|
|
/**
|
|
|
This file is part of Kig, a KDE program for Interactive Geometry...
|
|
|
Copyright (C) 2002 Dominique Devriese <devriese@kde.org>
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
(at your option) any later version.
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
along with this program; if not, write to the Free Software
|
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
|
|
|
USA
|
|
|
**/
|
|
|
|
|
|
#include "common.h"
|
|
|
|
|
|
#include "../kig/kig_view.h"
|
|
|
#include "../objects/object_imp.h"
|
|
|
|
|
|
#include <cmath>
|
|
|
|
|
|
#include <kdebug.h>
|
|
|
#include <knumvalidator.h>
|
|
|
#include <tdelocale.h>
|
|
|
#if KDE_IS_VERSION( 3, 1, 90 )
|
|
|
#include <kinputdialog.h>
|
|
|
#else
|
|
|
#include <klineeditdlg.h>
|
|
|
#endif
|
|
|
|
|
|
Coordinate calcPointOnPerpend( const LineData& l, const Coordinate& t )
|
|
|
{
|
|
|
return calcPointOnPerpend( l.b - l.a, t );
|
|
|
}
|
|
|
|
|
|
Coordinate calcPointOnPerpend( const Coordinate& dir, const Coordinate& t )
|
|
|
{
|
|
|
return t + ( dir ).orthogonal();
|
|
|
}
|
|
|
|
|
|
Coordinate calcPointOnParallel( const LineData& l, const Coordinate& t )
|
|
|
{
|
|
|
return calcPointOnParallel( l.b - l.a, t );
|
|
|
}
|
|
|
|
|
|
Coordinate calcPointOnParallel( const Coordinate& dir, const Coordinate& t )
|
|
|
{
|
|
|
return t + dir*5;
|
|
|
}
|
|
|
|
|
|
Coordinate calcIntersectionPoint( const LineData& l1, const LineData& l2 )
|
|
|
{
|
|
|
const Coordinate& pa = l1.a;
|
|
|
const Coordinate& pb = l1.b;
|
|
|
const Coordinate& pc = l2.a;
|
|
|
const Coordinate& pd = l2.b;
|
|
|
|
|
|
double
|
|
|
xab = pb.x - pa.x,
|
|
|
xdc = pd.x - pc.x,
|
|
|
xac = pc.x - pa.x,
|
|
|
yab = pb.y - pa.y,
|
|
|
ydc = pd.y - pc.y,
|
|
|
yac = pc.y - pa.y;
|
|
|
|
|
|
double det = xab*ydc - xdc*yab;
|
|
|
double detn = xac*ydc - xdc*yac;
|
|
|
|
|
|
// test for parallelism
|
|
|
if ( fabs (det) < 1e-6 ) return Coordinate::invalidCoord();
|
|
|
double t = detn/det;
|
|
|
|
|
|
return pa + t*(pb - pa);
|
|
|
}
|
|
|
|
|
|
void calcBorderPoints( Coordinate& p1, Coordinate& p2, const Rect& r )
|
|
|
{
|
|
|
calcBorderPoints( p1.x, p1.y, p2.x, p2.y, r );
|
|
|
}
|
|
|
|
|
|
const LineData calcBorderPoints( const LineData& l, const Rect& r )
|
|
|
{
|
|
|
LineData ret( l );
|
|
|
calcBorderPoints( ret.a.x, ret.a.y, ret.b.x, ret.b.y, r );
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
void calcBorderPoints( double& xa, double& ya, double& xb, double& yb, const Rect& r )
|
|
|
{
|
|
|
// we calc where the line through a(xa,ya) and b(xb,yb) intersects with r:
|
|
|
double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya;
|
|
|
double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya;
|
|
|
double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa;
|
|
|
double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa;
|
|
|
|
|
|
// now we go looking for valid points
|
|
|
int novp = 0; // number of valid points we have already found
|
|
|
|
|
|
if (!(top < r.left() || top > r.right())) {
|
|
|
// the line intersects with the top side of the rect.
