You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1657 lines
50 KiB
1657 lines
50 KiB
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used for analyzing expressions and
|
|
** for generating VDBE code that evaluates expressions in SQLite.
|
|
**
|
|
** $Id: expr.c,v 1.112 2004/02/25 13:47:31 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** Construct a new expression node and return a pointer to it. Memory
|
|
** for this node is obtained from sqliteMalloc(). The calling function
|
|
** is responsible for making sure the node eventually gets freed.
|
|
*/
|
|
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
|
|
Expr *pNew;
|
|
pNew = sqliteMalloc( sizeof(Expr) );
|
|
if( pNew==0 ){
|
|
/* When malloc fails, we leak memory from pLeft and pRight */
|
|
return 0;
|
|
}
|
|
pNew->op = op;
|
|
pNew->pLeft = pLeft;
|
|
pNew->pRight = pRight;
|
|
if( pToken ){
|
|
assert( pToken->dyn==0 );
|
|
pNew->token = *pToken;
|
|
pNew->span = *pToken;
|
|
}else{
|
|
assert( pNew->token.dyn==0 );
|
|
assert( pNew->token.z==0 );
|
|
assert( pNew->token.n==0 );
|
|
if( pLeft && pRight ){
|
|
sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
|
|
}else{
|
|
pNew->span = pNew->token;
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.span field of the given expression to span all
|
|
** text between the two given tokens.
|
|
*/
|
|
void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
|
|
assert( pRight!=0 );
|
|
assert( pLeft!=0 );
|
|
/* Note: pExpr might be NULL due to a prior malloc failure */
|
|
if( pExpr && pRight->z && pLeft->z ){
|
|
if( pLeft->dyn==0 && pRight->dyn==0 ){
|
|
pExpr->span.z = pLeft->z;
|
|
pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
|
|
}else{
|
|
pExpr->span.z = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct a new expression node for a function with multiple
|
|
** arguments.
|
|
*/
|
|
Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
|
|
Expr *pNew;
|
|
pNew = sqliteMalloc( sizeof(Expr) );
|
|
if( pNew==0 ){
|
|
/* sqliteExprListDelete(pList); // Leak pList when malloc fails */
|
|
return 0;
|
|
}
|
|
pNew->op = TK_FUNCTION;
|
|
pNew->pList = pList;
|
|
if( pToken ){
|
|
assert( pToken->dyn==0 );
|
|
pNew->token = *pToken;
|
|
}else{
|
|
pNew->token.z = 0;
|
|
}
|
|
pNew->span = pNew->token;
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Recursively delete an expression tree.
|
|
*/
|
|
void sqliteExprDelete(Expr *p){
|
|
if( p==0 ) return;
|
|
if( p->span.dyn ) sqliteFree((char*)p->span.z);
|
|
if( p->token.dyn ) sqliteFree((char*)p->token.z);
|
|
sqliteExprDelete(p->pLeft);
|
|
sqliteExprDelete(p->pRight);
|
|
sqliteExprListDelete(p->pList);
|
|
sqliteSelectDelete(p->pSelect);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
|
|
/*
|
|
** The following group of routines make deep copies of expressions,
|
|
** expression lists, ID lists, and select statements. The copies can
|
|
** be deleted (by being passed to their respective ...Delete() routines)
|
|
** without effecting the originals.
|
|
**
|
|
** The expression list, ID, and source lists return by sqliteExprListDup(),
|
|
** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
|
|
** by subsequent calls to sqlite*ListAppend() routines.
|
|
**
|
|
** Any tables that the SrcList might point to are not duplicated.
|
|
*/
|
|
Expr *sqliteExprDup(Expr *p){
|
|
Expr *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMallocRaw( sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
memcpy(pNew, p, sizeof(*pNew));
|
|
if( p->token.z!=0 ){
|
|
pNew->token.z = sqliteStrDup(p->token.z);
|
|
pNew->token.dyn = 1;
|
|
}else{
|
|
assert( pNew->token.z==0 );
|
|
}
|
|
pNew->span.z = 0;
|
|
pNew->pLeft = sqliteExprDup(p->pLeft);
|
|
pNew->pRight = sqliteExprDup(p->pRight);
|
|
pNew->pList = sqliteExprListDup(p->pList);
|
|
pNew->pSelect = sqliteSelectDup(p->pSelect);
|
|
return pNew;
|
|
}
|
|
void sqliteTokenCopy(Token *pTo, Token *pFrom){
|
|
if( pTo->dyn ) sqliteFree((char*)pTo->z);
|
|
if( pFrom->z ){
|
|
pTo->n = pFrom->n;
|
|
pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
|
|
pTo->dyn = 1;
|
|
}else{
|
|
pTo->z = 0;
|
|
}
|
|
}
|
|
ExprList *sqliteExprListDup(ExprList *p){
|
|
ExprList *pNew;
|
|
struct ExprList_item *pItem;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMalloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nExpr = pNew->nAlloc = p->nExpr;
|
|
pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
|
|
for(i=0; pItem && i<p->nExpr; i++, pItem++){
|
|
Expr *pNewExpr, *pOldExpr;
|
|
pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
|
|
if( pOldExpr->span.z!=0 && pNewExpr ){
|
|
/* Always make a copy of the span for top-level expressions in the
|
|
** expression list. The logic in SELECT processing that determines
|
|
** the names of columns in the result set needs this information */
|
|
sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
|
|
}
|
|
assert( pNewExpr==0 || pNewExpr->span.z!=0
|
|
|| pOldExpr->span.z==0 || sqlite_malloc_failed );
|
|
pItem->zName = sqliteStrDup(p->a[i].zName);
|
|
pItem->sortOrder = p->a[i].sortOrder;
|
|
pItem->isAgg = p->a[i].isAgg;
|
|
pItem->done = 0;
|
|
}
|
|
return pNew;
|
|
}
|
|
SrcList *sqliteSrcListDup(SrcList *p){
|
|
