rule is in effect, so we must notify
|
|
|
|
|
* the caller when the edge has been removed so he
|
|
|
|
|
* can reorder the Winding Active Edge Table.
|
|
|
|
|
*/
|
|
|
|
|
#define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
|
|
|
|
|
if (pAET->ymax == y) { /* leaving this edge */ \
|
|
|
|
|
pPrevAET->next = pAET->next; \
|
|
|
|
|
pAET = pPrevAET->next; \
|
|
|
|
|
fixWAET = 1; \
|
|
|
|
|
if (pAET) \
|
|
|
|
|
pAET->back = pPrevAET; \
|
|
|
|
|
} \
|
|
|
|
|
else { \
|
|
|
|
|
BRESINCRPGONSTRUCT(pAET->bres); \
|
|
|
|
|
pPrevAET = pAET; \
|
|
|
|
|
pAET = pAET->next; \
|
|
|
|
|
} \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Evaluate the given edge at the given scanline.
|
|
|
|
|
* If the edge has expired, then we leave it and fix up
|
|
|
|
|
* the active edge table; otherwise, we increment the
|
|
|
|
|
* x value to be ready for the next scanline.
|
|
|
|
|
* The even-odd rule is in effect.
|
|
|
|
|
*/
|
|
|
|
|
#define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
|
|
|
|
|
if (pAET->ymax == y) { /* leaving this edge */ \
|
|
|
|
|
pPrevAET->next = pAET->next; \
|
|
|
|
|
pAET = pPrevAET->next; \
|
|
|
|
|
if (pAET) \
|
|
|
|
|
pAET->back = pPrevAET; \
|
|
|
|
|
} \
|
|
|
|
|
else { \
|
|
|
|
|
BRESINCRPGONSTRUCT(pAET->bres) \
|
|
|
|
|
pPrevAET = pAET; \
|
|
|
|
|
pAET = pAET->next; \
|
|
|
|
|
} \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/***********************************************************
|
|
|
|
|
|
|
|
|
|
Copyright (c) 1987 X Consortium
|
|
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
|
|
|
in the Software without restriction, including without limitation the rights
|
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
|
|
|
all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
|
|
|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
|
|
|
|
Except as contained in this notice, the name of the X Consortium shall not be
|
|
|
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
|
|
|
in this Software without prior written authorization from the X Consortium.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
|
|
|
|
|
|
|
|
|
|
All Rights Reserved
|
|
|
|
|
|
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
|
|
|
documentation for any purpose and without fee is hereby granted,
|
|
|
|
|
provided that the above copyright notice appear in all copies and that
|
|
|
|
|
both that copyright notice and this permission notice appear in
|
|
|
|
|
supporting documentation, and that the name of Digital not be
|
|
|
|
|
used in advertising or publicity pertaining to distribution of the
|
|
|
|
|
software without specific, written prior permission.
|
|
|
|
|
|
|
|
|
|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
|
|
|
|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
|
|
|
|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
|
|
|
|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
|
|
|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
|
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
|
|
|
|
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
******************************************************************/
|
|
|
|
|
|
|
|
|
|
#define MAXINT 0x7fffffff
|
|
|
|
|
#define MININT -MAXINT
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* fillUtils.c
|
|
|
|
|
*
|
|
|
|
|
* Written by Brian Kelleher; Oct. 1985
|
|
|
|
|
*
|
|
|
|
|
* This module contains all of the utility functions
|
|
|
|
|
* needed to scan convert a polygon.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
/*
|
|
|
|
|
* InsertEdgeInET
|
|
|
|
|
*
|
|
|
|
|
* Insert the given edge into the edge table.