|
|
|
++novp;
|
|
|
xa = top; ya = r.top();
|
|
|
};
|
|
|
if (!(left < r.bottom() || left > r.top())) {
|
|
|
// the line intersects with the left side of the rect.
|
|
|
if (novp++) { xb = r.left(); yb=left; }
|
|
|
else { xa = r.left(); ya=left; };
|
|
|
};
|
|
|
if (!(right < r.bottom() || right > r.top())) {
|
|
|
// the line intersects with the right side of the rect.
|
|
|
if (novp++) { xb = r.right(); yb=right; }
|
|
|
else { xa = r.right(); ya=right; };
|
|
|
};
|
|
|
if (!(bottom < r.left() || bottom > r.right())) {
|
|
|
// the line intersects with the bottom side of the rect.
|
|
|
++novp;
|
|
|
xb = bottom; yb = r.bottom();
|
|
|
};
|
|
|
if (novp < 2) {
|
|
|
// line is completely outside of the window...
|
|
|
xa = ya = xb = yb = 0;
|
|
|
};
|
|
|
}
|
|
|
|
|
|
void calcRayBorderPoints( const Coordinate& a, Coordinate& b, const Rect& r )
|
|
|
{
|
|
|
calcRayBorderPoints( a.x, a.y, b.x, b.y, r );
|
|
|
}
|
|
|
|
|
|
void calcRayBorderPoints( const double xa, const double ya, double& xb,
|
|
|
double& yb, const Rect& r )
|
|
|
{
|
|
|
// we calc where the line through a(xa,ya) and b(xb,yb) intersects with r:
|
|
|
double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya;
|
|
|
double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya;
|
|
|
double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa;
|
|
|
double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa;
|
|
|
|
|
|
// now we see which we can use...
|
|
|
if(
|
|
|
// the ray intersects with the top side of the rect..
|
|
|
top >= r.left() && top <= r.right()
|
|
|
// and b is above a
|
|
|
&& yb > ya )
|
|
|
{
|
|
|
xb = top;
|
|
|
yb = r.top();
|
|
|
return;
|
|
|
};
|
|
|
if(
|
|
|
// the ray intersects with the left side of the rect...
|
|
|
left >= r.bottom() && left <= r.top()
|
|
|
// and b is on the left of a..
|
|
|
&& xb < xa )
|
|
|
{
|
|
|
xb = r.left();
|
|
|
yb=left;
|
|
|
return;
|
|
|
};
|
|
|
if (
|
|
|
// the ray intersects with the right side of the rect...
|
|
|
right >= r.bottom() && right <= r.top()
|
|
|
// and b is to the right of a..
|
|
|
&& xb > xa )
|
|
|
{
|
|
|
xb = r.right();
|
|
|
yb=right;
|
|
|
return;
|
|
|
};
|
|
|
if(
|
|
|
// the ray intersects with the bottom side of the rect...
|
|
|
bottom >= r.left() && bottom <= r.right()
|
|
|
// and b is under a..