SrcList *pNew;
|
|
int i;
|
|
int nByte;
|
|
if( p==0 ) return 0;
|
|
nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
|
pNew = sqliteMallocRaw( nByte );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nSrc = pNew->nAlloc = p->nSrc;
|
|
for(i=0; i<p->nSrc; i++){
|
|
struct SrcList_item *pNewItem = &pNew->a[i];
|
|
struct SrcList_item *pOldItem = &p->a[i];
|
|
pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
|
|
pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
|
pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
|
|
pNewItem->jointype = pOldItem->jointype;
|
|
pNewItem->iCursor = pOldItem->iCursor;
|
|
pNewItem->pTab = 0;
|
|
pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
|
|
pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
|
|
pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
|
|
}
|
|
return pNew;
|
|
}
|
|
IdList *sqliteIdListDup(IdList *p){
|
|
IdList *pNew;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMallocRaw( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nId = pNew->nAlloc = p->nId;
|
|
pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
|
|
if( pNew->a==0 ) return 0;
|
|
for(i=0; i<p->nId; i++){
|
|
struct IdList_item *pNewItem = &pNew->a[i];
|
|
struct IdList_item *pOldItem = &p->a[i];
|
|
pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
|
pNewItem->idx = pOldItem->idx;
|
|
}
|
|
return pNew;
|
|
}
|
|
Select *sqliteSelectDup(Select *p){
|
|
Select *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqliteMallocRaw( sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->isDistinct = p->isDistinct;
|
|
pNew->pEList = sqliteExprListDup(p->pEList);
|
|
pNew->pSrc = sqliteSrcListDup(p->pSrc);
|
|
pNew->pWhere = sqliteExprDup(p->pWhere);
|
|
pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
|
|
pNew->pHaving = sqliteExprDup(p->pHaving);
|
|
pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
|
|
pNew->op = p->op;
|
|
pNew->pPrior = sqliteSelectDup(p->pPrior);
|
|
pNew->nLimit = p->nLimit;
|
|
pNew->nOffset = p->nOffset;
|
|
pNew->zSelect = 0;
|
|
pNew->iLimit = -1;
|
|
pNew->iOffset = -1;
|
|
return pNew;
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a new element to the end of an expression list. If pList is
|
|
** initially NULL, then create a new expression list.
|
|
*/
|
|
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(ExprList) );
|
|
if( pList==0 ){
|
|
/* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
|
return 0;
|
|
}
|
|
assert( pList->nAlloc==0 );
|
|
}
|
|
if( pList->nAlloc<=pList->nExpr ){
|
|
pList->nAlloc = pList->nAlloc*2 + 4;
|
|
pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
|
|
if( pList->a==0 ){
|
|
/* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
|
pList->nExpr = pList->nAlloc = 0;
|
|
return pList;
|
|
}
|
|
}
|
|
assert( pList->a!=0 );
|
|
if( pExpr || pName ){
|
|
struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
|
memset(pItem, 0, sizeof(*pItem));
|
|
pItem->pExpr = pExpr;
|
|
if( pName ){
|
|
sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
|
|
sqliteDequote(pItem->zName);
|
|
}
|
|
}
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Delete an entire expression list.
|
|
*/
|
|
void sqliteExprListDelete(ExprList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprDelete(pList->a[i].pExpr);
|
|
sqliteFree(pList->a[i].zName);
|
|
}
|
|
sqliteFree(pList->a);
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** and 0 if it involves variables.
|
|
**
|
|
** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
** a constant.
|
|
*/
|
|
int sqliteExprIsConstant(Expr *p){
|
|
switch( p->op ){
|
|
case TK_ID:
|
|
case TK_COLUMN:
|
|
case TK_DOT:
|
|
case TK_FUNCTION:
|
|
return 0;
|
|
case TK_NULL:
|
|
case TK_STRING:
|
|
case TK_INTEGER:
|
|
case TK_FLOAT:
|
|
case TK_VARIABLE:
|
|
return 1;
|
|
default: {
|
|
if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
|
|
if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
|
|
if( p->pList ){
|
|
int i;
|
|
for(i=0; i<p->pList->nExpr; i++){
|
|
if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
|
|
}
|
|
}
|
|
return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the given expression codes a constant integer that is small enough
|
|
** to fit in a 32-bit integer, return 1 and put the value of the integer
|
|
** in *pValue. If the expression is not an integer or if it is too big
|
|
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
|
*/
|
|
int sqliteExprIsInteger(Expr *p, int *pValue){
|
|
switch( p->op ){
|
|
case TK_INTEGER: {
|
|
if( sqliteFitsIn32Bits(p->token.z) ){
|
|
*pValue = atoi(p->token.z);
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
case TK_STRING: {
|
|
const char *z = p->token.z;
|
|
int n = p->token.n;
|
|
if( n>0 && z[0]=='-' ){ z++; n--; }
|
|
while( n>0 && *z && isdigit(*z) ){ z++; n--; }
|
|
if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
|
|
*pValue = atoi(p->token.z);
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
case TK_UPLUS: {
|
|
return sqliteExprIsInteger(p->pLeft, pValue);
|
|
}
|
|
case TK_UMINUS: {
|
|
int v;
|
|
if( sqliteExprIsInteger(p->pLeft, &v) ){
|
|
*pValue = -v;
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given string is a row-id column name.
