You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tde-i18n/tde-i18n-nl/docs/tdeedu/kstars/darkmatter.docbook

91 lines
7.8 KiB

<sect1 id="ai-darkmatter">
<sect1info>
<author
><firstname
>Jasem</firstname
> <surname
>Mutlaq</surname
> <affiliation
><address>
</address
></affiliation>
</author>
</sect1info>
<title
>Donkere materie</title>
<indexterm
><primary
>Donkere materie</primary>
</indexterm>
<para
>Geleerden zijn er nu vrijwel zeker van dat 90% van de massa in het heelal in een vorm voorkomt die we niet kunnen waarnemen met behulp van hun eventuele elektromagnetische straling (zoals licht). </para>
<para
>Ondanks het uitgebreid in kaart brengen van het nabije heelal, in het spectrumgebied van radiogolven tot aan gammastralen (de zeer lange tot de zeer korte golflengtes), kunnen we maar 10% van de massa verklaren die er moet zijn. Zoals Bruce H. Margon, een astronoom van de University of Washington, in 2001 zei tegen de New York Times: <citation
>Het is nogal pijnlijk te moeten erkennen dat we 90% van het heelal niet kunnen vinden</citation
>. </para>
<para
>De naam die aan deze <quote
>ontbrekende massa</quote
> wordt gegeven is <firstterm
>Donkere materie</firstterm
>, en deze twee woorden geven een heel aardig beeld van alles wat we op dit terrein weten. We weten dat er <quote
>materie</quote
> moet zijn, omdat we de effecten van de gravitatiekracht (zwaartekracht) ervan kunnen waarnemen. Maar deze materie zendt in het geheel geen waarneembare elektromagnetische straling uit, en is dus <quote
>donker</quote
>. Er zijn verschillende theorieën om deze ontbrekende massa te verklaren, van exotische deeltjes die kleiner zijn dan atomen, tot een populatie van afzonderlijke zwarte gaten, tot minder exotische bruine en witte dwergen (kleine sterren). De term <quote
>ontbrekende massa</quote
> is misschien misleidend, omdat de massa zelf niet ontbreekt, maar alleen de elektromagnetische straling ervan. Maar wat is donkere materie nu precies, en hoe weten we nu eigenlijk dat die bestaat, als we die niet kunnen waarnemen? </para>
<para
>Het begon in 1933 toen de astronoom Fritz Zwicky de bewegingen onderzocht van verre en massieve (veel massa) groepen (clusters) van melkwegstelsels, met name de Coma- en Virgoclusters. Zwicky maakte een schatting van de massa van elk melkwegstelsel in de cluster op grond van de lichtkracht (totale hoeveelheid uitgezonden elektromagnetische straling), en telde al die massa's bij elkaar op, om de totale massa van de cluster te berekenen. Daarna maakte hij een tweede, onafhankelijke schatting van de massa van de cluster, gebaseerd op de meting van de spreiding van de snelheden van de afzonderlijke stelsels in de cluster. Tot zijn verrassing was deze tweede, <firstterm
>dynamische massa</firstterm
>, <emphasis
>400 keer</emphasis
> groter dan de schatting gebaseerd op de lichtkracht. </para>
<para
>Hoewel al in de tijd van Zwicky de aanwijzingen sterk waren, duurde het tot in de jaren 1970 voordat de geleerden dit gebrek aan overeenstemming uitvoerig gingen onderzoeken. Het was in deze tijd dat men het bestaan van donkere materie serieus begon te nemen. Het bestaan van zulke materie zou niet alleen een verklaring geven voor het massatekort in clusters van melkwegstelsels, maar ook meer verstrekkende consequenties hebben voor de evolutie en het lot van het heelal zelf.
Noot vertaler: als er te weinig massa in het heelal is, zal het heelal steeds verder uitdijen, is er te veel massa aanwezig, dan zal de uitdijing stoppen, en het heelal daarna gaan krimpen tot .... een punt? En daar tussen in is de kritische massa, die massa waarin het uitdijen weliswaar uiteindelijk (bijna, asymptotisch) stopt, maar niet tot krimpen overgaat. Bij de thans waargenomen massa zal het heelal steeds verder uitdijen, wat sommigen geen prettig of "elegant" idee vinden, en wat dus ook leidt tot het idee van donkere materie. </para>
<para
>Een ander fenomeen waaruit het bestaan van donkere materie blijkt zijn de rotatiekrommen van <firstterm
>Spiraalstelsels</firstterm
> (spiraalvormige melkwegstelsels, zoals onze eigen Melkweg, en onze buurman het Andromeda-melkwegstelsel). Spiraalstelsels hebben een groot aantal sterren, die in bijna cirkelvormige banen bewegen om het centrum, net zoals planeten rondom een ster. Net als planeten in hun baan zouden sterren die een grotere baan beschrijven, een lagere baansnelheid moeten hebben (dit is een gevolg van de derde wet van Kepler). Maar in werkelijkheid geldt de derde wet van Kepler alleen maar voor sterren nabij de rand van een spiraalstelsel, omdat de massa die door hun baan wordt omsloten als constant moet worden beschouwd.
