Allow logout screen to use compositing for fadeout in background if available

git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdebase@1246376 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
v3.5.13-sru
tpearson 13 years ago
parent ee8b709f80
commit 36e2ff4f28

@ -189,7 +189,7 @@ extern "C" KDE_EXPORT int kdemain( int argc, char* argv[] )
KCmdLineArgs::addCmdLineOptions( options );
putenv((char*)"SESSION_MANAGER=");
KApplication a(false, true); // Disable styles until we need them.
KARGBApplication(a, false); // Disable styles until we need them.
fcntl(ConnectionNumber(qt_xdisplay()), F_SETFD, 1);

@ -78,8 +78,18 @@ KSMShutdownFeedback::KSMShutdownFeedback()
m_greyImageCreated( FALSE )
{
DCOPRef("kicker", "KMenu").call("hideMenu"); // Make sure the K Menu is completely removed from the screen before taking a snapshot...
m_grayImage = TQPixmap(TQPixmap::grabWindow(qt_xrootwin(), 0, 0, TQApplication::desktop()->width(), TQApplication::desktop()->height())).convertToImage();
if (kapp->isX11CompositionAvailable()) {
m_grayImage = TQImage( TQApplication::desktop()->width(), TQApplication::desktop()->height(), 32 );
m_grayImage = m_grayImage.convertDepth(32);
m_grayImage.setAlphaBuffer(false);
m_grayImage.fill(0); // Set the alpha buffer to 0 (fully transparent)
m_grayImage.setAlphaBuffer(true);
}
else {
// The hacks below aren't needed any more because Qt3 supports true transparency for the fading logout screen when composition is available
DCOPRef("kicker", "KMenu").call("hideMenu"); // Make sure the K Menu is completely removed from the screen before taking a snapshot...
m_grayImage = TQPixmap(TQPixmap::grabWindow(qt_xrootwin(), 0, 0, TQApplication::desktop()->width(), TQApplication::desktop()->height())).convertToImage();
}
m_unfadedImage = m_grayImage;
resize(0, 0);
setShown(true);
@ -102,7 +112,7 @@ void KSMShutdownFeedback::fadeBack( void )
void KSMShutdownFeedback::slotPaintEffect()
{
// determine which fade to use
if (KConfigGroup(KGlobal::config(), "Logout").readBoolEntry("doFancyLogout", true))
if (KConfigGroup(KGlobal::config(), "Logout").readBoolEntry("doFancyLogout", true))
{
float doFancyLogoutAdditionalDarkness = (float)KConfigGroup(KGlobal::config(), "Logout").readDoubleNumEntry("doFancyLogoutAdditionalDarkness", 0.6);
@ -110,134 +120,348 @@ void KSMShutdownFeedback::slotPaintEffect()
float doFancyLogoutFadeTime = (float)KConfigGroup(KGlobal::config(), "Logout").readDoubleNumEntry("doFancyLogoutFadeTime", 4000);
float doFancyLogoutFadeBackTime = (float)KConfigGroup(KGlobal::config(), "Logout").readDoubleNumEntry("doFancyLogoutFadeBackTime", 1000);
if (kapp->isX11CompositionAvailable()) {
// We can do this in a different (simpler) manner because we have compositing support!
// if slotPaintEffect() is called first time, we have to initialize the gray image
// we also could do that in the constructor, but then the displaying of the
// logout-UI would be too much delayed...
if ( m_greyImageCreated == false )
{
m_greyImageCreated = true;
setBackgroundMode( TQWidget::NoBackground );
setGeometry( TQApplication::desktop()->geometry() );
m_root.resize( width(), height() ); // for the default logout
// if slotPaintEffect() is called first time, we have to initialize the gray image
// we also could do that in the constructor, but then the displaying of the
// logout-UI would be too much delayed...
if ( m_greyImageCreated == false )
{
m_greyImageCreated = true;
setBackgroundMode( TQWidget::NoBackground );
setGeometry( TQApplication::desktop()->geometry() );
m_root.resize( width(), height() ); // for the default logout
m_unfadedImage = m_grayImage.copy();
register uchar * r = m_grayImage.bits();
register uchar * g = m_grayImage.bits() + 1;
register uchar * b = m_grayImage.bits() + 2;
uchar * end = m_grayImage.bits() + m_grayImage.numBytes();
while ( r != end ) {
*r = *g = *b = (uchar) ( ( (*r)*11 + ((*g)<<4) + (*b)*5 ) * doFancyLogoutAdditionalDarkness / 32.0f );
r += 4;
g += 4;
b += 4;
}
// start timer which is used for cpu-speed-independent fading
m_fadeTime.start();
m_rowsDone = 0;
}
m_unfadedImage = m_grayImage.copy();
// return if fading is completely done...
