You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeartwork/tdescreensaver/kdesavers/rotation.cpp

828 lines
24 KiB

//============================================================================
//
// KRotation screen saver for TDE
//
// The screen saver displays a physically realistic simulation of a force free
// rotating asymmetric body. The equations of motion for such a rotation, the
// Euler equations, are integrated numerically by the Runge-Kutta method.
//
// Developed by Georg Drenkhahn, georg-d@users.sourceforge.net
//
// $Id$
//
/*
* Copyright (C) 2004 Georg Drenkhahn
*
* KRotation is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation.
*
* KRotation is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place, Suite 330, Boston, MA 02110-1301 USA
*/
//============================================================================
// std. C++ headers
#include <cstdlib>
// STL
#include <deque>
// TQt headers
#include <tqcheckbox.h>
#include <tqlineedit.h>
#include <tqvalidator.h>
#include <tqtooltip.h>
// TDE headers
#include <tdelocale.h>
#include <tdeconfig.h>
#include <kdebug.h>
#include <tdemessagebox.h>
#include "sspreviewarea.h"
// rotation.moc includes rotation.h
#include "rotation.moc"
/** Version number of this screen saver */
#define KROTATION_VERSION "1.1"
// libtdescreensaver interface
extern "C"
{
/** application name for the libtdescreensaver interface */
TDE_EXPORT const char *kss_applicationName = "krotation.kss";
/** application description for the libtdescreensaver interface */
TDE_EXPORT const char *kss_description =
I18N_NOOP("Simulation of a force free rotating asymmetric body");
/** application version for the libtdescreensaver interface */
TDE_EXPORT const char *kss_version = KROTATION_VERSION;
/** function to create screen saver object */
TDE_EXPORT KScreenSaver* kss_create(WId id)
{
return new KRotationSaver(id);
}
/** function to create setup dialog for screen saver */
TDE_EXPORT TQDialog* kss_setup()
{
return new KRotationSetup();
}
}
//-----------------------------------------------------------------------------
// EulerOdeSolver implementation
//-----------------------------------------------------------------------------
EulerOdeSolver::EulerOdeSolver(
const double &t_,
const double &dt_,
const double &A_,
const double &B_,
const double &C_,
std::valarray<double> &y_,
const double &eps_)
: RkOdeSolver<double>(t_,y_,dt_,eps_),
A(A_), B(B_), C(C_)
{
}
std::valarray<double> EulerOdeSolver::f(
const double &x,
const std::valarray<double> &y) const
{
// unused
(void)x;
// vec omega in body coor. sys.: omega_body = (p, q, r)
const vec3<double> omega_body(y[std::slice(0,3,1)]);
// body unit vectors in fixed frame coordinates
const vec3<double> e1(y[std::slice(3,3,1)]);
const vec3<double> e2(y[std::slice(6,3,1)]);
const vec3<double> e3(y[std::slice(9,3,1)]);
// don't use "const vec3<double>&" here because slice_array must be
// value-copied to vec3<double>.
// vec omega in global fixed coor. sys.
vec3<double> omega(
omega_body[0] * e1
+ omega_body[1] * e2
+ omega_body[2] * e3);
// return vector y'
std::valarray<double> ypr(y.size());
// omega_body'
ypr[0] = -(C-B)/A * omega_body[1] * omega_body[2]; // p'
ypr[1] = -(A-C)/B * omega_body[2] * omega_body[0]; // q'
ypr[2] = -(B-A)/C * omega_body[0] * omega_body[1]; // r'
// e1', e2', e3'
ypr[std::slice(3,3,1)] = std::valarray<double>(vec3<double>::crossprod(omega, e1));
ypr[std::slice(6,3,1)] = std::valarray<double>(vec3<double>::crossprod(omega, e2));
ypr[std::slice(9,3,1)] = std::valarray<double>(vec3<double>::crossprod(omega, e3));
return ypr;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Rotation: screen saver widget
//-----------------------------------------------------------------------------
RotationGLWidget::RotationGLWidget(
TQWidget* parent, const char* name,
const vec3<double>& _omega,
const std::deque<vec3<double> >& e1_,
const std::deque<vec3<double> >& e2_,
const std::deque<vec3<double> >& e3_,
const vec3<double>& J)
: TQGLWidget(parent, name),
eyeR(25), eyeTheta(1), eyePhi(M_PI*0.25),
boxSize(1,1,1),
fixedAxses(0),
bodyAxses(0),
lightR(10), lightTheta(M_PI/4), lightPhi(0),
bodyAxsesLength(6),
fixedAxsesLength(8),
omega(_omega),
e1(e1_),
e2(e2_),
e3(e3_)
{
// set up initial rotation matrix as unit matrix, only non-constant elements
// are set later on
for (int i=0; i<16; i++)
rotmat[i] = ((i%5)==0) ? 1:0;
// Set the box sizes from the momenta of inertia. J is the 3 vector with
// momenta of inertia with respect to the 3 figure axes.