|
|
|
|
|
* First we must find the correct bucket in the
|
|
|
|
|
* Edge table, then find the right slot in the
|
|
|
|
|
* bucket. Finally, we can insert it.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
static bool
|
|
|
|
|
miInsertEdgeInET(EdgeTable *ET, EdgeTableEntry *ETE,
|
|
|
|
|
int scanline, ScanLineListBlock **SLLBlock, int *iSLLBlock)
|
|
|
|
|
{
|
|
|
|
|
register EdgeTableEntry *start, *prev;
|
|
|
|
|
register ScanLineList *pSLL, *pPrevSLL;
|
|
|
|
|
ScanLineListBlock *tmpSLLBlock;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* find the right bucket to put the edge into
|
|
|
|
|
*/
|
|
|
|
|
pPrevSLL = &ET->scanlines;
|
|
|
|
|
pSLL = pPrevSLL->next;
|
|
|
|
|
while (pSLL && (pSLL->scanline < scanline))
|
|
|
|
|
{
|
|
|
|
|
pPrevSLL = pSLL;
|
|
|
|
|
pSLL = pSLL->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* reassign pSLL (pointer to ScanLineList) if necessary
|
|
|
|
|
*/
|
|
|
|
|
if ((!pSLL) || (pSLL->scanline > scanline))
|
|
|
|
|
{
|
|
|
|
|
if (*iSLLBlock > SLLSPERBLOCK-1)
|
|
|
|
|
{
|
|
|
|
|
tmpSLLBlock =
|
|
|
|
|
(ScanLineListBlock *)malloc(sizeof(ScanLineListBlock));
|
|
|
|
|
if (!tmpSLLBlock)
|
|
|
|
|
return FALSE;
|
|
|
|
|
(*SLLBlock)->next = tmpSLLBlock;
|
|
|
|
|
tmpSLLBlock->next = 0;
|
|
|
|
|
*SLLBlock = tmpSLLBlock;
|
|
|
|
|
*iSLLBlock = 0;
|
|
|
|
|
}
|
|
|
|
|
pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
|
|
|
|
|
|
|
|
|
|
pSLL->next = pPrevSLL->next;
|
|
|
|
|
pSLL->edgelist = 0;
|
|
|
|
|
pPrevSLL->next = pSLL;
|
|
|
|
|
}
|
|
|
|
|
pSLL->scanline = scanline;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* now insert the edge in the right bucket
|
|
|
|
|
*/
|
|
|
|
|
prev = 0;
|
|
|
|
|
start = pSLL->edgelist;
|
|
|
|
|
while (start && (start->bres.minor < ETE->bres.minor))
|
|
|
|
|
{
|
|
|
|
|
prev = start;
|
|
|
|
|
start = start->next;
|
|
|
|
|
}
|
|
|
|
|
ETE->next = start;
|
|
|
|
|
|
|
|
|
|
if (prev)
|
|
|
|
|
prev->next = ETE;
|
|
|
|
|
else
|
|
|
|
|
pSLL->edgelist = ETE;
|
|
|
|
|
return TRUE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* CreateEdgeTable
|
|
|
|
|
*
|
|
|
|
|
* This routine creates the edge table for
|
|
|
|
|
* scan converting polygons.
|
|
|
|
|
* The Edge Table (ET) looks like:
|
|
|
|
|
*
|
|
|
|
|
* EdgeTable
|
|
|
|
|
* --------
|
|
|
|
|
* | ymax | ScanLineLists
|
|
|
|
|
* |scanline|-->------------>-------------->...
|
|
|
|
|
* -------- |scanline| |scanline|
|
|
|
|
|
* |edgelist| |edgelist|
|
|
|
|
|
* --------- ---------
|
|
|
|
|
* | |
|
|
|
|
|
* | |
|
|
|
|
|
* V V
|
|
|
|
|
* list of ETEs list of ETEs
|
|
|
|
|
*
|
|
|
|
|
* where ETE is an EdgeTableEntry data structure,
|
|
|
|
|
* and there is one ScanLineList per scanline at
|
|
|
|
|
* which an edge is initially entered.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
#if defined(Q_OS_MAC)
|
|
|
|
|
int y, x;
|
|
|
|
|
#else
|
|
|
|
|
int x, y;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
} DDXPointRec, *DDXPointPtr;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Clean up our act.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
miFreeStorage(ScanLineListBlock *pSLLBlock)
|
|
|
|
|
{
|
|
|
|
|
register ScanLineListBlock *tmpSLLBlock;
|
|
|
|
|
|
|
|
|
|
while (pSLLBlock)
|
|
|
|
|
{
|
|
|
|
|
tmpSLLBlock = pSLLBlock->next;
|
|
|
|
|
free(pSLLBlock);
|
|
|
|
|
pSLLBlock = tmpSLLBlock;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
miCreateETandAET(int count, DDXPointPtr pts, EdgeTable *ET,
|
|
|
|
|
EdgeTableEntry *AET, EdgeTableEntry *pETEs, ScanLineListBlock *pSLLBlock)
|
|
|
|
|
{
|
|
|
|
|
register DDXPointPtr top, bottom;
|
|
|
|
|
register DDXPointPtr PrevPt, CurrPt;
|
|
|
|
|
int iSLLBlock = 0;
|
|
|
|
|
|
|
|
|
|
int dy;
|
|
|
|
|
|
|
|
|
|
if (count < 2) return TRUE;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* initialize the Active Edge Table
|
|
|
|
|
*/
|
|
|
|
|
AET->next = 0;
|
|
|
|
|
AET->back = 0;
|
|
|
|
|
AET->nextWETE = 0;
|
|
|
|
|
AET->bres.minor = MININT;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* initialize the Edge Table.