|
|
*/
|
|
int sqliteIsRowid(const char *z){
|
|
if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "OID")==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
|
|
** that name in the set of source tables in pSrcList and make the pExpr
|
|
** expression node refer back to that source column. The following changes
|
|
** are made to pExpr:
|
|
**
|
|
** pExpr->iDb Set the index in db->aDb[] of the database holding
|
|
** the table.
|
|
** pExpr->iTable Set to the cursor number for the table obtained
|
|
** from pSrcList.
|
|
** pExpr->iColumn Set to the column number within the table.
|
|
** pExpr->dataType Set to the appropriate data type for the column.
|
|
** pExpr->op Set to TK_COLUMN.
|
|
** pExpr->pLeft Any expression this points to is deleted
|
|
** pExpr->pRight Any expression this points to is deleted.
|
|
**
|
|
** The pDbToken is the name of the database (the "X"). This value may be
|
|
** NULL meaning that name is of the form Y.Z or Z. Any available database
|
|
** can be used. The pTableToken is the name of the table (the "Y"). This
|
|
** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
|
|
** means that the form of the name is Z and that columns from any table
|
|
** can be used.
|
|
**
|
|
** If the name cannot be resolved unambiguously, leave an error message
|
|
** in pParse and return non-zero. Return zero on success.
|
|
*/
|
|
static int lookupName(
|
|
Parse *pParse, /* The parsing context */
|
|
Token *pDbToken, /* Name of the database containing table, or NULL */
|
|
Token *pTableToken, /* Name of table containing column, or NULL */
|
|
Token *pColumnToken, /* Name of the column. */
|
|
SrcList *pSrcList, /* List of tables used to resolve column names */
|
|
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
|
Expr *pExpr /* Make this EXPR node point to the selected column */
|
|
){
|
|
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
|
|
char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
|
|
char *zCol = 0; /* Name of the column. The "Z" */
|
|
int i, j; /* Loop counters */
|
|
int cnt = 0; /* Number of matching column names */
|
|
int cntTab = 0; /* Number of matching table names */
|
|
sqlite *db = pParse->db; /* The database */
|
|
|
|
assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
|
|
if( pDbToken && pDbToken->z ){
|
|
zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
|
|
sqliteDequote(zDb);
|
|
}else{
|
|
zDb = 0;
|
|
}
|
|
if( pTableToken && pTableToken->z ){
|
|
zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
|
|
sqliteDequote(zTab);
|
|
}else{
|
|
assert( zDb==0 );
|
|
zTab = 0;
|
|
}
|
|
zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
|
|
sqliteDequote(zCol);
|
|
if( sqlite_malloc_failed ){
|
|
return 1; /* Leak memory (zDb and zTab) if malloc fails */
|
|
}
|
|
assert( zTab==0 || pEList==0 );
|
|
|
|
pExpr->iTable = -1;
|
|
for(i=0; i<pSrcList->nSrc; i++){
|
|
struct SrcList_item *pItem = &pSrcList->a[i];
|
|
Table *pTab = pItem->pTab;
|
|
Column *pCol;
|
|
|
|
if( pTab==0 ) continue;
|
|
assert( pTab->nCol>0 );
|
|
if( zTab ){
|
|
if( pItem->zAlias ){
|
|
char *zTabName = pItem->zAlias;
|
|
if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
|
}else{
|
|
char *zTabName = pTab->zName;
|
|
if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
|
if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if( 0==(cntTab++) ){
|
|
pExpr->iTable = pItem->iCursor;
|
|
pExpr->iDb = pTab->iDb;
|
|
}
|
|
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
|
if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
|
cnt++;
|
|
pExpr->iTable = pItem->iCursor;
|
|
pExpr->iDb = pTab->iDb;
|
|
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
|
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
|
pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we have not already resolved the name, then maybe
|
|
** it is a new.* or old.* trigger argument reference
|
|
*/
|
|
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
|
TriggerStack *pTriggerStack = pParse->trigStack;
|
|
Table *pTab = 0;
|
|
if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
|
|
pExpr->iTable = pTriggerStack->newIdx;
|
|
assert( pTriggerStack->pTab );
|
|
pTab = pTriggerStack->pTab;
|
|
}else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
|
|
pExpr->iTable = pTriggerStack->oldIdx;
|
|
assert( pTriggerStack->pTab );
|
|
pTab = pTriggerStack->pTab;
|
|
}
|
|
|
|
if( pTab ){
|
|
int j;
|
|
Column *pCol = pTab->aCol;
|
|
|
|
pExpr->iDb = pTab->iDb;
|
|
cntTab++;
|
|
for(j=0; j < pTab->nCol; j++, pCol++) {
|
|
if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
|
cnt++;
|
|
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
|
pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Perhaps the name is a reference to the ROWID
|
|
*/
|
|
if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
|
|
cnt = 1;
|
|
pExpr->iColumn = -1;
|
|
pExpr->dataType = SQLITE_SO_NUM;