if ( ( m_grayOpacity >= 1.0f && m_fadeBackwards == FALSE ) || ( m_grayOpacity <= 0.0f && m_fadeBackwards == TRUE ) )
return;
register uchar * r = m_grayImage.bits();
uchar * end = m_grayImage.bits() + m_grayImage.numBytes();
while ( r != end ) {
*reinterpret_cast<TQRgb*>(r) = qRgba(0, 0, 0, 128);
r += 4;
}
// start timer which is used for cpu-speed-independent fading
m_fadeTime.start();
m_rowsDone = 0;
}
// return if fading is completely done...
if ( ( m_grayOpacity >= 1.0f && m_fadeBackwards == FALSE ) || ( m_grayOpacity <= 0.0f && m_fadeBackwards == TRUE ) )
return;
if ( m_fadeBackwards == FALSE )
{
m_grayOpacity = m_fadeTime.elapsed() / doFancyLogoutFadeTime;
if ( m_grayOpacity > 1.0f )
m_grayOpacity = 1.0f;
}
else
{
m_grayOpacity = 1.0f - m_fadeTime.elapsed() / doFancyLogoutFadeBackTime - m_compensation;
if ( m_grayOpacity < 0.0f )
m_grayOpacity = 0.0f;
}
const int imgWidth = m_unfadedImage.width();
int imgHeight = m_unfadedImage.height();
int heightUnit = imgHeight / 3;
if( heightUnit < 1 )
heightUnit = 1;
if ( m_fadeBackwards == FALSE )
{
m_grayOpacity = m_fadeTime.elapsed() / doFancyLogoutFadeTime;
if ( m_grayOpacity > 1.0f )
m_grayOpacity = 1.0f;
}
else
{
m_grayOpacity = 1.0f - m_fadeTime.elapsed() / doFancyLogoutFadeBackTime - m_compensation;
if ( m_grayOpacity < 0.0f )
m_grayOpacity = 0.0f;
int y1 = static_cast<int>( imgHeight*m_grayOpacity - heightUnit + m_grayOpacity*heightUnit*2.0f );
if( y1 > imgHeight )
y1 = imgHeight;
int y2 = y1+heightUnit;
if( y2 > imgHeight )
y2 = imgHeight;
if( m_fadeBackwards == FALSE )
{
if( y1 > 0 && y1 < imgHeight && y1-m_rowsDone > 0 && m_rowsDone < imgHeight )
{
TQImage img( imgWidth, y1-m_rowsDone, 32 );
memcpy( img.bits(), m_grayImage.scanLine( m_rowsDone ), imgWidth*(y1-m_rowsDone)*4 );
bitBlt( this, 0, m_rowsDone, &img );
m_rowsDone = y1;
}
}
else
{
// when fading back we have to blit area which isnt gray anymore to unfaded image
if( y2 > 0 && y2 < imgHeight && m_rowsDone > y2 )
{
TQImage img( imgWidth, m_rowsDone-y2, 32 );
memcpy( img.bits(), m_unfadedImage.scanLine( y2 ), imgWidth*(m_rowsDone-y2)*4 );
bitBlt( this, 0, y2, &img );
m_rowsDone = y2;
}
}
int start_y1 = y1;
if( start_y1 < 0 )
start_y1 = 0;
if( y2 > start_y1 )
{
TQImage img( imgWidth, y2-start_y1, 32 );
memcpy( img.bits(), m_grayImage.scanLine( start_y1 ), ( y2-start_y1 ) * imgWidth * 4 );
register uchar * rs = m_unfadedImage.scanLine( start_y1 );
register uchar * rd = img.bits();
for( int y = start_y1; y < y2; ++y )
{
// linear gradients look bad, so use cos-function
short int opac = static_cast<short int>( 128 - cosf( M_PI*(y-y1)/heightUnit )*128.0f );
for( short int x = 0; x < imgWidth; ++x )
{
*reinterpret_cast<TQRgb*>(rd) = qRgba(0, 0, 0, ((255.0-opac)/(255.0/127.0)));
rs += 4; rd += 4;
}
}
bitBlt( this, 0, start_y1, &img );
}
TQTimer::singleShot( 5, this, TQT_SLOT( slotPaintEffect() ) );
}
else {
// if slotPaintEffect() is called first time, we have to initialize the gray image
// we also could do that in the constructor, but then the displaying of the
// logout-UI would be too much delayed...