|
|
|
|
|
*/
|
|
|
|
|
ET->scanlines.next = 0;
|
|
|
|
|
ET->ymax = MININT;
|
|
|
|
|
ET->ymin = MAXINT;
|
|
|
|
|
pSLLBlock->next = 0;
|
|
|
|
|
|
|
|
|
|
PrevPt = &pts[count-1];
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* for each vertex in the array of points.
|
|
|
|
|
* In this loop we are dealing with two vertices at
|
|
|
|
|
* a time -- these make up one edge of the polygon.
|
|
|
|
|
*/
|
|
|
|
|
while (count--)
|
|
|
|
|
{
|
|
|
|
|
CurrPt = pts++;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* find out which point is above and which is below.
|
|
|
|
|
*/
|
|
|
|
|
if (PrevPt->y > CurrPt->y)
|
|
|
|
|
{
|
|
|
|
|
bottom = PrevPt, top = CurrPt;
|
|
|
|
|
pETEs->ClockWise = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
bottom = CurrPt, top = PrevPt;
|
|
|
|
|
pETEs->ClockWise = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* don't add horizontal edges to the Edge table.
|
|
|
|
|
*/
|
|
|
|
|
if (bottom->y != top->y)
|
|
|
|
|
{
|
|
|
|
|
pETEs->ymax = bottom->y-1; /* -1 so we don't get last scanline */
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* initialize integer edge algorithm
|
|
|
|
|
*/
|
|
|
|
|
dy = bottom->y - top->y;
|
|
|
|
|
BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres)
|
|
|
|
|
|
|
|
|
|
if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock))
|
|
|
|
|
{
|
|
|
|
|
miFreeStorage(pSLLBlock->next);
|
|
|
|
|
return FALSE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ET->ymax = QMAX(ET->ymax, PrevPt->y);
|
|
|
|
|
ET->ymin = QMIN(ET->ymin, PrevPt->y);
|
|
|
|
|
pETEs++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
PrevPt = CurrPt;
|
|
|
|
|
}
|
|
|
|
|
return TRUE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* loadAET
|
|
|
|
|
*
|
|
|
|
|
* This routine moves EdgeTableEntries from the
|
|
|
|
|
* EdgeTable into the Active Edge Table,
|
|
|
|
|
* leaving them sorted by smaller x coordinate.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
miloadAET(EdgeTableEntry *AET, EdgeTableEntry *ETEs)
|
|
|
|
|
{
|
|
|
|
|
register EdgeTableEntry *pPrevAET;
|
|
|
|
|
register EdgeTableEntry *tmp;
|
|
|
|
|
|
|
|
|
|
pPrevAET = AET;
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
while (ETEs)
|
|
|
|
|
{
|
|
|
|
|
while (AET && (AET->bres.minor < ETEs->bres.minor))
|
|
|
|
|
{
|
|
|
|
|
pPrevAET = AET;
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
}
|
|
|
|
|
tmp = ETEs->next;
|
|
|
|
|
ETEs->next = AET;
|
|
|
|
|
if (AET)
|
|
|
|
|
AET->back = ETEs;
|
|
|
|
|
ETEs->back = pPrevAET;
|
|
|
|
|
pPrevAET->next = ETEs;
|
|
|
|
|
pPrevAET = ETEs;
|
|
|
|
|
|
|
|
|
|
ETEs = tmp;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* computeWAET
|
|
|
|
|
*
|
|
|
|
|
* This routine links the AET by the
|
|
|
|
|
* nextWETE (winding EdgeTableEntry) link for
|
|
|
|
|
* use by the winding number rule. The final
|
|
|
|
|
* Active Edge Table (AET) might look something
|
|
|
|
|
* like:
|
|
|
|
|
*
|
|
|
|
|
* AET
|
|
|
|
|
* ---------- --------- ---------
|
|
|
|
|
* |ymax | |ymax | |ymax |
|
|
|
|
|
* | ... | |... | |... |
|
|
|
|
|
* |next |->|next |->|next |->...
