You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kstars/kstars/ksnumbers.cpp

405 lines
13 KiB

/***************************************************************************
ksnumbers.cpp - description
-------------------
begin : Sun Jan 13 2002
copyright : (C) 2002-2005 by Jason Harris
email : kstars@30doradus.org
copyright : (C) 2004-2005 by Pablo de Vicente
email : p.devicente@wanadoo.es
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include "ksnumbers.h"
// 63 elements
const int KSNumbers::arguments[NUTTERMS][5] = {
{ 0, 0, 0, 0, 1},
{-2, 0, 0, 2, 2},
{ 0, 0, 0, 2, 2},
{ 0, 0, 0, 0, 2},
{ 0, 1, 0, 0, 0},
{ 0, 0, 1, 0, 0},
{-2, 1, 0, 2, 2},
{ 0, 0, 0, 2, 1},
{ 0, 0, 1, 2, 2},
{-2,-1, 0, 2, 2},
{-2, 0, 1, 0, 0},
{-2, 0, 0, 2, 1},
{ 0, 0,-1, 2, 2},
{ 2, 0, 0, 0, 0},
{ 0, 0, 1, 0, 1},
{ 2, 0,-1, 2, 2},
{ 0, 0,-1, 0, 1},
{ 0, 0, 1, 2, 1},
{-2, 0, 2, 0, 0},
{ 0, 0,-2, 2, 1},
{ 2, 0, 0, 2, 2},
{ 0, 0, 2, 2, 2},
{ 0, 0, 2, 0, 0},
{-2, 0, 1, 2, 2},
{ 0, 0, 0, 2, 0},
{-2, 0, 0, 2, 0},
{ 0, 0,-1, 2, 1},
{ 0, 2, 0, 0, 0},
{ 2, 0,-1, 0, 1},
{-2, 2, 0, 2, 2},
{ 0, 1, 0, 0, 1},
{-2, 0, 1, 0, 1},
{ 0,-1, 0, 0, 1},
{ 0, 0, 2,-2, 0},
{ 2, 0,-1, 2, 1},
{ 2, 0, 1, 2, 2},
{ 0, 1, 0, 2, 2},
{-2, 1, 1, 0, 0},
{ 0,-1, 0, 2, 2},
{ 2, 0, 0, 2, 1},
{ 2, 0, 1, 0, 0},
{-2, 0, 2, 2, 2},
{-2, 0, 1, 2, 1},
{ 2, 0,-2, 0, 1},
{ 2, 0, 0, 0, 1},
{ 0,-1, 1, 0, 0},
{-2,-1, 0, 2, 1},
{-2, 0, 0, 0, 1},
{ 0, 0, 2, 2, 1},
{-2, 0, 2, 0, 1},
{-2, 1, 0, 2, 1},
{ 0, 0, 1,-2, 0},
{-1, 0, 1, 0, 0},
{-2, 1, 0, 0, 0},
{ 1, 0, 0, 0, 0},
{ 0, 0, 1, 2, 0},
{ 0, 0,-2, 2, 2},
{-1,-1, 1, 0, 0},
{ 0, 1, 1, 0, 0},
{ 0,-1, 1, 2, 2},
{ 2,-1,-1, 2, 2},
{ 0, 0, 3, 2, 2},
{ 2,-1, 0, 2, 2}
};
const int KSNumbers::amp[NUTTERMS][4] = {
{-171996,-1742, 92025, 89},
{ -13187, -16, 5736,-31},
{ -2274, -2, 977, -5},
{ 2062, 2, -895, 5},
{ 1426, -34, 54, -1},
{ 712, 1, -7, 0},
{ -517, 12, 224, -6},
{ -386, -4, 200, 0},
{ -301, 0, 129, -1},
{ 217, -5, -95, 3},
{ -158, 0, 0, 0},
{ 129, 1, -70, 0},
{ 123, 0, -53, 0},
{ 63, 0, 0, 0},
{ 63, 1, -33, 0},
{ -59, 0, 26, 0},
{ -58, -1, 32, 0},
{ -51, 0, 27, 0},
{ 48, 0, 0, 0},
{ 46, 0, -24, 0},
{ -38, 0, 16, 0},
{ -31, 0, 13, 0},
{ 29, 0, 0, 0},
{ 29, 0, -12, 0},
{ 26, 0, 0, 0},
{ -22, 0, 0, 0},
{ 21, 0, -10, 0},
{ 17, -1, 0, 0},
{ 16, 0, -8, 0},
{ -16, 1, 7, 0},
{ -15, 0, 9, 0},
{ -13, 0, 7, 0},
{ -12, 0, 6, 0},
{ 11, 0, 0, 0},
{ -10, 0, 5, 0},
{ -8, 0, 3, 0},
{ 7, 0, -3, 0},
{ -7, 0, 0, 0},
{ -7, 0, 3, 0},
{ -7, 0, 3, 0},
{ 6, 0, 0, 0},
{ 6, 0, -3, 0},
{ 6, 0, -3, 0},
{ -6, 0, 3, 0},
{ -6, 0, 3, 0},
{ 5, 0, 0, 0},
{ -5, 0, 3, 0},
{ -5, 0, 3, 0},