// the default values must be valid so that w,h,d are real!
GLfloat
x2 = 6.0*(-J[0] + J[1] + J[2]),
y2 = 6.0*( J[0] - J[1] + J[2]),
z2 = 6.0*( J[0] + J[1] - J[2]);
if (x2>=0 && y2>=0 && z2>=0)
{
boxSize = vec3<double>(sqrt(x2), sqrt(y2), sqrt(z2));
}
else
{
kdDebug() << "parameter error" << endl;
boxSize = vec3<double>(1, 1, 1);
}
}
/* --------- protected methods ----------- */
void RotationGLWidget::initializeGL(void)
{
qglClearColor(TQColor(black)); // set color to clear the background
glClearDepth(1); // depth buffer setup
glEnable(GL_DEPTH_TEST); // depth testing
glDepthFunc(GL_LEQUAL); // type of depth test
glShadeModel(GL_SMOOTH); // smooth color shading in poygons
// nice perspective calculation
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
// set up the light
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
// set positon of light0
GLfloat lightPos[4]=
{lightR * sin(lightTheta) * sin(lightPhi),
lightR * sin(lightTheta) * cos(lightPhi),
lightR * cos(lightTheta), 1.};
glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
// enable setting the material colour by glColor()
glEnable(GL_COLOR_MATERIAL);
// set up display lists
if (fixedAxses == 0)
fixedAxses = glGenLists(1); // list to be returned
glNewList(fixedAxses, GL_COMPILE);
// fixed coordinate system axes
glPushMatrix();
glLoadIdentity();
// z-axis, blue
qglColor(TQColor(blue));
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
// x-axis, red
qglColor(TQColor(red));
glRotatef(90, 0, 1, 0);
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
// y-axis, green
qglColor(TQColor(green));
glLoadIdentity();
glRotatef(-90, 1, 0, 0);
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
glEndList();
// end of axes object list
// box and box-axses
if (bodyAxses == 0)
bodyAxses = glGenLists(1); // list to be returned
glNewList(bodyAxses, GL_COMPILE);
// z-axis, blue
qglColor(TQColor(blue));
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
// x-axis, red
qglColor(TQColor(red));
glPushMatrix();
glRotatef(90, 0, 1, 0);
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
// y-axis, green
qglColor(TQColor(green));
glPushMatrix();
glRotatef(-90, 1, 0, 0);
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
glEndList();
}
void RotationGLWidget::draw_traces(void)
{
if (e1.size()==0 && e2.size()==0 && e3.size()==0)
return;
glPushMatrix();
glScalef(bodyAxsesLength, bodyAxsesLength, bodyAxsesLength);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
for (int j=0; j<3; ++j)
{
const std::deque<vec3<double> >& e =
j==0 ? e1 : j==1 ? e2 : e3;
// trace must contain at least 2 elements
if (e.size() > 1)
{
// emission colour
GLfloat em[4] = {0,0,0,1};
em[j] = 1; // set either red, green, blue emission colour
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
glColor4fv(em);
// set iterator of the tail part
std::deque<vec3<double> >::const_iterator eit = e.begin();
std::deque<vec3<double> >::const_iterator tail =
e.begin() +
static_cast<std::deque<vec3<double> >::difference_type>
(0.9*e.size());
glBegin(GL_LINES);
for (; eit < e.end()-1; ++eit)
{
glVertex3f((*eit)[0], (*eit)[1], (*eit)[2]);
// decrease transparency for tail section
if (eit > tail)
em[3] =
static_cast<GLfloat>
(1.0 - double(eit-tail)/(0.1*e.size()));
glColor4fv(em);
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
glVertex3f((*(eit+1))[0], (*(eit+1))[1], (*(eit+1))[2]);
}
glEnd();
}