|
|
|
&& yb < ya ) {
|
|
|
xb = bottom;
|
|
|
yb = r.bottom();
|
|
|
return;
|
|
|
};
|
|
|
kdError() << k_funcinfo << "damn" << endl;
|
|
|
}
|
|
|
|
|
|
bool isOnLine( const Coordinate& o, const Coordinate& a,
|
|
|
const Coordinate& b, const double fault )
|
|
|
{
|
|
|
double x1 = a.x;
|
|
|
double y1 = a.y;
|
|
|
double x2 = b.x;
|
|
|
double y2 = b.y;
|
|
|
|
|
|
// check your math theory ( homogeneous co<63>rdinates ) for this
|
|
|
double tmp = fabs( o.x * (y1-y2) + o.y*(x2-x1) + (x1*y2-y1*x2) );
|
|
|
return tmp < ( fault * (b-a).length());
|
|
|
// if o is on the line ( if the determinant of the matrix
|
|
|
// |---|---|---|
|
|
|
// | x | y | z |
|
|
|
// |---|---|---|
|
|
|
// | x1| y1| z1|
|
|
|
// |---|---|---|
|
|
|
// | x2| y2| z2|
|
|
|
// |---|---|---|
|
|
|
// equals 0, then p(x,y,z) is on the line containing points
|
|
|
// p1(x1,y1,z1) and p2 here, we're working with normal coords, no
|
|
|
// homogeneous ones, so all z's equal 1
|
|
|
}
|
|
|
|
|
|
bool isOnSegment( const Coordinate& o, const Coordinate& a,
|
|
|
const Coordinate& b, const double fault )
|
|
|
{
|
|
|
return isOnLine( o, a, b, fault )
|
|
|
// not too far to the right
|
|
|
&& (o.x - kigMax(a.x,b.x) < fault )
|
|
|
// not too far to the left
|
|
|
&& ( kigMin (a.x, b.x) - o.x < fault )
|
|
|
// not too high
|
|
|
&& ( kigMin (a.y, b.y) - o.y < fault )
|
|
|
// not too low
|
|
|
&& ( o.y - kigMax (a.y, b.y) < fault );
|
|
|
}
|
|
|
|
|
|
bool isOnRay( const Coordinate& o, const Coordinate& a,
|
|
|
const Coordinate& b, const double fault )
|
|
|
{
|
|
|
return isOnLine( o, a, b, fault )
|
|
|
// not too far in front of a horizontally..
|
|
|
// && ( a.x - b.x < fault ) == ( a.x - o.x < fault )
|
|
|
&& ( ( a.x < b.x ) ? ( a.x - o.x < fault ) : ( a.x - o.x > -fault ) )
|
|
|
// not too far in front of a vertically..
|
|
|
// && ( a.y - b.y < fault ) == ( a.y - o.y < fault );
|
|
|
&& ( ( a.y < b.y ) ? ( a.y - o.y < fault ) : ( a.y - o.y > -fault ) );
|
|
|
}
|
|
|
|
|
|
bool isOnArc( const Coordinate& o, const Coordinate& c, const double r,
|
|
|
const double sa, const double a, const double fault )
|
|
|
{
|
|
|
if ( fabs( ( c - o ).length() - r ) > fault )
|
|
|
return false;
|
|
|
Coordinate d = o - c;
|
|
|
double angle = atan2( d.y, d.x );
|
|
|
|
|
|
if ( angle < sa ) angle += 2 * M_PI;
|
|
|
return angle - sa - a < 1e-4;
|
|
|
}
|
|
|
|
|
|
const Coordinate calcMirrorPoint( const LineData& l,
|
|
|
const Coordinate& p )
|
|
|
{
|
|
|
Coordinate m =
|
|
|
calcIntersectionPoint( l,
|
|
|
LineData( p,
|
|
|
calcPointOnPerpend( l, p )
|
|
|
)
|
|
|
);
|
|
|
return 2*m - p;
|
|
|
}
|
|
|
|
|
|
const Coordinate calcCircleLineIntersect( const Coordinate& c,
|
|
|
const double sqr,
|
|
|
const LineData& l,
|
|
|
int side )
|
|
|
{
|
|
|
Coordinate proj = calcPointProjection( c, l );
|
|
|
Coordinate hvec = proj - c;
|
|
|
Coordinate lvec = -l.dir();
|
|
|
|
|
|
double sqdist = hvec.squareLength();
|
|
|
double sql = sqr - sqdist;
|
|
|
if ( sql < 0.0 )
|
|
|
return Coordinate::invalidCoord();
|
|
|
else
|
|
|
{
|
|
|
double l = sqrt( sql );
|
|
|
lvec = lvec.normalize( l );
|
|
|
lvec *= side;
|
|
|
|
|
|
return proj + lvec;
|
|
|
};
|
|
|
}
|
|
|
|
|
|
const Coordinate calcArcLineIntersect( const Coordinate& c, const double sqr,