|
|
}
|
|
|
|
/*
|
|
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
|
** might refer to an result-set alias. This happens, for example, when
|
|
** we are resolving names in the WHERE clause of the following command:
|
|
**
|
|
** SELECT a+b AS x FROM table WHERE x<10;
|
|
**
|
|
** In cases like this, replace pExpr with a copy of the expression that
|
|
** forms the result set entry ("a+b" in the example) and return immediately.
|
|
** Note that the expression in the result set should have already been
|
|
** resolved by the time the WHERE clause is resolved.
|
|
*/
|
|
if( cnt==0 && pEList!=0 ){
|
|
for(j=0; j<pEList->nExpr; j++){
|
|
char *zAs = pEList->a[j].zName;
|
|
if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
|
|
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
|
pExpr->op = TK_AS;
|
|
pExpr->iColumn = j;
|
|
pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
|
|
sqliteFree(zCol);
|
|
assert( zTab==0 && zDb==0 );
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If X and Y are NULL (in other words if only the column name Z is
|
|
** supplied) and the value of Z is enclosed in double-quotes, then
|
|
** Z is a string literal if it doesn't match any column names. In that
|
|
** case, we need to return right away and not make any changes to
|
|
** pExpr.
|
|
*/
|
|
if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
|
|
sqliteFree(zCol);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** cnt==0 means there was not match. cnt>1 means there were two or
|
|
** more matches. Either way, we have an error.
|
|
*/
|
|
if( cnt!=1 ){
|
|
char *z = 0;
|
|
char *zErr;
|
|
zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
|
|
if( zDb ){
|
|
sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
|
|
}else if( zTab ){
|
|
sqliteSetString(&z, zTab, ".", zCol, 0);
|
|
}else{
|
|
z = sqliteStrDup(zCol);
|
|
}
|
|
sqliteErrorMsg(pParse, zErr, z);
|
|
sqliteFree(z);
|
|
}
|
|
|
|
/* Clean up and return
|
|
*/
|
|
sqliteFree(zDb);
|
|
sqliteFree(zTab);
|
|
sqliteFree(zCol);
|
|
sqliteExprDelete(pExpr->pLeft);
|
|
pExpr->pLeft = 0;
|
|
sqliteExprDelete(pExpr->pRight);
|
|
pExpr->pRight = 0;
|
|
pExpr->op = TK_COLUMN;
|
|
sqliteAuthRead(pParse, pExpr, pSrcList);
|
|
return cnt!=1;
|
|
}
|
|
|
|
/*
|
|
** This routine walks an expression tree and resolves references to
|
|
** table columns. Nodes of the form ID.ID or ID resolve into an
|
|
** index to the table in the table list and a column offset. The
|
|
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
|
|
** value is changed to the index of the referenced table in pTabList
|
|
** plus the "base" value. The base value will ultimately become the
|
|
** VDBE cursor number for a cursor that is pointing into the referenced
|
|
** table. The Expr.iColumn value is changed to the index of the column
|
|
** of the referenced table. The Expr.iColumn value for the special
|
|
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
|
** alias for ROWID.
|
|
**
|
|
** We also check for instances of the IN operator. IN comes in two
|
|
** forms:
|
|
**
|
|
** expr IN (exprlist)
|
|
** and
|
|
** expr IN (SELECT ...)
|
|
**
|
|
** The first form is handled by creating a set holding the list
|
|
** of allowed values. The second form causes the SELECT to generate
|
|
** a temporary table.
|
|
**
|
|
** This routine also looks for scalar SELECTs that are part of an expression.
|
|
** If it finds any, it generates code to write the value of that select
|
|
** into a memory cell.
|
|
**
|
|
** Unknown columns or tables provoke an error. The function returns
|
|
** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
|
*/
|
|
int sqliteExprResolveIds(
|
|
Parse *pParse, /* The parser context */
|
|
SrcList *pSrcList, /* List of tables used to resolve column names */
|
|
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
|
Expr *pExpr /* The expression to be analyzed. */
|
|
){
|
|
int i;
|
|
|
|
if( pExpr==0 || pSrcList==0 ) return 0;
|
|
for(i=0; i<pSrcList->nSrc; i++){
|
|
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
|
|
}
|
|
switch( pExpr->op ){
|
|
/* Double-quoted strings (ex: "abc") are used as identifiers if
|
|
** possible. Otherwise they remain as strings. Single-quoted
|
|
** strings (ex: 'abc') are always string literals.
|
|
*/
|
|
case TK_STRING: {
|
|
if( pExpr->token.z[0]=='\'' ) break;
|
|
/* Fall thru into the TK_ID case if this is a double-quoted string */
|
|
}
|
|
/* A lone identifier is the name of a columnd.