}
glDisable(GL_BLEND);
glPopMatrix();
}
void RotationGLWidget::paintGL(void)
{
// clear color and depth buffer
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW); // select modelview matrix
glLoadIdentity();
GLfloat const em[] = {0,0,0,1};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
// omega vector
vec3<double> rotvec =
vec3<double>::crossprod(vec3<double>(0,0,1), omega).normalize();
GLfloat rotdeg =
180./M_PI * vec3<double>::angle(vec3<double>(0,0,1), omega);
glPushMatrix();
glRotatef(rotdeg, rotvec[0], rotvec[1], rotvec[2]);
qglColor(TQColor(white));
myGlArrow(7, .5f, .1f, 0.2f);
glPopMatrix();
// fixed axes
glCallList(fixedAxses);
glPushMatrix();
// set up variable part of rotation matrix for body
// set gl body rotation matrix from e1,e2,e3
const vec3<double>& e1b = e1.front();
const vec3<double>& e2b = e2.front();
const vec3<double>& e3b = e3.front();
rotmat[0] = e1b[0];
rotmat[1] = e1b[1];
rotmat[2] = e1b[2];
rotmat[4] = e2b[0];
rotmat[5] = e2b[1];
rotmat[6] = e2b[2];
rotmat[8] = e3b[0];
rotmat[9] = e3b[1];
rotmat[10] = e3b[2];
glMultMatrixf(rotmat);
glCallList(bodyAxses);
glScalef(boxSize[0]/2, boxSize[1]/2, boxSize[2]/2);
// paint box
glBegin(GL_QUADS);
// front (z)
qglColor(TQColor(blue));
glNormal3f( 0,0,1);
glVertex3f( 1, 1, 1);
glVertex3f(-1, 1, 1);
glVertex3f(-1, -1, 1);
glVertex3f( 1, -1, 1);
// back (-z)
glNormal3f( 0,0,-1);
glVertex3f( 1, 1, -1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, -1, -1);
glVertex3f( 1, -1, -1);
// top (y)
qglColor(TQColor(green));
glNormal3f( 0,1,0);
glVertex3f( 1, 1, 1);
glVertex3f( 1, 1, -1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, 1, 1);
// bottom (-y)
glNormal3f( 0,-1,0);
glVertex3f( 1, -1, 1);
glVertex3f( 1, -1, -1);
glVertex3f(-1, -1, -1);
glVertex3f(-1, -1, 1);
// left (-x)
qglColor(TQColor(red));
glNormal3f( -1,0,0);
glVertex3f(-1, 1, 1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, -1, -1);
glVertex3f(-1, -1, 1);
// right (x)
glNormal3f( 1,0,0);
glVertex3f( 1, 1, 1);
glVertex3f( 1, 1, -1);
glVertex3f( 1, -1, -1);
glVertex3f( 1, -1, 1);
glEnd();
// traces
glPopMatrix();
draw_traces ();
glFlush();
}
void RotationGLWidget::resizeGL(int w, int h)
{
// Prevent a divide by zero
if (h == 0) h = 1;
// set the new view port
glViewport(0, 0, (GLint)w, (GLint)h);
// set up projection matrix
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Perspective view
gluPerspective(40.0f, (GLdouble)w/(GLdouble)h, 1.0, 100.0f);
// Viewing transformation, position for better view
// Theta is polar angle 0<Theta<Pi
gluLookAt(
eyeR * sin(eyeTheta) * sin(eyePhi),
eyeR * sin(eyeTheta) * cos(eyePhi),
eyeR * cos(eyeTheta),
0,0,0,
0,0,1);
}
/* --------- privat methods ----------- */
void RotationGLWidget::myGlArrow(
GLfloat total_length, GLfloat head_length,
GLfloat base_width, GLfloat head_width)
{
GLUquadricObj* quadAx = gluNewQuadric();
glPushMatrix();
gluCylinder(quadAx, base_width, base_width,
total_length-head_length, 10, 1);
glTranslatef(0, 0, total_length-head_length);
gluCylinder(quadAx, head_width, 0, head_length, 10, 1);
glPopMatrix();
gluDeleteQuadric(quadAx);
}
//-----------------------------------------------------------------------------
// KRotationSaver: screen saver class
//-----------------------------------------------------------------------------
KRotationSaver::KRotationSaver(WId id)
: KScreenSaver(id),
J(4,2,3), // fixed box sizes!
