<para>Nazwa funkcji. Jeśli pierwszy znak to <quote>r</quote> parser przyjmuje, że używasz współrzędnych biegunowych. Jeśli pierwszym znakiem jest <quote>x</quote> (na przykład <quote>xfunc</quote>) parser oczekuje drugiej funkcji z pierwszym znakiem <quote>y</quote> (tutaj <quote>yfunc</quote>) aby zdefiniować funkcję w formie parametrycznej. </para>
<listitem><para><quote>Parametr grupowy</quote> funkcji. Musi być oddzielony od zmiennej funkcji przecinkiem. Możesz użyć parametru grupowego na przykład do narysowania kilku wykresów z jednej funkcji. Wartości parametru mogą być ustawiane ręcznie, lub wybierane za pomocą suwaka. Zmieniając położenie suwaka, ustawia się wartość parametru. Suwakiem można ustawić liczbę całkowitą z przedziału od 0 do 100.</para></listitem>
<title>Wstępnie zdefiniowane nazwy funkcji i stałe</title>
<para>Wszystkie wstępnie zdefiniowane funkcje i stałe, które są znane programowi &kmplot; mogą być wyświetlone poprzez wybór<menuchoice><guimenu>Pomoc</guimenu><guimenuitem>Nazwy</guimenuitem> </menuchoice>. Są to: <variablelist>
<para>Powyższe funkcje i stałe, oraz także wszystkie zdefiniowane przez użytkownika mogą być użyte do ustalenia ustawień osi. Zobacz <xref linkend="axes-config"/>. </para>
<para>Rozszerzenie funkcji jest specyfikowane przez wprowadzenie średnika po definicji wyrażenia, po którym następuje właściwe rozszerzenie. Rozszerzenie można wpisać w okienku Szybkiej Edycji, lub poprzez użycie metody DCOP, Parser addFunction. Żadne z rozszerzeń nie jest dostępne dla funkcji parametrycznych, ale N i D (a,b) działa również dla funkcji biegunowych. Na przykład: <screen>
<para>Podaje zestaw wartości parametru złożonego, dla którego ma być wyświetlona funkcja. Na przykład <userinput>f(x,k)=k*x;P[1,2,3]</userinput> narysuje funkcje f(x)=x, f(x)=2*x and f(x)=3*x. Możesz używać również funkcji jako argumentów opcji P. </para>
<para>&kmplot; używa standardowego sposobu zapisu funkcji matemetycznych, więc nie powinno być problemów z ich rozpracowaniem. Operatory, które rozpoznaje &kmplot; (w porządku malejącego priorytetu): <variablelist>
<para>Pamiętaj o priorytecie, oznczającym kolejność wykonywania działań jeśli nie są używane nawiasy: Potęgowanie jest wykonywane przed mnożeniem i dzieleniem, a te przed dodawaniem i odejmowaniem. Więc <userinput>1+2*4^2</userinput> zwraca 33, a nie np. 144. Aby zmienic kolejnośc użyj nawiasów. Wtedy, <userinput>((1+2)*4)^2</userinput> <emphasis>zwróci</emphasis> 144. </para>
<para>Domyśleni fukcje podane bezpośrednio (y=f(x)) są rysowane na całej widocznej części układu współrzędnych. Możesz podać dowolny inny zakres w oknie dialogowym edycji dla funkcji. &kmplot; oblicza wartość funkcji dla każdego piksela na osi X. Jeśli obszar rysowania zawiera punkt wynikowy, jest on łączony z poprzednio narysowanym za pomocą linii. </para>
<para>Funkcje parametryczne są rysowane dla wartości parametru od 0 do 2&pgr;. Możesz ustawić zakres rysowania dla funkcji również w oknie dialogowym. </para>
<para>Kiedy kursor myszy jest nad obszarem rysowania, wskaźnik zmienia się w krzyżyk. Bieżące współrzędne widoczne są na przecięciach z osiami, jak również w pasku stanu na dole głownego okna. </para>
<para>Możesz śledzić wartości funkcji bardziej precyzyjnie poprzez kliknięcie na lub w pobliżu wykresu. Wybrana funkcja wyświetla się w pasku stanu w prawej kolumnie. Kursor krzyżykowy będzie miał kolor taki sam jak wykres. Jeśli wykres ma taki sam kolor jak tło, kursor krzyżykowy otrzyma kolor dopełnienia tła (invert). Podczas ruchu myszą lub używania klawiszy Lewy i Prawy, kursor będize przemieszczał się po wykresie funkcji i wyświetlane będą aktualne wartości współrzędnych X i Y. Jeśli kursor zbliży się do osi X wyświetlane będą miejsca zerowe funkcji. Możesz przełaczać się między funkcjami klawiszami Góra i Dół. Kliknięcie w dowolny punkt okna, lub naciśnięcie klawisza innego niż nawigacyjne, spowoduje opuszczenie trybu śledzenia. </para>
<para>Pamiętaj, że śledzenie jest możliwe tylko dla funkcji podanej bezpośrednio (w postaci y=f(x)). Współrzędne są zawsze wyświetlane w systemie kartezjańskim. Dlatego ani funkcji parametrycznych, ani biegunowych nie można śledzić w ten sposób. </para>