|
|
|
|
|
* |nextWETE| |nextWETE| |nextWETE|
|
|
|
|
|
* --------- --------- ^--------
|
|
|
|
|
* | | |
|
|
|
|
|
* V-------------------> V---> ...
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
micomputeWAET(EdgeTableEntry *AET)
|
|
|
|
|
{
|
|
|
|
|
register EdgeTableEntry *pWETE;
|
|
|
|
|
register int inside = 1;
|
|
|
|
|
register int isInside = 0;
|
|
|
|
|
|
|
|
|
|
AET->nextWETE = 0;
|
|
|
|
|
pWETE = AET;
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
while (AET)
|
|
|
|
|
{
|
|
|
|
|
if (AET->ClockWise)
|
|
|
|
|
isInside++;
|
|
|
|
|
else
|
|
|
|
|
isInside--;
|
|
|
|
|
|
|
|
|
|
if ((!inside && !isInside) ||
|
|
|
|
|
( inside && isInside))
|
|
|
|
|
{
|
|
|
|
|
pWETE->nextWETE = AET;
|
|
|
|
|
pWETE = AET;
|
|
|
|
|
inside = !inside;
|
|
|
|
|
}
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
}
|
|
|
|
|
pWETE->nextWETE = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* InsertionSort
|
|
|
|
|
*
|
|
|
|
|
* Just a simple insertion sort using
|
|
|
|
|
* pointers and back pointers to sort the Active
|
|
|
|
|
* Edge Table.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
miInsertionSort(EdgeTableEntry *AET)
|
|
|
|
|
{
|
|
|
|
|
register EdgeTableEntry *pETEchase;
|
|
|
|
|
register EdgeTableEntry *pETEinsert;
|
|
|
|
|
register EdgeTableEntry *pETEchaseBackTMP;
|
|
|
|
|
register int changed = 0;
|
|
|
|
|
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
while (AET)
|
|
|
|
|
{
|
|
|
|
|
pETEinsert = AET;
|
|
|
|
|
pETEchase = AET;
|
|
|
|
|
while (pETEchase->back->bres.minor > AET->bres.minor)
|
|
|
|
|
pETEchase = pETEchase->back;
|
|
|
|
|
|
|
|
|
|
AET = AET->next;
|
|
|
|
|
if (pETEchase != pETEinsert)
|
|
|
|
|
{
|
|
|
|
|
pETEchaseBackTMP = pETEchase->back;
|
|
|
|
|
pETEinsert->back->next = AET;
|
|
|
|
|
if (AET)
|
|
|
|
|
AET->back = pETEinsert->back;
|
|
|
|
|
pETEinsert->next = pETEchase;
|
|
|
|
|
pETEchase->back->next = pETEinsert;
|
|
|
|
|
pETEchase->back = pETEinsert;
|
|
|
|
|
pETEinsert->back = pETEchaseBackTMP;
|
|
|
|
|
changed = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return(changed);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\overload
|
|
|
|
|
*/
|
|
|
|
|
void QPolygonScanner::scan(const QPointArray& pa, bool winding, int index, int npoints)
|
|
|
|
|
{
|
|
|
|
|
scan( pa, winding, index, npoints, TRUE );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\overload
|
|
|
|
|
|
|
|
|
|
If \a stitchable is FALSE, the right and bottom edges of the
|
|
|
|
|
polygon are included. This causes adjacent polygons to overlap.