|
|
*/
|
|
case TK_ID: {
|
|
if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* A table name and column name: ID.ID
|
|
** Or a database, table and column: ID.ID.ID
|
|
*/
|
|
case TK_DOT: {
|
|
Token *pColumn;
|
|
Token *pTable;
|
|
Token *pDb;
|
|
Expr *pRight;
|
|
|
|
pRight = pExpr->pRight;
|
|
if( pRight->op==TK_ID ){
|
|
pDb = 0;
|
|
pTable = &pExpr->pLeft->token;
|
|
pColumn = &pRight->token;
|
|
}else{
|
|
assert( pRight->op==TK_DOT );
|
|
pDb = &pExpr->pLeft->token;
|
|
pTable = &pRight->pLeft->token;
|
|
pColumn = &pRight->pRight->token;
|
|
}
|
|
if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TK_IN: {
|
|
Vdbe *v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 1;
|
|
if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pSelect ){
|
|
/* Case 1: expr IN (SELECT ...)
|
|
**
|
|
** Generate code to write the results of the select into a temporary
|
|
** table. The cursor number of the temporary table has already
|
|
** been put in iTable by sqliteExprResolveInSelect().
|
|
*/
|
|
pExpr->iTable = pParse->nTab++;
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
|
|
sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
|
|
}else if( pExpr->pList ){
|
|
/* Case 2: expr IN (exprlist)
|
|
**
|
|
** Create a set to put the exprlist values in. The Set id is stored
|
|
** in iTable.
|
|
*/
|
|
int i, iSet;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
if( !sqliteExprIsConstant(pE2) ){
|
|
sqliteErrorMsg(pParse,
|
|
"right-hand side of IN operator must be constant");
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE2, 0, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
iSet = pExpr->iTable = pParse->nSet++;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
switch( pE2->op ){
|
|
case TK_FLOAT:
|
|
case TK_INTEGER:
|
|
case TK_STRING: {
|
|
int addr;
|
|
assert( pE2->token.z );
|
|
addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
|
|
pE2->token.z, pE2->token.n);
|
|
sqliteVdbeDequoteP3(v, addr);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pE2);
|
|
sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TK_SELECT: {
|
|
/* This has to be a scalar SELECT. Generate code to put the
|
|
** value of this select in a memory cell and record the number
|
|
** of the memory cell in iColumn.
|
|
*/
|
|
pExpr->iColumn = pParse->nMem++;
|
|
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* For all else, just recursively walk the tree */
|
|
default: {
|
|
if( pExpr->pLeft
|
|
&& sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pRight
|
|
&& sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pList ){
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
Expr *pArg = pList->a[i].pExpr;
|
|
if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** pExpr is a node that defines a function of some kind. It might
|
|
** be a syntactic function like "count(x)" or it might be a function
|
|
** that implements an operator, like "a LIKE b".
|
|
**
|
|
** This routine makes *pzName point to the name of the function and
|
|
** *pnName hold the number of characters in the function name.
|
|
*/
|
|
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
|
|
switch( pExpr->op ){
|
|
case TK_FUNCTION: {
|
|
*pzName = pExpr->token.z;
|
|
*pnName = pExpr->token.n;
|
|
break;
|
|
}
|
|
case TK_LIKE: {
|
|
*pzName = "like";
|
|
*pnName = 4;
|
|
break;
|
|
}
|
|
case TK_GLOB: {
|
|
*pzName = "glob";
|
|
*pnName = 4;
|
|
break;
|
|
}
|
|
default: {
|
|
*pzName = "can't happen";
|
|
*pnName = 12;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Error check the functions in an expression. Make sure all