if ( m_greyImageCreated == false )
{
m_greyImageCreated = true;
setBackgroundMode( TQWidget::NoBackground );
setGeometry( TQApplication::desktop()->geometry() );
m_root.resize( width(), height() ); // for the default logout
const int imgWidth = m_unfadedImage.width();
int imgHeight = m_unfadedImage.height();
int heightUnit = imgHeight / 3;
if( heightUnit < 1 )
heightUnit = 1;
int y1 = static_cast<int>( imgHeight*m_grayOpacity - heightUnit + m_grayOpacity*heightUnit*2.0f );
if( y1 > imgHeight )
y1 = imgHeight;
m_unfadedImage = m_grayImage.copy();
int y2 = y1+heightUnit;
if( y2 > imgHeight )
y2 = imgHeight;
register uchar * r = m_grayImage.bits();
register uchar * g = m_grayImage.bits() + 1;
register uchar * b = m_grayImage.bits() + 2;
uchar * end = m_grayImage.bits() + m_grayImage.numBytes();
while ( r != end ) {
*r = *g = *b = (uchar) ( ( (*r)*11 + ((*g)<<4) + (*b)*5 ) * doFancyLogoutAdditionalDarkness / 32.0f );
r += 4;
g += 4;
b += 4;
}
if( m_fadeBackwards == FALSE )
{
if( y1 > 0 && y1 < imgHeight && y1-m_rowsDone > 0 && m_rowsDone < imgHeight )
// start timer which is used for cpu-speed-independent fading
m_fadeTime.start();
m_rowsDone = 0;
}
// return if fading is completely done...
if ( ( m_grayOpacity >= 1.0f && m_fadeBackwards == FALSE ) || ( m_grayOpacity <= 0.0f && m_fadeBackwards == TRUE ) )
return;
if ( m_fadeBackwards == FALSE )
{
TQImage img( imgWidth, y1-m_rowsDone, 32 );
memcpy( img.bits(), m_grayImage.scanLine( m_rowsDone ), imgWidth*(y1-m_rowsDone)*4 );
// conversion is slow as hell if desktop-depth != 24bpp...
//Pixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, m_rowsDone, &pm );
// TQImage pm = m_pmio.convertToImage( img );
bitBlt( this, 0, m_rowsDone, &img );
m_rowsDone = y1;
m_grayOpacity = m_fadeTime.elapsed() / doFancyLogoutFadeTime;
if ( m_grayOpacity > 1.0f )
m_grayOpacity = 1.0f;
}
}
else
{
// when fading back we have to blit area which isnt gray anymore to unfaded image
if( y2 > 0 && y2 < imgHeight && m_rowsDone > y2 )
else
{
TQImage img( imgWidth, m_rowsDone-y2, 32 );
memcpy( img.bits(), m_unfadedImage.scanLine( y2 ), imgWidth*(m_rowsDone-y2)*4 );
// conversion is slow as hell if desktop-depth != 24bpp...
//TQPixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, y2, &pm );
bitBlt( this, 0, y2, &img );
m_rowsDone = y2;
m_grayOpacity = 1.0f - m_fadeTime.elapsed() / doFancyLogoutFadeBackTime - m_compensation;
if ( m_grayOpacity < 0.0f )
m_grayOpacity = 0.0f;
}
}
const int imgWidth = m_unfadedImage.width();
int imgHeight = m_unfadedImage.height();
int heightUnit = imgHeight / 3;
if( heightUnit < 1 )
heightUnit = 1;
int start_y1 = y1;
if( start_y1 < 0 )
start_y1 = 0;
if( y2 > start_y1 )
{
TQImage img( imgWidth, y2-start_y1, 32 );
memcpy( img.bits(), m_grayImage.scanLine( start_y1 ), ( y2-start_y1 ) * imgWidth * 4 );
register uchar * rs = m_unfadedImage.scanLine( start_y1 );
register uchar * gs = rs + 1;
register uchar * bs = gs + 1;
register uchar * rd = img.bits();
register uchar * gd = rd + 1;
register uchar * bd = gd + 1;
for( int y = start_y1; y < y2; ++y )
int y1 = static_cast<int>( imgHeight*m_grayOpacity - heightUnit + m_grayOpacity*heightUnit*2.0f );
if( y1 > imgHeight )
y1 = imgHeight;
int y2 = y1+heightUnit;
if( y2 > imgHeight )
y2 = imgHeight;
if( m_fadeBackwards == FALSE )
{
// linear gradients look bad, so use cos-function
short int opac = static_cast<short int>( 128 - cosf( M_PI*(y-y1)/heightUnit )*128.0f );
for( short int x = 0; x < imgWidth; ++x )
if( y1 > 0 && y1 < imgHeight && y1-m_rowsDone > 0 && m_rowsDone < imgHeight )
{
TQImage img( imgWidth, y1-m_rowsDone, 32 );
memcpy( img.bits(), m_grayImage.scanLine( m_rowsDone ), imgWidth*(y1-m_rowsDone)*4 );
// conversion is slow as hell if desktop-depth != 24bpp...
//Pixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, m_rowsDone, &pm );
//TQImage pm = m_pmio.convertToImage( img );
bitBlt( this, 0, m_rowsDone, &img );
m_rowsDone = y1;
}
}
else
{
*rd += ( ( ( *rs - *rd ) * opac ) >> 8 );
rs += 4; rd += 4;
*gd += ( ( ( *gs - *gd ) * opac ) >> 8 );
gs += 4; gd += 4;
*bd += ( ( ( *bs - *bd ) * opac ) >> 8 );
bs += 4; bd += 4;
// when fading back we have to blit area which isnt gray anymore to unfaded image
if( y2 > 0 && y2 < imgHeight && m_rowsDone > y2 )
{
TQImage img( imgWidth, m_rowsDone-y2, 32 );
memcpy( img.bits(), m_unfadedImage.scanLine( y2 ), imgWidth*(m_rowsDone-y2)*4 );
// conversion is slow as hell if desktop-depth != 24bpp...
//TQPixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, y2, &pm );
bitBlt( this, 0, y2, &img );
m_rowsDone = y2;
}
}
int start_y1 = y1;
if( start_y1 < 0 )
start_y1 = 0;
if( y2 > start_y1 )
{
TQImage img( imgWidth, y2-start_y1, 32 );
memcpy( img.bits(), m_grayImage.scanLine( start_y1 ), ( y2-start_y1 ) * imgWidth * 4 );
register uchar * rs = m_unfadedImage.scanLine( start_y1 );
register uchar * gs = rs + 1;
register uchar * bs = gs + 1;
register uchar * rd = img.bits();
register uchar * gd = rd + 1;
register uchar * bd = gd + 1;
for( int y = start_y1; y < y2; ++y )
{
// linear gradients look bad, so use cos-function
short int opac = static_cast<short int>( 128 - cosf( M_PI*(y-y1)/heightUnit )*128.0f );
for( short int x = 0; x < imgWidth; ++x )
{
*rd += ( ( ( *rs - *rd ) * opac ) >> 8 );
rs += 4; rd += 4;
*gd += ( ( ( *gs - *gd ) * opac ) >> 8 );
gs += 4; gd += 4;
*bd += ( ( ( *bs - *bd ) * opac ) >> 8 );
bs += 4; bd += 4;
}
}
// conversion is slow as hell if desktop-depth != 24bpp...
//TQPixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, start_y1, &pm );
bitBlt( this, 0, start_y1, &img );
}
// conversion is slow as hell if desktop-depth != 24bpp...
//TQPixmap pm = m_pmio.convertToPixmap( img );
//bitBlt( this, 0, start_y1, &pm );
bitBlt( this, 0, start_y1, &img );
TQTimer::singleShot( 5, this, TQT_SLOT( slotPaintEffect() ) );
}
TQTimer::singleShot( 5, this, TQT_SLOT( slotPaintEffect() ) );
}
// standard logout fade
else
{
if (kapp->isX11CompositionAvailable()) {
// We can do this in a different (simpler) manner because we have compositing support!