|
|
|
const double sa, const double angle,
|
|
|
const LineData& l, int side )
|
|
|
{
|
|
|
const Coordinate possiblepoint = calcCircleLineIntersect( c, sqr, l, side );
|
|
|
if ( isOnArc( possiblepoint, c, sqrt( sqr ), sa, angle, test_threshold ) )
|
|
|
return possiblepoint;
|
|
|
else return Coordinate::invalidCoord();
|
|
|
}
|
|
|
|
|
|
const Coordinate calcPointProjection( const Coordinate& p,
|
|
|
const LineData& l )
|
|
|
{
|
|
|
Coordinate orth = l.dir().orthogonal();
|
|
|
return p + orth.normalize( calcDistancePointLine( p, l ) );
|
|
|
}
|
|
|
|
|
|
double calcDistancePointLine( const Coordinate& p,
|
|
|
const LineData& l )
|
|
|
{
|
|
|
double xa = l.a.x;
|
|
|
double ya = l.a.y;
|
|
|
double xb = l.b.x;
|
|
|
double yb = l.b.y;
|
|
|
double x = p.x;
|
|
|
double y = p.y;
|
|
|
double norm = l.dir().length();
|
|
|
return ( yb * x - ya * x - xb * y + xa * y + xb * ya - yb * xa ) / norm;
|
|
|
}
|
|
|
|
|
|
Coordinate calcRotatedPoint( const Coordinate& a, const Coordinate& c, const double arc )
|
|
|
{
|
|
|
// we take a point p on a line through c and parallel with the
|
|
|
// X-axis..
|
|
|
Coordinate p( c.x + 5, c.y );
|
|
|
// we then calc the arc that ac forms with cp...
|
|
|
Coordinate d = a - c;
|
|
|
d = d.normalize();
|
|
|
double aarc = std::acos( d.x );
|
|
|
if ( d.y < 0 ) aarc = 2*M_PI - aarc;
|
|
|
|
|
|
// we now take the sum of the two arcs to find the arc between
|
|
|
// pc and ca
|
|
|
double asum = aarc + arc;
|
|
|
|
|
|
Coordinate ret( std::cos( asum ), std::sin( asum ) );
|
|
|
ret = ret.normalize( ( a -c ).length() );
|
|
|
return ret + c;
|
|
|
}
|
|
|
|
|
|
Coordinate calcCircleRadicalStartPoint( const Coordinate& ca, const Coordinate& cb,
|
|
|
double sqra, double sqrb )
|
|
|
{
|
|
|
Coordinate direc = cb - ca;
|
|
|
Coordinate m = (ca + cb)/2;
|
|
|
|
|
|
double dsq = direc.squareLength();
|
|
|
double lambda = dsq == 0.0 ? 0.0
|
|
|
: (sqra - sqrb) / (2*dsq);
|
|
|
|
|
|
direc *= lambda;
|
|
|
return m + direc;
|
|
|
}
|
|
|
|
|
|
double getDoubleFromUser( const TQString& caption, const TQString& label, double value,
|
|
|
TQWidget* parent, bool* ok, double min, double max, int decimals )
|
|
|
{
|
|
|
#ifdef KIG_USE_KDOUBLEVALIDATOR
|
|
|
KDoubleValidator vtor( min, max, decimals, 0, 0 );
|
|
|
#else
|
|
|
KFloatValidator vtor( min, max, (TQWidget*) 0, 0 );
|
|
|
#endif
|
|
|
#if KDE_IS_VERSION( 3, 1, 90 )
|
|
|
TQString input = KInputDialog::getText(
|
|
|
caption, label, TDEGlobal::locale()->formatNumber( value, decimals ),
|
|
|
ok, parent, "getDoubleFromUserDialog", &vtor );
|
|
|
#else
|
|
|
TQString input =
|
|
|
KLineEditDlg::getText( caption, label,
|
|
|
TDEGlobal::locale()->formatNumber( value, decimals ),
|
|
|
ok, parent, &vtor );
|
|
|
#endif
|
|
|
|
|
|
bool myok = true;
|
|
|
double ret = TDEGlobal::locale()->readNumber( input, &myok );
|
|
|
if ( ! myok )
|
|
|
ret = input.toDouble( & myok );
|
|
|
if ( ok ) *ok = myok;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
const Coordinate calcCenter(
|
|
|
const Coordinate& a, const Coordinate& b, const Coordinate& c )
|
|
|
{
|
|
|
// this algorithm is written by my brother, Christophe Devriese
|
|
|
// <oelewapperke@ulyssis.org> ...