|
|
** function names are recognized and all functions have the correct
|
|
** number of arguments. Leave an error message in pParse->zErrMsg
|
|
** if anything is amiss. Return the number of errors.
|
|
**
|
|
** if pIsAgg is not null and this expression is an aggregate function
|
|
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
|
*/
|
|
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
|
int nErr = 0;
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_GLOB:
|
|
case TK_LIKE:
|
|
case TK_FUNCTION: {
|
|
int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
|
|
int no_such_func = 0; /* True if no such function exists */
|
|
int wrong_num_args = 0; /* True if wrong number of arguments */
|
|
int is_agg = 0; /* True if is an aggregate function */
|
|
int i;
|
|
int nId; /* Number of characters in function name */
|
|
const char *zId; /* The function name. */
|
|
FuncDef *pDef;
|
|
|
|
getFunctionName(pExpr, &zId, &nId);
|
|
pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
|
|
if( pDef==0 ){
|
|
pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
|
|
if( pDef==0 ){
|
|
no_such_func = 1;
|
|
}else{
|
|
wrong_num_args = 1;
|
|
}
|
|
}else{
|
|
is_agg = pDef->xFunc==0;
|
|
}
|
|
if( is_agg && !allowAgg ){
|
|
sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
|
|
nErr++;
|
|
is_agg = 0;
|
|
}else if( no_such_func ){
|
|
sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
|
nErr++;
|
|
}else if( wrong_num_args ){
|
|
sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
|
nId, zId);
|
|
nErr++;
|
|
}
|
|
if( is_agg ){
|
|
pExpr->op = TK_AGG_FUNCTION;
|
|
if( pIsAgg ) *pIsAgg = 1;
|
|
}
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
|
allowAgg && !is_agg, pIsAgg);
|
|
}
|
|
if( pDef==0 ){
|
|
/* Already reported an error */
|
|
}else if( pDef->dataType>=0 ){
|
|
if( pDef->dataType<n ){
|
|
pExpr->dataType =
|
|
sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
|
|
}else{
|
|
pExpr->dataType = SQLITE_SO_NUM;
|
|
}
|
|
}else if( pDef->dataType==SQLITE_ARGS ){
|
|
pDef->dataType = SQLITE_SO_TEXT;
|
|
for(i=0; i<n; i++){
|
|
if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
|
pExpr->dataType = SQLITE_SO_NUM;
|
|
break;
|
|
}
|
|
}
|
|
}else if( pDef->dataType==SQLITE_NUMERIC ){
|
|
pExpr->dataType = SQLITE_SO_NUM;
|
|
}else{
|
|
pExpr->dataType = SQLITE_SO_TEXT;
|
|
}
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
|
|
** given expression should sort as numeric values or as text.
|
|
**
|
|
** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
|
|
** both been called on the expression before it is passed to this routine.
|
|
*/
|
|
int sqliteExprType(Expr *p){
|
|
if( p==0 ) return SQLITE_SO_NUM;
|
|
while( p ) switch( p->op ){
|
|
case TK_PLUS:
|
|
case TK_MINUS:
|
|
case TK_STAR:
|
|
case TK_SLASH:
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL:
|
|
case TK_NOT:
|
|
case TK_UMINUS:
|
|
case TK_UPLUS:
|
|
case TK_BITAND:
|
|
case TK_BITOR:
|
|
case TK_BITNOT:
|
|
case TK_LSHIFT:
|
|
case TK_RSHIFT:
|
|
case TK_REM:
|
|
case TK_INTEGER:
|
|
case TK_FLOAT:
|
|
case TK_IN:
|
|
case TK_BETWEEN:
|
|
case TK_GLOB:
|
|
case TK_LIKE:
|
|
return SQLITE_SO_NUM;
|
|
|
|
case TK_STRING:
|
|
case TK_NULL:
|
|
case TK_CONCAT:
|
|
case TK_VARIABLE:
|
|
return SQLITE_SO_TEXT;
|
|
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
|
|
return SQLITE_SO_NUM;
|
|
}
|
|
p = p->pRight;
|
|
break;
|
|
|
|
case TK_AS:
|
|
p = p->pLeft;
|
|
break;
|
|
|
|
case TK_COLUMN:
|
|
case TK_FUNCTION:
|
|
case TK_AGG_FUNCTION:
|
|
return p->dataType;
|
|
|
|
case TK_SELECT:
|
|
assert( p->pSelect );
|
|
assert( p->pSelect->pEList );
|
|
assert( p->pSelect->pEList->nExpr>0 );
|
|
p = p->pSelect->pEList->a[0].pExpr;
|
|
break;
|
|
|
|
case TK_CASE: {
|
|
if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
|
|
return SQLITE_SO_NUM;
|
|
}
|
|
if( p->pList ){
|
|
int i;
|
|
ExprList *pList = p->pList;
|
|
for(i=1; i<pList->nExpr; i+=2){
|
|
if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
|
return SQLITE_SO_NUM;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_SO_TEXT;
|
|
}
|
|
|
|
default:
|
|
assert( p->op==TK_ABORT ); /* Can't Happen */
|
|
break;
|
|
}
|
|
return SQLITE_SO_NUM;