// The end effect will be very similar to the old style logout
float doFancyLogoutFadeTime = 1000;
float doFancyLogoutFadeBackTime = 0;
if ( m_greyImageCreated == false )
{
m_greyImageCreated = true;
setBackgroundMode( TQWidget::NoBackground );
setGeometry( TQApplication::desktop()->geometry() );
m_root.resize( width(), height() ); // for the default logout
m_unfadedImage = m_grayImage.copy();
register uchar * r = m_grayImage.bits();
uchar * end = m_grayImage.bits() + m_grayImage.numBytes();
while ( r != end ) {
*reinterpret_cast<TQRgb*>(r) = qRgba(0, 0, 0, 107);
r += 4;
}
// start timer which is used for cpu-speed-independent fading
m_fadeTime.start();
m_rowsDone = 0;
}
// return if fading is completely done...
if ( ( m_grayOpacity >= 1.0f && m_fadeBackwards == FALSE ) || ( m_grayOpacity <= 0.0f && m_fadeBackwards == TRUE ) )
return;
if ( m_fadeBackwards == FALSE )
{
m_grayOpacity = m_fadeTime.elapsed() / doFancyLogoutFadeTime;
if ( m_grayOpacity > 1.0f )
m_grayOpacity = 1.0f;
}
else
{
m_grayOpacity = 1.0f - m_fadeTime.elapsed() / doFancyLogoutFadeBackTime - m_compensation;
if ( m_grayOpacity < 0.0f )
m_grayOpacity = 0.0f;
}
const int imgWidth = m_unfadedImage.width();
int imgHeight = m_unfadedImage.height();
int heightUnit = imgHeight / 3;
if( heightUnit < 1 )
heightUnit = 1;
int y1 = static_cast<int>( imgHeight*m_grayOpacity - heightUnit + m_grayOpacity*heightUnit*2.0f );
if( y1 > imgHeight )
y1 = imgHeight;
int y2 = y1+heightUnit;
if( y2 > imgHeight )
y2 = imgHeight;
if( m_fadeBackwards == FALSE )
{
if( y1 > 0 && y1 < imgHeight && y1-m_rowsDone > 0 && m_rowsDone < imgHeight )
{
TQImage img( imgWidth, y1-m_rowsDone, 32 );
memcpy( img.bits(), m_grayImage.scanLine( m_rowsDone ), imgWidth*(y1-m_rowsDone)*4 );
bitBlt( this, 0, m_rowsDone, &img );
m_rowsDone = y1;
}
}
else
{
// when fading back we have to blit area which isnt gray anymore to unfaded image
if( y2 > 0 && y2 < imgHeight && m_rowsDone > y2 )
{
TQImage img( imgWidth, m_rowsDone-y2, 32 );
memcpy( img.bits(), m_unfadedImage.scanLine( y2 ), imgWidth*(m_rowsDone-y2)*4 );
bitBlt( this, 0, y2, &img );
m_rowsDone = y2;
}
}
int start_y1 = y1;
if( start_y1 < 0 )
start_y1 = 0;
if( y2 > start_y1 )
{
TQImage img( imgWidth, y2-start_y1, 32 );
memcpy( img.bits(), m_grayImage.scanLine( start_y1 ), ( y2-start_y1 ) * imgWidth * 4 );
register uchar * rs = m_unfadedImage.scanLine( start_y1 );
register uchar * rd = img.bits();
for( int y = start_y1; y < y2; ++y )
{
// linear gradients look bad, so use cos-function
for( short int x = 0; x < imgWidth; ++x )
{
*reinterpret_cast<TQRgb*>(rd) = qRgba(0, 0, 0, 107);
rs += 4; rd += 4;
}
}
bitBlt( this, 0, start_y1, &img );
}
TQTimer::singleShot( 1, this, TQT_SLOT( slotPaintEffect() ) );
}
else {
if ( m_currentY >= height() ) {
if ( backgroundMode() == TQWidget::NoBackground ) {
setBackgroundMode( TQWidget::NoBackground );
@ -256,6 +480,7 @@ void KSMShutdownFeedback::slotPaintEffect()
bitBlt( &m_root, 0, m_currentY, &pixmap );
m_currentY += 10;
TQTimer::singleShot( 1, this, TQT_SLOT( slotPaintEffect() ) );
}
}
}

Loading…
Cancel
Save