Noot 2 (vertaler): Derde wet Kepler: T evenredig met R^(3/2), T de omloopstijd, R de straal. Af te leggen weg D in 1 omloopstijd: 2*pi*R, is de baanomtrek. Snelheid v=D/T is dus evenredig met 1/R^(1/2), dus omgekeerd evenredig met de wortel uit R: 4 keer grotere baan, --> 2 keer kleinere baansnelheid.
Noot 3 (vertaler): Een ster in een baan om het centrum van een melkwegstelsel wordt alleen beïnvloed door de massa binnen die baan. Men kan bewijzen dat de invloed op de ster van alle buiten de baan gelegen massa gelijk aan 0 is. Als u in een diepe put zou afdalen naar het middelpunt der aarde, wordt uw gewicht uiteindelijk, ook als u het zou overleven, niet groter maar kleiner, omdat alleen de massa dichter bij het centrum dan u, aan u trekt. In het middelpunt zelf zou u niets wegen!! </para>
<para
>De astronomen hebben echter de baansnelheden van sterren in de buitengebieden van een groot aantal spiraalstelsels gemeten, en geen ervan volgt de derde wet van Kepler, zoals men zou mogen verwachten. In plaats van bij grotere straal kleiner te worden, blijft de baansnelheid opvallend constant. Dit betekent dat de massa die wordt omgeven door een ruimere baan, toeneemt, zelfs voor sterren die naar het schijnt nabij de buitenkant van het melkwegstelsel zijn. Omdat die dichtbij de grens van het lichtgevende deel van het melkwegstelsel zijn, heeft het stelsel kennelijk ook massa tot ver buiten de gebieden waarin de sterren voorkomen. </para>
<para
>U kunt het ook zo beschouwen: neem de sterren dichtbij de buitenkant van een spiraalstelsel, met de waargenomen baansnelheden van 200 kilometer per seconde die typerend zijn voor dit soort sterren. Als het melkwegstelsel alleen die materie zou bevatten die we kunnen waarnemen, zouden die sterren al zeer gauw uit het stelsel wegvliegen, omdat hun baansnelheden vier keer groter zijn dan de ontsnappingssnelheid. Omdat men geen melkwegstelsels ziet die uitelkaar vliegen, moet er wel massa aanwezig naast de massa die we kunnen waarnemen. </para>
<para
>Er zijn diverse theorieën opgedoken in de literatuur, om de ontbrekende massa te verklaren, zoals de <acronym
>WIMP</acronym
>s (Weakly Interacting Massive Particles (Zwak wisselwerkende deeltjes met een grote massa)), <acronym
>MACHO</acronym
>'s (MAssive Compact Halo Objects (Compacte halo-objecten met een grote massa, een halo is een ruim bolvormig gebied rondom het centrum van een melkwegstelsel, die niet geheel leeg is, maar onder andere bolvormige sterrenhopen bevat)), zwarte gaten die ontstonden in het nog jonge heelal, neutrino's met (samen!) een grote massa, en andere, alle met hun voors en tegens. Door de astronomische gemeenschap is nog geen enkele theorie aanvaard, omdat we tot dusver geen middelen hebben om die te toetsen. </para>
<tip>
<para
>U kunt de clusters van melkwegstelsels zien, die professor Zwicky onderzocht toen hij de donkere materie ontdekte. Gebruik het venster Object zoeken in &kstars; (<keycombo action="simul"
>&Ctrl;<keycap
>F</keycap
></keycombo
>) om op <quote
>M 87</quote
> te centreren, en zo de Virgocluster te vinden, en op <quote
>NGC 4884</quote
> voor het vinden van de Comacluster. U zult waarschijnlijk moeten inzoomen om de melkwegstelsels te kunnen zien. Merk op dat de Virgocluster een veel groter gebied aan de hemel inneemt. In werkelijkheid is de Comacluster groter, en lijkt alleen kleiner omdat die verder weg staat. </para>
</tip>
</sect1>