initEulerPhi(0),
initEulerPsi(0),
solver(0),
glArea(0),
timer(0),
m_traceLengthSeconds(traceLengthSecondsDefault),
m_Lz(LzDefault),
m_initEulerTheta(initEulerThetaDefault)
{
readSettings(); // read global settings
initData(); // init e1,e2,e3,omega,solver
setEraseColor(black);
erase(); // erase area
glArea = new RotationGLWidget(
this, 0, omega, e1, e2, e3, J); // create gl widget
embed(glArea); // embed gl widget and resize it
glArea->show(); // show gl widget
timer = new TQTimer(this);
timer->start(deltaT, TRUE);
connect(timer, TQ_SIGNAL(timeout()), this, TQ_SLOT(doTimeStep()));
}
KRotationSaver::~KRotationSaver()
{
// time, rotation are automatically deleted with parent KRotationSaver
delete solver;
}
void KRotationSaver::initData()
{
// reset coordiante system
vec3<double> e1t(1,0,0), e2t(0,1,0), e3t(0,0,1);
// rotation by phi around z = zhat axis
e1t.rotate(initEulerPhi*e3t);
e2t.rotate(initEulerPhi*e3t);
// rotation by theta around new x axis
e2t.rotate(m_initEulerTheta*e1t);
e3t.rotate(m_initEulerTheta*e1t);
// rotation by psi around new z axis
e1t.rotate(initEulerPsi*e3t);
e2t.rotate(initEulerPsi*e3t);
// set first vector in deque
e1.clear(); e1.push_front(e1t);
e2.clear(); e2.push_front(e2t);
e3.clear(); e3.push_front(e3t);
// calc L in body frame: 1. determine z-axis of fixed frame in body
// coordinates, undo the transformations for unit z vector of the body frame
// calc omega_body from ...
vec3<double> e1_body(1,0,0), e3_body(0,0,1);
// rotation by -psi along z axis
e1_body.rotate(-initEulerPsi*e3_body);
// rotation by -theta along new x axis
e3_body.rotate(-m_initEulerTheta*e1_body);
// omega_body = L_body * J_body^(-1)
vec3<double> omega_body = e3_body * m_Lz;
std::valarray<double> &omega_body_ = omega_body;
std::valarray<double> &J_ = J;
omega_body_ /= J_;
// assemble initial y for solver
std::valarray<double> y(12);
y[std::slice(0,3,1)] = std::valarray<double>(omega_body);
// 3 basis vectors of body system in fixed coordinates
y[std::slice(3,3,1)] = std::valarray<double>(e1t);
y[std::slice(6,3,1)] = std::valarray<double>(e2t);
y[std::slice(9,3,1)] = std::valarray<double>(e3t);
// initial rotation vector
omega
= omega_body[0]*e1t
+ omega_body[1]*e2t
+ omega_body[2]*e3t;
if (solver!=0) delete solver;
// init solver
solver = new EulerOdeSolver(
0.0, // t
0.01, // first dt step size estimation
J[0], J[1], J[2], // A,B,C
y, // omega_body,e1,e2,e3
1e-5); // eps
}
void KRotationSaver::readSettings()
{
// read configuration settings from config file
TDEConfig *config = TDEGlobal::config();
config->setGroup("Settings");
// internal saver parameters are set to stored values or left at their
// default values if stored values are out of range
setTraceFlag(0, config->readBoolEntry("x trace", traceFlagDefault[0]));
setTraceFlag(1, config->readBoolEntry("y trace", traceFlagDefault[1]));
setTraceFlag(2, config->readBoolEntry("z trace", traceFlagDefault[2]));
setRandomTraces(config->readBoolEntry("random traces", randomTracesDefault));
setTraceLengthSeconds(
config->readDoubleNumEntry("length", traceLengthSecondsDefault));
setLz(
config->readDoubleNumEntry("Lz", LzDefault));
setInitEulerTheta(
config->readDoubleNumEntry("theta", initEulerThetaDefault));
}
void KRotationSaver::setTraceLengthSeconds(const double& t)
{
if (t >= traceLengthSecondsLimitLower
&& t <= traceLengthSecondsLimitUpper)
{