|
|
|
|
|
*/
|
|
|
|
|
void QPolygonScanner::scan(const QPointArray& pa, bool winding, int index, int npoints, bool stitchable)
|
|
|
|
|
{
|
|
|
|
|
scan( pa, winding, index, npoints,
|
|
|
|
|
stitchable ? Edge(Left+Top) : Edge(Left+Right+Top+Bottom) );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
Calls processSpans() for all scanlines of the polygon defined by
|
|
|
|
|
\a npoints starting at \a index in \a pa.
|
|
|
|
|
|
|
|
|
|
If \a winding is TRUE, the Winding algorithm rather than the
|
|
|
|
|
Odd-Even rule is used.
|
|
|
|
|
|
|
|
|
|
The \a edges is any bitwise combination of:
|
|
|
|
|
\list
|
|
|
|
|
\i \c QPolygonScanner::Left
|
|
|
|
|
\i \c QPolygonScanner::Right
|
|
|
|
|
\i \c QPolygonScanner::Top
|
|
|
|
|
\i \c QPolygonScanner::Bottom
|
|
|
|
|
\endlist
|
|
|
|
|
\a edges determines which edges are included.
|
|
|
|
|
|
|
|
|
|
\warning The edges feature does not work properly.
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
void QPolygonScanner::scan( const QPointArray& pa, bool winding, int index, int npoints, Edge edges )
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DDXPointPtr ptsIn = (DDXPointPtr)pa.data();
|
|
|
|
|
ptsIn += index;
|
|
|
|
|
register EdgeTableEntry *pAET; /* the Active Edge Table */
|
|
|
|
|
register int y; /* the current scanline */
|
|
|
|
|
register int nPts = 0; /* number of pts in buffer */
|
|
|
|
|
register EdgeTableEntry *pWETE; /* Winding Edge Table */
|
|
|
|
|
register ScanLineList *pSLL; /* Current ScanLineList */
|
|
|
|
|
register DDXPointPtr ptsOut; /* ptr to output buffers */
|
|
|
|
|
int *width;
|
|
|
|
|
DDXPointRec FirstPoint[NUMPTSTOBUFFER]; /* the output buffers */
|
|
|
|
|
int FirstWidth[NUMPTSTOBUFFER];
|
|
|
|
|
EdgeTableEntry *pPrevAET; /* previous AET entry */
|
|
|
|
|
EdgeTable ET; /* Edge Table header node */
|
|
|
|
|
EdgeTableEntry AET; /* Active ET header node */
|
|
|
|
|
EdgeTableEntry *pETEs; /* Edge Table Entries buff */
|
|
|
|
|
ScanLineListBlock SLLBlock; /* header for ScanLineList */
|
|
|
|
|
int fixWAET = 0;
|
|
|
|
|
int edge_l = (edges & Left) ? 1 : 0;
|
|
|
|
|
int edge_r = (edges & Right) ? 1 : 0;
|
|
|
|
|
int edge_t = 1; //#### (edges & Top) ? 1 : 0;
|
|
|
|
|
int edge_b = (edges & Bottom) ? 1 : 0;
|
|
|
|
|
|
|
|
|
|
if (npoints == -1)
|
|
|
|
|
npoints = pa.size();
|
|
|
|
|
|
|
|
|
|
if (npoints < 3)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if(!(pETEs = (EdgeTableEntry *)
|
|
|
|
|
malloc(sizeof(EdgeTableEntry) * npoints)))
|
|
|
|
|
return;
|
|
|
|
|
ptsOut = FirstPoint;
|
|
|
|
|
width = FirstWidth;
|
|
|
|
|
if (!miCreateETandAET(npoints, ptsIn, &ET, &AET, pETEs, &SLLBlock))
|
|
|
|
|
{
|
|
|
|
|
free(pETEs);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
pSLL = ET.scanlines.next;
|
|
|
|
|
|
|
|
|
|
if (!winding)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* for each scanline
|
|
|
|
|
*/
|
|
|
|
|
for (y = ET.ymin+1-edge_t; y < ET.ymax+edge_b; y++)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* Add a new edge to the active edge table when we
|
|
|
|
|
* get to the next edge.