|
|
|
// I don't get it myself :)
|
|
|
|
|
|
double xdo = b.x-a.x;
|
|
|
double ydo = b.y-a.y;
|
|
|
|
|
|
double xao = c.x-a.x;
|
|
|
double yao = c.y-a.y;
|
|
|
|
|
|
double a2 = xdo*xdo + ydo*ydo;
|
|
|
double b2 = xao*xao + yao*yao;
|
|
|
|
|
|
double numerator = (xdo * yao - xao * ydo);
|
|
|
if ( numerator == 0 )
|
|
|
{
|
|
|
// problem: xdo * yao == xao * ydo <=> xdo/ydo == xao / yao
|
|
|
// this means that the lines ac and ab have the same direction,
|
|
|
// which means they're the same line..
|
|
|
// FIXME: i would normally throw an error here, but KDE doesn't
|
|
|
// use exceptions, so i'm returning a bogus point :(
|
|
|
return a.invalidCoord();
|
|
|
/* return (a+c)/2; */
|
|
|
};
|
|
|
double denominator = 0.5 / numerator;
|
|
|
|
|
|
double centerx = a.x - (ydo * b2 - yao * a2) * denominator;
|
|
|
double centery = a.y + (xdo * b2 - xao * a2) * denominator;
|
|
|
|
|
|
return Coordinate(centerx, centery);
|
|
|
}
|
|
|
|
|
|
bool lineInRect( const Rect& r, const Coordinate& a, const Coordinate& b,
|
|
|
const int width, const ObjectImp* imp, const KigWidget& w )
|
|
|
{
|
|
|
double miss = w.screenInfo().normalMiss( width );
|
|
|
|
|
|
//mp: the following test didn't work for vertical segments;
|
|
|
// fortunately the ieee floating point standard allows us to avoid
|
|
|
// the test altogether, since it would produce an infinity value that
|
|
|
// makes the final r.contains to fail
|
|
|
// in any case the corresponding test for a.y - b.y was missing.
|
|
|
|
|
|
// if ( fabs( a.x - b.x ) <= 1e-7 )
|
|
|
// {
|
|
|
// // too small to be useful..
|
|
|
// return r.contains( Coordinate( a.x, r.center().y ), miss );
|
|
|
// }
|
|
|
|
|
|
// in case we have a segment we need also to check for the case when
|
|
|
// the segment is entirely contained in the rect, in which case the
|
|
|
// final tests all fail.
|
|
|
// it is ok to just check for the midpoint in the rect since:
|
|
|
// - if we have a segment completely contained in the rect this is true
|
|
|
// - if the midpoint is in the rect than returning true is safe (also
|
|
|
// in the cases where we have a ray or a line)
|
|
|
|
|
|
if ( r.contains( 0.5*( a + b ), miss ) ) return true;
|
|
|
|
|
|
Coordinate dir = b - a;
|
|
|
double m = dir.y / dir.x;
|
|
|
double lefty = a.y + m * ( r.left() - a.x );
|
|
|
double righty = a.y + m * ( r.right() - a.x );
|
|
|
double minv = dir.x / dir.y;
|
|
|
double bottomx = a.x + minv * ( r.bottom() - a.y );
|
|
|
double topx = a.x + minv * ( r.top() - a.y );
|
|
|
|
|
|
// these are the intersections between the line, and the lines
|
|
|
// defined by the sides of the rectangle.
