|
|
|
/*
|
|
|
|
* Cryptographic API.
|
|
|
|
*
|
|
|
|
* SHA1 Secure Hash Algorithm.
|
|
|
|
*
|
|
|
|
* Derived from cryptoapi implementation, adapted for in-place
|
|
|
|
* scatterlist interface. Originally based on the public domain
|
|
|
|
* implementation written by Steve Reid.
|
|
|
|
*
|
|
|
|
* Copyright (c) Alan Smithee.
|
|
|
|
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
|
|
|
|
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "sha1.h"
|
|
|
|
|
|
|
|
#define SHA1_DIGEST_SIZE 20
|
|
|
|
#define SHA1_HMAC_BLOCK_SIZE 64
|
|
|
|
|
|
|
|
static inline TQ_UINT32 rol(TQ_UINT32 value, TQ_UINT32 bits)
|
|
|
|
{
|
|
|
|
return (((value) << (bits)) | ((value) >> (32 - (bits))));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* blk0() and blk() perform the initial expand. */
|
|
|
|
/* I got the idea of expanding during the round function from SSLeay */
|
|
|
|
# define blk0(i) block32[i]
|
|
|
|
|
|
|
|
#define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \
|
|
|
|
^block32[(i+2)&15]^block32[i&15],1))
|
|
|
|
|
|
|
|
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
|
|
|
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \
|
|
|
|
w=rol(w,30);
|
|
|
|
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \
|
|
|
|
w=rol(w,30);
|
|
|
|
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
|
|
|
|
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \
|
|
|
|
w=rol(w,30);
|
|
|
|
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
|
|
|
|
|
|
|
|
/* Hash a single 512-bit block. This is the core of the algorithm. */
|
|
|
|
static void sha1_transform(TQ_UINT32 *state, const TQ_UINT8 *in)
|
|
|
|
{
|
|
|
|
TQ_UINT32 a, b, c, d, e;
|
|
|
|
TQ_UINT32 block32[16];
|
|
|
|
|
|
|
|
/* convert/copy data to workspace */
|
|
|
|
for (a = 0; a < sizeof(block32)/sizeof(TQ_UINT32); a++)
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
|
|
block32[a] = ((const TQ_UINT32 *)in)[a];
|
|
|
|
#else
|
|
|
|
block32[a] = ((const TQ_UINT32 *)in)[a] >> 24 |
|
|
|
|
(((const TQ_UINT32 *)in)[a] >> 8 & 0x0000ff00) |
|
|
|
|
(((const TQ_UINT32 *)in)[a] << 8 & 0x00ff0000) |
|
|
|
|
(((const TQ_UINT32 *)in)[a] << 24);
|
|
|
|
#endif
|
|
|
|
/* Copy context->state[] to working vars */
|
|
|
|
a = state[0];
|
|
|
|
b = state[1];
|
|
|
|
c = state[2];
|
|
|
|
d = state[3];
|
|
|
|
e = state[4];
|
|
|
|
|
|
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
|
|
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
|
|
|
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
|
|
|
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
|
|
|
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
|
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
|
|
/* Add the working vars back into context.state[] */
|
|
|
|
state[0] += a;
|
|
|
|
state[1] += b;
|
|
|
|
state[2] += c;
|
|
|
|
state[3] += d;
|
|
|
|
state[4] += e;
|
|
|
|
/* Wipe variabes */
|
|
|
|
a = b = c = d = e = 0;
|
|
|
|
memset (block32, 0x00, sizeof block32);
|
|
|
|
}
|
|
|
|
|
|
|
|
void sha1_init(void *ctx)
|
|
|
|
{
|
|
|
|
struct sha1_ctx *sctx = (sha1_ctx*) ctx;
|
|
|
|
static const struct sha1_ctx initstate = {
|
|
|
|
0,
|
|
|
|
{ 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 },
|
|
|
|
{ 0, }
|
|
|
|
};
|
|
|
|
|
|
|
|
*sctx = initstate;
|
|
|
|
}
|
|
|
|
|
|
|
|
void sha1_update(void *ctx, const TQ_UINT8 *data, unsigned int len)
|
|
|
|
{
|
|
|
|
struct sha1_ctx *sctx = (sha1_ctx*) ctx;
|
|
|
|
unsigned int i, j;
|
|
|
|
|
|
|
|
j = (sctx->count >> 3) & 0x3f;
|
|
|
|
sctx->count += len << 3;
|
|
|
|
|
|
|
|
if ((j + len) > 63) {
|
|
|
|
memcpy(&sctx->buffer[j], data, (i = 64-j));
|
|
|
|
sha1_transform(sctx->state, sctx->buffer);
|
|
|
|
for ( ; i + 63 < len; i += 64) {
|
|
|
|
sha1_transform(sctx->state, &data[i]);
|
|
|
|
}
|
|
|
|
j = 0;
|
|
|
|
}
|
|
|
|
else i = 0;
|
|
|
|
memcpy(&sctx->buffer[j], &data[i], len - i);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Add padding and return the message digest. */
|
|
|
|
void sha1_final(void* ctx, TQ_UINT8 *out)
|
|
|
|
{
|
|
|
|
struct sha1_ctx *sctx = (sha1_ctx*) ctx;
|
|
|
|
TQ_UINT32 i, j, index, padlen;
|
|
|
|
TQ_UINT64 t;
|
|
|
|
TQ_UINT8 bits[8] = { 0, };
|
|
|
|
static const TQ_UINT8 padding[64] = { 0x80, };
|
|
|
|
|
|
|
|
t = sctx->count;
|
|
|
|
bits[7] = 0xff & t; t>>=8;
|
|
|
|
bits[6] = 0xff & t; t>>=8;
|
|
|
|
bits[5] = 0xff & t; t>>=8;
|
|
|
|
bits[4] = 0xff & t; t>>=8;
|
|
|
|
bits[3] = 0xff & t; t>>=8;
|
|
|
|
bits[2] = 0xff & t; t>>=8;
|
|
|
|
bits[1] = 0xff & t; t>>=8;
|
|
|
|
bits[0] = 0xff & t;
|
|
|
|
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
|
|
index = (sctx->count >> 3) & 0x3f;
|
|
|
|
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
|
|
|
|
sha1_update(sctx, padding, padlen);
|
|
|
|
|
|
|
|
/* Append length */
|
|
|
|
sha1_update(sctx, bits, sizeof bits);
|
|
|
|
|
|
|
|
/* Store state in digest */
|
|
|
|
for (i = j = 0; i < 5; i++, j += 4) {
|
|
|
|
TQ_UINT32 t2 = sctx->state[i];
|
|
|
|
out[j+3] = t2 & 0xff; t2>>=8;
|
|
|
|
out[j+2] = t2 & 0xff; t2>>=8;
|
|
|
|
out[j+1] = t2 & 0xff; t2>>=8;
|
|
|
|
out[j ] = t2 & 0xff;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wipe context */
|
|
|
|
memset(sctx, 0, sizeof *sctx);
|
|
|
|
}
|
|
|
|
|