|
|
|
|
|
*/
|
|
|
|
|
if (pSLL && y == pSLL->scanline)
|
|
|
|
|
{
|
|
|
|
|
miloadAET(&AET, pSLL->edgelist);
|
|
|
|
|
pSLL = pSLL->next;
|
|
|
|
|
}
|
|
|
|
|
pPrevAET = &AET;
|
|
|
|
|
pAET = AET.next;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* for each active edge
|
|
|
|
|
*/
|
|
|
|
|
while (pAET)
|
|
|
|
|
{
|
|
|
|
|
ptsOut->x = pAET->bres.minor + 1 - edge_l;
|
|
|
|
|
ptsOut++->y = y;
|
|
|
|
|
*width++ = pAET->next->bres.minor - pAET->bres.minor
|
|
|
|
|
- 1 + edge_l + edge_r;
|
|
|
|
|
nPts++;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* send out the buffer when its full
|
|
|
|
|
*/
|
|
|
|
|
if (nPts == NUMPTSTOBUFFER)
|
|
|
|
|
{
|
|
|
|
|
processSpans( nPts, (QPoint*)FirstPoint, FirstWidth );
|
|
|
|
|
ptsOut = FirstPoint;
|
|
|
|
|
width = FirstWidth;
|
|
|
|
|
nPts = 0;
|
|
|
|
|
}
|
|
|
|
|
EVALUATEEDGEEVENODD(pAET, pPrevAET, y)
|
|
|
|
|
EVALUATEEDGEEVENODD(pAET, pPrevAET, y)
|
|
|
|
|
}
|
|
|
|
|
miInsertionSort(&AET);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else /* default to WindingNumber */
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* for each scanline
|
|
|
|
|
*/
|
|
|
|
|
for (y = ET.ymin+1-edge_t; y < ET.ymax+edge_b; y++)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* Add a new edge to the active edge table when we
|
|
|
|
|
* get to the next edge.
|
|
|
|
|
*/
|
|
|
|
|
if (pSLL && y == pSLL->scanline)
|
|
|
|
|
{
|
|
|
|
|
miloadAET(&AET, pSLL->edgelist);
|
|
|
|
|
micomputeWAET(&AET);
|
|
|
|
|
pSLL = pSLL->next;
|
|
|
|
|
}
|
|
|
|
|
pPrevAET = &AET;
|
|
|
|
|
pAET = AET.next;
|
|
|
|
|
pWETE = pAET;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* for each active edge
|
|
|
|
|
*/
|
|
|
|
|
while (pAET)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* if the next edge in the active edge table is
|
|
|
|
|
* also the next edge in the winding active edge
|
|
|
|
|
* table.
|
|
|
|
|
*/
|
|
|
|
|
if (pWETE == pAET)
|
|
|
|
|
{
|
|
|
|
|
ptsOut->x = pAET->bres.minor + 1 - edge_l;
|
|
|
|
|
ptsOut++->y = y;
|
|
|
|
|
*width++ = pAET->nextWETE->bres.minor - pAET->bres.minor - 1 + edge_l + edge_r;
|
|
|
|
|
nPts++;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* send out the buffer
|
|
|
|
|
*/
|
|
|
|
|
if (nPts == NUMPTSTOBUFFER)
|
|
|
|
|
{
|
|
|
|
|
processSpans( nPts, (QPoint*)FirstPoint, FirstWidth );
|
|
|
|
|
ptsOut = FirstPoint;
|
|
|
|
|
width = FirstWidth;
|
|
|
|
|
nPts = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pWETE = pWETE->nextWETE;
|
|
|
|
|
while (pWETE != pAET) {
|
|
|
|
|
EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET)
|
|
|
|
|
}
|
|
|
|
|
pWETE = pWETE->nextWETE;
|
|
|
|
|
}
|
|
|
|
|
EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* reevaluate the Winding active edge table if we
|
|
|
|
|
* just had to resort it or if we just exited an edge.
|
|
|
|
|
*/
|
|
|
|
|
if (miInsertionSort(&AET) || fixWAET)
|
|
|
|
|
{
|
|
|
|
|
micomputeWAET(&AET);
|
|
|
|
|
fixWAET = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Get any spans that we missed by buffering
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processSpans( nPts, (QPoint*)FirstPoint, FirstWidth );
|
|
|
|
|
free(pETEs);
|
|
|
|
|
miFreeStorage(SLLBlock.next);
|
|
|
|
|
}
|
|
|
|
|
/***** END OF X11-based CODE *****/
|
|
|
|
|
|
|
|
|
|
|