|
|
}
|
|
|
|
/*
|
|
** Generate code into the current Vdbe to evaluate the given
|
|
** expression and leave the result on the top of stack.
|
|
*/
|
|
void sqliteExprCode(Parse *pParse, Expr *pExpr){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_PLUS: op = OP_Add; break;
|
|
case TK_MINUS: op = OP_Subtract; break;
|
|
case TK_STAR: op = OP_Multiply; break;
|
|
case TK_SLASH: op = OP_Divide; break;
|
|
case TK_AND: op = OP_And; break;
|
|
case TK_OR: op = OP_Or; break;
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
case TK_NOT: op = OP_Not; break;
|
|
case TK_UMINUS: op = OP_Negative; break;
|
|
case TK_BITAND: op = OP_BitAnd; break;
|
|
case TK_BITOR: op = OP_BitOr; break;
|
|
case TK_BITNOT: op = OP_BitNot; break;
|
|
case TK_LSHIFT: op = OP_ShiftLeft; break;
|
|
case TK_RSHIFT: op = OP_ShiftRight; break;
|
|
case TK_REM: op = OP_Remainder; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
if( pParse->useAgg ){
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
}else if( pExpr->iColumn>=0 ){
|
|
sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_STRING:
|
|
case TK_FLOAT:
|
|
case TK_INTEGER: {
|
|
if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
|
|
sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
}
|
|
assert( pExpr->token.z );
|
|
sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
|
|
sqliteVdbeDequoteP3(v, -1);
|
|
break;
|
|
}
|
|
case TK_NULL: {
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
break;
|
|
}
|
|
case TK_VARIABLE: {
|
|
sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
op += 6; /* Convert numeric opcodes to text opcodes */
|
|
}
|
|
/* Fall through into the next case */
|
|
}
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_PLUS:
|
|
case TK_STAR:
|
|
case TK_MINUS:
|
|
case TK_REM:
|
|
case TK_BITAND:
|
|
case TK_BITOR:
|
|
case TK_SLASH: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_LSHIFT:
|
|
case TK_RSHIFT: {
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_CONCAT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, OP_Concat, 2, 0);
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
assert( pExpr->pLeft );
|
|
if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
|
|
Token *p = &pExpr->pLeft->token;
|
|
char *z = sqliteMalloc( p->n + 2 );
|
|
sprintf(z, "-%.*s", p->n, p->z);
|
|
if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
|
|
sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
}
|
|
sqliteVdbeChangeP3(v, -1, z, p->n+1);
|
|
sqliteFree(z);
|
|
break;
|
|
}
|
|
/* Fall through into TK_NOT */
|
|
}
|
|
case TK_BITNOT:
|
|
case TK_NOT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, 0);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
int dest;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
sqliteVdbeAddOp(v, op, 1, dest);
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
break;
|
|
}
|
|
case TK_GLOB:
|
|
case TK_LIKE:
|
|
case TK_FUNCTION: {
|
|
ExprList *pList = pExpr->pList;
|
|
int nExpr = pList ? pList->nExpr : 0;
|
|
FuncDef *pDef;
|
|
int nId;
|
|
const char *zId;
|
|
getFunctionName(pExpr, &zId, &nId);
|
|
pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
|
|
assert( pDef!=0 );
|
|
nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
|
|
sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
|
|
break;
|
|
}
|
|
case TK_SELECT: {
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int addr;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Ge, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Le, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_And, 0, 0);
|
|
break;
|
|
}
|
|
case TK_UPLUS:
|
|
case TK_AS: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
break;
|
|
}
|
|
case TK_CASE: {
|
|
int expr_end_label;
|
|
int jumpInst;
|
|
int addr;
|
|
int nExpr;
|
|
int i;
|
|
|
|
assert(pExpr->pList);
|
|
assert((pExpr->pList->nExpr % 2) == 0);
|
|
assert(pExpr->pList->nExpr > 0);
|
|
nExpr = pExpr->pList->nExpr;
|
|
expr_end_label = sqliteVdbeMakeLabel(v);
|
|
if( pExpr->pLeft ){
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
}
|
|
for(i=0; i<nExpr; i=i+2){
|
|
sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
|
|
if( pExpr->pLeft ){
|
|
sqliteVdbeAddOp(v, OP_Dup, 1, 1);
|
|
jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
}else{
|
|
jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
|
|
}
|
|
sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeChangeP2(v, jumpInst, addr);
|
|
}
|
|
if( pExpr->pLeft ){
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
}
|
|
if( pExpr->pRight ){
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
}
|
|
sqliteVdbeResolveLabel(v, expr_end_label);
|
|
break;
|
|
}
|
|
case TK_RAISE: {
|
|
if( !pParse->trigStack ){
|
|
sqliteErrorMsg(pParse,
|
|
"RAISE() may only be used within a trigger-program");
|
|
pParse->nErr++;
|
|
return;
|
|
}
|
|
if( pExpr->iColumn == OE_Rollback ||
|
|
pExpr->iColumn == OE_Abort ||
|
|
pExpr->iColumn == OE_Fail ){
|
|
sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
|
|
pExpr->token.z, pExpr->token.n);
|
|
sqliteVdbeDequoteP3(v, -1);
|
|
} else {
|
|
assert( pExpr->iColumn == OE_Ignore );
|
|
sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
|
|
"(IGNORE jump)", 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that pushes the value of every element of the given
|
|
** expression list onto the stack. If the includeTypes flag is true,
|
|
** then also push a string that is the datatype of each element onto
|
|
** the stack after the value.
|
|
**
|
|
** Return the number of elements pushed onto the stack.
|
|
*/
|
|
int sqliteExprCodeExprList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* The expression list to be coded */
|
|
int includeTypes /* TRUE to put datatypes on the stack too */
|
|
){
|
|
struct ExprList_item *pItem;
|
|
int i, n;
|
|
Vdbe *v;
|
|
if( pList==0 ) return 0;
|
|
v = sqliteGetVdbe(pParse);
|
|
n = pList->nExpr;
|
|
for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
|
sqliteExprCode(pParse, pItem->pExpr);
|
|
if( includeTypes ){
|
|
sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
|
|
P3_STATIC);
|
|
}
|
|
}
|
|
return includeTypes ? n*2 : n;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is true but execution
|
|
** continues straight thru if the expression is false.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false), then
|
|
** take the jump if the jumpIfNull flag is true.
|
|
*/
|
|
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
op += 6; /* Convert numeric opcodes to text opcodes */
|
|
}
|
|
sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 1, dest);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is false but execution
|
|
** continues straight thru if the expression is true.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false) then
|
|
** jump if jumpIfNull is true or fall through if jumpIfNull is false.
|
|
*/
|
|
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Ge; break;
|
|
case TK_LE: op = OP_Gt; break;
|
|
case TK_GT: op = OP_Le; break;
|
|
case TK_GE: op = OP_Lt; break;
|
|
case TK_NE: op = OP_Eq; break;
|
|
case TK_EQ: op = OP_Ne; break;
|
|
case TK_ISNULL: op = OP_NotNull; break;
|
|
case TK_NOTNULL: op = OP_IsNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
/* Convert numeric comparison opcodes into text comparison opcodes.