m_traceLengthSeconds = t;
}
}
const double KRotationSaver::traceLengthSecondsLimitLower = 0.0;
const double KRotationSaver::traceLengthSecondsLimitUpper = 99.0;
const double KRotationSaver::traceLengthSecondsDefault = 3.0;
const bool KRotationSaver::traceFlagDefault[3] = {false, false, true};
void KRotationSaver::setLz(const double& Lz)
{
if (Lz >= LzLimitLower && Lz <= LzLimitUpper)
{
m_Lz = Lz;
}
}
const double KRotationSaver::LzLimitLower = 0.0;
const double KRotationSaver::LzLimitUpper = 500.0;
const double KRotationSaver::LzDefault = 10.0;
void KRotationSaver::setInitEulerTheta(const double& theta)
{
if (theta >= initEulerThetaLimitLower
&& theta <= initEulerThetaLimitUpper)
{
m_initEulerTheta = theta;
}
}
const double KRotationSaver::initEulerThetaLimitLower = 0.0;
const double KRotationSaver::initEulerThetaLimitUpper = 180.0;
const double KRotationSaver::initEulerThetaDefault = 0.03;
// public slots
void KRotationSaver::doTimeStep()
{
// integrate a step ahead
solver->integrate(0.001*deltaT);
// read new y
std::valarray<double> y = solver->Y();
std::deque<vec3<double> >::size_type
max_vec_length =
static_cast<std::deque<vec3<double> >::size_type>
( m_traceLengthSeconds/(0.001*deltaT) );
for (int j=0; j<3; ++j)
{
std::deque<vec3<double> >& e =
j==0 ? e1 :
j==1 ? e2 : e3;
// read out new body coordinate system
if (m_traceFlag[j] == true
&& max_vec_length > 0)
{
e.push_front(y[std::slice(3*j+3, 3, 1)]);
while (e.size() > max_vec_length)
{
e.pop_back();
}
}
else
{
// only set the 1. element
e.front() = y[std::slice(3*j+3, 3, 1)];
// and delete all other emements
if (e.size() > 1)
e.resize(1);
}
}
// current rotation vector omega
omega = y[0]*e1.front() + y[1]*e2.front() + y[2]*e3.front();
// set new random traces every 10 seconds
if (m_randomTraces==true)
{
static unsigned int counter=0;
++counter;
if (counter > unsigned(10.0/(0.001*deltaT)))
{
counter=0;
for (int i=0; i<3; ++i)
m_traceFlag[i] = rand()%2==1 ? true : false;
}
}
glArea->updateGL();
timer->start(deltaT, TRUE); // restart timer
}
// public slot of KRotationSaver, forward resize event to public slot of glArea
// to allow the resizing of the gl area withing the setup dialog
void KRotationSaver::resizeGlArea(TQResizeEvent* e)
{
glArea->resize(e->size());
}
//-----------------------------------------------------------------------------
// KRotationSetup: dialog to setup screen saver parameters
//-----------------------------------------------------------------------------
KRotationSetup::KRotationSetup(TQWidget* parent, const char* name)
: KRotationSetupUi(parent, name),
// create ssaver and give it the WinID of the preview area
saver(new KRotationSaver(preview->winId()))
{
// the dialog should block, no other control center input should be possible
// until the dialog is closed
setModal(TRUE);
lengthEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::traceLengthSecondsLimitLower,
KRotationSaver::traceLengthSecondsLimitUpper,
3, lengthEdit));
LzEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::LzLimitLower,
KRotationSaver::LzLimitUpper,
3, LzEdit));
thetaEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::initEulerThetaLimitLower,
KRotationSaver::initEulerThetaLimitUpper,
3, thetaEdit));
// set tool tips of editable fields
TQToolTip::add(
lengthEdit,
i18n("Length of traces in seconds of visibility.\nValid values from %1 to %2.")