{ -5, 0, 3, 0},
{ 4, 0, 0, 0},
{ 4, 0, 0, 0},
{ 4, 0, 0, 0},
{ -4, 0, 0, 0},
{ -4, 0, 0, 0},
{ -4, 0, 0, 0},
{ 3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0},
{ -3, 0, 0, 0}
};
KSNumbers::KSNumbers( long double jd ){
K.setD( 20.49552 / 3600. ); //set the constant of aberration
updateValues( jd );
}
KSNumbers::~KSNumbers(){
}
void KSNumbers::updateValues( long double jd ) {
dms arg;
double args, argc;
days = jd;
//Julian Centuries since J2000.0
T = ( jd - J2000 ) / 36525.;
// Julian Millenia since J2000.0
jm = T / 10.0;
double T2 = T*T;
double T3 = T2*T;
//Sun's Mean Longitude
L.setD( 280.46645 + 36000.76983*T + 0.0003032*T2 );
//Mean elongation of the Moon from the Sun
D.setD( 297.85036 + 445267.111480*T - 0.0019142*T2 + T3/189474.);
//Sun's Mean Anomaly
M.setD( 357.52910 + 35999.05030*T - 0.0001559*T2 - 0.00000048*T3);
//Moon's Mean Anomaly
MM.setD( 134.96298 + 477198.867398*T + 0.0086972*T2 + T3/56250.0 );
//Moon's Mean Longitude
LM.setD( 218.3164591 + 481267.88134236*T - 0.0013268*T2 + T3/538841. - T*T*T*T/6519400.);
//Moon's argument of latitude
F.setD( 93.27191 + 483202.017538*T - 0.0036825*T2 + T3/327270.);
//Longitude of Moon's Ascending Node
O.setD( 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000.0 );
//Earth's orbital eccentricity
e = 0.016708617 - 0.000042037*T - 0.0000001236*T2;
double C = ( 1.914600 - 0.004817*T - 0.000014*T2 ) * sin( M.radians() )
+ ( 0.019993 - 0.000101*T ) * sin( 2.0* M.radians() )
+ 0.000290 * sin( 3.0* M.radians() );
//Sun's True Longitude
L0.setD( L.Degrees() + C );
//Sun's True Anomaly
M0.setD( M.Degrees() + C );
//Obliquity of the Ecliptic
double U = T/100.0;
double dObliq = -4680.93*U - 1.55*U*U + 1999.25*U*U*U
- 51.38*U*U*U*U - 249.67*U*U*U*U*U
- 39.05*U*U*U*U*U*U + 7.12*U*U*U*U*U*U*U
+ 27.87*U*U*U*U*U*U*U*U + 5.79*U*U*U*U*U*U*U*U*U
+ 2.45*U*U*U*U*U*U*U*U*U*U;
Obliquity.setD( 23.43929111 + dObliq/3600.0);
//Nutation parameters
dms L2, M2, O2;
double sin2L, cos2L, sin2M, cos2M;
double sinO, cosO, sin2O, cos2O;
O2.setD( 2.0*O.Degrees() );
L2.setD( 2.0*L.Degrees() ); //twice mean ecl. long. of Sun
M2.setD( 2.0*LM.Degrees() ); //twice mean ecl. long. of Moon
O.SinCos( sinO, cosO );
O2.SinCos( sin2O, cos2O );
L2.SinCos( sin2L, cos2L );
M2.SinCos( sin2M, cos2M );
// deltaEcLong = ( -17.2*sinO - 1.32*sin2L - 0.23*sin2M + 0.21*sin2O)/3600.0; //Ecl. long. correction
// deltaObliquity = ( 9.2*cosO + 0.57*cos2L + 0.10*cos2M - 0.09*cos2O)/3600.0; //Obliq. correction
deltaEcLong = 0.;
deltaObliquity = 0.;
for (unsigned int i=0; i < NUTTERMS; i++) {
arg.setD ( arguments[i][0]*D.Degrees() + arguments[i][1]*M.Degrees() +