|
|
|
Coordinate leftint( r.left(), lefty );
|
|
|
Coordinate rightint( r.right(), righty );
|
|
|
Coordinate bottomint( bottomx, r.bottom() );
|
|
|
Coordinate topint( topx, r.top() );
|
|
|
|
|
|
// For each intersection, we now check if we contain the
|
|
|
// intersection ( this might not be the case for a segment, when the
|
|
|
// intersection is not between the begin and end point.. ) and if
|
|
|
// the rect contains the intersection.. If it does, we have a winner..
|
|
|
return
|
|
|
( imp->contains( leftint, width, w ) && r.contains( leftint, miss ) ) ||
|
|
|
( imp->contains( rightint, width, w ) && r.contains( rightint, miss ) ) ||
|
|
|
( imp->contains( bottomint, width, w ) && r.contains( bottomint, miss ) ) ||
|
|
|
( imp->contains( topint, width, w ) && r.contains( topint, miss ) );
|
|
|
}
|
|
|
|
|
|
bool operator==( const LineData& l, const LineData& r )
|
|
|
{
|
|
|
return l.a == r.a && l.b == r.b;
|
|
|
}
|
|
|
|
|
|
bool LineData::isParallelTo( const LineData& l ) const
|
|
|
{
|
|
|
const Coordinate& p1 = a;
|
|
|
const Coordinate& p2 = b;
|
|
|
const Coordinate& p3 = l.a;
|
|
|
const Coordinate& p4 = l.b;
|
|
|
|
|
|
double dx1 = p2.x - p1.x;
|
|
|
double dy1 = p2.y - p1.y;
|
|
|
double dx2 = p4.x - p3.x;
|
|
|
double dy2 = p4.y - p3.y;
|
|
|
|
|
|
return isSingular( dx1, dy1, dx2, dy2 );
|
|
|
}
|
|
|
|
|
|
bool LineData::isOrthogonalTo( const LineData& l ) const
|
|
|
{
|
|
|
const Coordinate& p1 = a;
|
|
|
const Coordinate& p2 = b;
|
|
|
const Coordinate& p3 = l.a;
|
|
|
const Coordinate& p4 = l.b;
|
|
|
|
|
|
double dx1 = p2.x - p1.x;
|
|
|
double dy1 = p2.y - p1.y;
|
|
|
double dx2 = p4.x - p3.x;
|
|
|
double dy2 = p4.y - p3.y;
|
|
|
|
|
|
return isSingular( dx1, dy1, -dy2, dx2 );
|
|
|
}
|
|
|
|
|
|
bool areCollinear( const Coordinate& p1,
|
|
|
const Coordinate& p2, const Coordinate& p3 )
|
|
|
{
|
|
|
return isSingular( p2.x - p1.x, p2.y - p1.y, p3.x - p1.x, p3.y - p1.y );
|
|
|
}
|
|
|
|
|
|
bool isSingular( const double& a, const double& b,
|
|
|
const double& c, const double& d )
|
|
|
{
|
|
|
double det = a*d - b*c;
|
|
|
double norm1 = std::fabs(a) + std::fabs(b);
|
|
|
double norm2 = std::fabs(c) + std::fabs(d);
|
|
|
|
|
|
/*
|
|
|
* test must be done relative to the magnitude of the two
|
|
|
* row (or column) vectors!
|
|
|
*/
|
|
|
return ( std::fabs(det) < test_threshold*norm1*norm2 );
|
|
|
}
|
|
|
|
|
|
const double double_inf = HUGE_VAL;
|
|
|
const double test_threshold = 1e-6;
|