.arg(KRotationSaver::traceLengthSecondsLimitLower, 0, 'f', 2)
.arg(KRotationSaver::traceLengthSecondsLimitUpper, 0, 'f', 2));
TQToolTip::add(
LzEdit,
i18n("Angular momentum in z direction in arbitrary units.\nValid values from %1 to %2.")
.arg(KRotationSaver::LzLimitLower, 0, 'f', 2)
.arg(KRotationSaver::LzLimitUpper, 0, 'f', 2));
TQToolTip::add(
thetaEdit,
i18n("Gravitational constant in arbitrary units.\nValid values from %1 to %2.")
.arg(KRotationSaver::initEulerThetaLimitLower, 0, 'f', 2)
.arg(KRotationSaver::initEulerThetaLimitUpper, 0, 'f', 2));
// init preview area
preview->setBackgroundColor(black);
preview->show(); // otherwise saver does not get correct size
// read settings from saver and update GUI elements with these values, saver
// has read settings in its constructor
// set editable fields with stored values as defaults
xTrace->setChecked(saver->traceFlag(0));
yTrace->setChecked(saver->traceFlag(1));
zTrace->setChecked(saver->traceFlag(2));
randTraces->setChecked(saver->randomTraces());
TQString text;
text.setNum(saver->traceLengthSeconds());
lengthEdit->validateAndSet(text,0,0,0);
text.setNum(saver->Lz());
LzEdit->validateAndSet(text,0,0,0);
text.setNum(saver->initEulerTheta());
thetaEdit->validateAndSet(text,0,0,0);
// if the preview area is resized it emmits the resized() event which is
// caught by the saver. The embedded GlArea is resized to fit into the
// preview area.
connect(preview, TQ_SIGNAL(resized(TQResizeEvent*)),
saver, TQ_SLOT(resizeGlArea(TQResizeEvent*)));
}
KRotationSetup::~KRotationSetup()
{
delete saver;
}
// Ok pressed - save settings and exit
void KRotationSetup::okButtonClickedSlot(void)
{
TDEConfig* config = TDEGlobal::config();
config->setGroup("Settings");
config->writeEntry("x trace", saver->traceFlag(0));
config->writeEntry("y trace", saver->traceFlag(1));
config->writeEntry("z trace", saver->traceFlag(2));
config->writeEntry("random traces", saver->randomTraces());
config->writeEntry("length", saver->traceLengthSeconds());
config->writeEntry("Lz", saver->Lz());
config->writeEntry("theta", saver->initEulerTheta());
config->sync();
accept();
}
void KRotationSetup::aboutButtonClickedSlot(void)
{
KMessageBox::about(this, i18n("\
<h3>KRotation Screen Saver for TDE</h3>\
<p>Simulation of a force free rotating asymmetric body</p>\
<p>Copyright (c) Georg&nbsp;Drenkhahn 2004</p>\
<p><tt>georg-d@users.sourceforge.net</tt></p>"));
}
void KRotationSetup::xTraceToggled(bool state)
{
saver->setTraceFlag(0, state);
}
void KRotationSetup::yTraceToggled(bool state)
{
saver->setTraceFlag(1, state);
}
void KRotationSetup::zTraceToggled(bool state)
{
saver->setTraceFlag(2, state);
}
void KRotationSetup::randomTracesToggled(bool state)
{
saver->setRandomTraces(state);
if (state==false)
{
// restore settings from gui if random traces are turned off
saver->setTraceFlag(0, xTrace->isChecked());
saver->setTraceFlag(1, yTrace->isChecked());
saver->setTraceFlag(2, zTrace->isChecked());
}
}
void KRotationSetup::lengthEnteredSlot(const TQString& s)
{
saver->setTraceLengthSeconds(s.toDouble());
}
void KRotationSetup::LzEnteredSlot(const TQString& s)
{
saver->setLz(s.toDouble());
if (saver!=0) saver->initData();
}
void KRotationSetup::thetaEnteredSlot(const TQString& s)
{
saver->setInitEulerTheta(s.toDouble());
if (saver!=0) saver->initData();
}