|
|
** This step depends on the fact that the text comparision opcodes are
|
|
** always 6 greater than their corresponding numeric comparison
|
|
** opcodes.
|
|
*/
|
|
assert( OP_Eq+6 == OP_StrEq );
|
|
op += 6;
|
|
}
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 1, dest);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, dest);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
|
** if they are identical and return FALSE if they differ in any way.
|
|
*/
|
|
int sqliteExprCompare(Expr *pA, Expr *pB){
|
|
int i;
|
|
if( pA==0 ){
|
|
return pB==0;
|
|
}else if( pB==0 ){
|
|
return 0;
|
|
}
|
|
if( pA->op!=pB->op ) return 0;
|
|
if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
|
if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
|
|
if( pA->pList ){
|
|
if( pB->pList==0 ) return 0;
|
|
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
|
for(i=0; i<pA->pList->nExpr; i++){
|
|
if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
|
return 0;
|
|
}
|
|
}
|
|
}else if( pB->pList ){
|
|
return 0;
|
|
}
|
|
if( pA->pSelect || pB->pSelect ) return 0;
|
|
if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
|
if( pA->token.z ){
|
|
if( pB->token.z==0 ) return 0;
|
|
if( pB->token.n!=pA->token.n ) return 0;
|
|
if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pParse->aAgg[] array and return its index.
|
|
*/
|
|
static int appendAggInfo(Parse *pParse){
|
|
if( (pParse->nAgg & 0x7)==0 ){
|
|
int amt = pParse->nAgg + 8;
|
|
AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
|
|
if( aAgg==0 ){
|
|
return -1;
|
|
}
|
|
pParse->aAgg = aAgg;
|
|
}
|
|
memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
|
|
return pParse->nAgg++;
|
|
}
|
|
|
|
/*
|
|
** Analyze the given expression looking for aggregate functions and
|
|
** for variables that need to be added to the pParse->aAgg[] array.
|
|
** Make additional entries to the pParse->aAgg[] array as necessary.
|
|
**
|
|
** This routine should only be called after the expression has been
|
|
** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
|
|
**
|
|
** If errors are seen, leave an error message in zErrMsg and return
|
|
** the number of errors.
|
|
*/
|
|
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
|
int i;
|
|
AggExpr *aAgg;
|
|
int nErr = 0;
|
|
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( aAgg[i].isAgg ) continue;
|
|
if( aAgg[i].pExpr->iTable==pExpr->iTable
|
|
&& aAgg[i].pExpr->iColumn==pExpr->iColumn ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 0;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( !aAgg[i].isAgg ) continue;
|
|
if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 1;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
|
|
pExpr->token.z, pExpr->token.n,
|
|
pExpr->pList ? pExpr->pList->nExpr : 0, 0);
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Locate a user function given a name and a number of arguments.
|
|
** Return a pointer to the FuncDef structure that defines that
|
|
** function, or return NULL if the function does not exist.
|
|
**
|
|
** If the createFlag argument is true, then a new (blank) FuncDef
|
|
** structure is created and liked into the "db" structure if a
|
|
** no matching function previously existed. When createFlag is true
|
|
** and the nArg parameter is -1, then only a function that accepts
|
|
** any number of arguments will be returned.
|
|
**
|
|
** If createFlag is false and nArg is -1, then the first valid
|
|
** function found is returned. A function is valid if either xFunc
|
|
** or xStep is non-zero.
|
|
*/
|
|
FuncDef *sqliteFindFunction(
|
|
sqlite *db, /* An open database */
|
|
const char *zName, /* Name of the function. Not null-terminated */
|
|
int nName, /* Number of characters in the name */
|
|
int nArg, /* Number of arguments. -1 means any number */
|
|
int createFlag /* Create new entry if true and does not otherwise exist */
|
|
){
|
|
FuncDef *pFirst, *p, *pMaybe;
|
|
pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
|
|
if( p && !createFlag && nArg<0 ){
|
|
while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
|
|
return p;
|
|
}
|
|
pMaybe = 0;
|
|
while( p && p->nArg!=nArg ){
|
|
if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
|
|
p = p->pNext;
|
|
}
|
|
if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
|
|
return 0;
|
|
}
|
|
if( p==0 && pMaybe ){
|
|
assert( createFlag==0 );
|
|
return pMaybe;
|
|
}
|
|
if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
|
|
p->nArg = nArg;
|
|
p->pNext = pFirst;
|
|
p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
|
|
sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
|
|
}
|
|
return p;
|
|
}
|