arguments[i][2]*MM.Degrees() + arguments[i][3]*F.Degrees() + arguments[i][4]*O.Degrees() );
arg.SinCos( args, argc );
deltaEcLong += (amp[i][0] + amp[i][1]/10. * T ) * args * 1e-4 ;
deltaObliquity += (amp[i][2] + amp[i][3]/10. * T ) * argc * 1e-4 ;
}
deltaEcLong/= 3600.0;
deltaObliquity /= 3600.0;
//Compute Precession Matrices:
XP.setD( 0.6406161*T + 0.0000839*T2 + 0.0000050*T3 );
YP.setD( 0.5567530*T - 0.0001185*T2 - 0.0000116*T3 );
ZP.setD( 0.6406161*T + 0.0003041*T2 + 0.0000051*T3 );
XP.SinCos( SX, CX );
YP.SinCos( SY, CY );
ZP.SinCos( SZ, CZ );
//P1 is used to precess from any epoch to J2000
P1[0][0] = CX*CY*CZ - SX*SZ;
P1[1][0] = CX*CY*SZ + SX*CZ;
P1[2][0] = CX*SY;
P1[0][1] = -1.0*SX*CY*CZ - CX*SZ;
P1[1][1] = -1.0*SX*CY*SZ + CX*CZ;
P1[2][1] = -1.0*SX*SY;
P1[0][2] = -1.0*SY*CZ;
P1[1][2] = -1.0*SY*SZ;
P1[2][2] = CY;
//P2 is used to precess from J2000 to any other epoch (it is the transpose of P1)
P2[0][0] = CX*CY*CZ - SX*SZ;
P2[1][0] = -1.0*SX*CY*CZ - CX*SZ;
P2[2][0] = -1.0*SY*CZ;
P2[0][1] = CX*CY*SZ + SX*CZ;
P2[1][1] = -1.0*SX*CY*SZ + CX*CZ;
P2[2][1] = -1.0*SY*SZ;
P2[0][2] = CX*SY;
P2[1][2] = -1.0*SX*SY;
P2[2][2] = CY;
//Compute Precession Matrices from B1950 to 1984 using Newcomb formulae
XB.setD( 0.217697 );
YB.setD( 0.189274 );
ZB.setD( 0.217722 );
XB.SinCos( SXB, CXB );
YB.SinCos( SYB, CYB );
ZB.SinCos( SZB, CZB );
//P1B is used to precess from 1984 to B1950:
P1B[0][0] = CXB*CYB*CZB - SXB*SZB;
P1B[1][0] = CXB*CYB*SZB + SXB*CZB;
P1B[2][0] = CXB*SYB;
P1B[0][1] = -1.0*SXB*CYB*CZB - CXB*SZB;
P1B[1][1] = -1.0*SXB*CYB*SZB + CXB*CZB;
P1B[2][1] = -1.0*SXB*SYB;
P1B[0][2] = -1.0*SYB*CZB;
P1B[1][2] = -1.0*SYB*SZB;
P1B[2][2] = CYB;
//P2 is used to precess from B1950 to 1984 (it is the transpose of P1)
P2B[0][0] = CXB*CYB*CZB - SXB*SZB;
P2B[1][0] = -1.0*SXB*CYB*CZB - CXB*SZB;
P2B[2][0] = -1.0*SYB*CZB;
P2B[0][1] = CXB*CYB*SZB + SXB*CZB;
P2B[1][1] = -1.0*SXB*CYB*SZB + CXB*CZB;
P2B[2][1] = -1.0*SYB*SZB;
P2B[0][2] = CXB*SYB;
P2B[1][2] = -1.0*SXB*SYB;
P2B[2][2] = CYB;
// Mean longitudes for the planets. radians
//
// TODO Pasar a grados
double LVenus = 3.1761467+1021.3285546*T; // Venus
double LMars = 1.7534703+ 628.3075849*T; // Mars
double LEarth = 6.2034809+ 334.0612431*T; // Earth
double LJupiter = 0.5995465+ 52.9690965*T; // Jupiter
double LSaturn = 0.8740168+ 21.3299095*T; // Saturn
double LNeptune = 5.3118863+ 3.8133036*T; // Neptune
double LUranus = 5.4812939+ 7.4781599*T; // Uranus
double LMRad = 3.8103444+8399.6847337*T; // Moon
double DRad = 5.1984667+7771.3771486*T;
double MMRad = 2.3555559+8328.6914289*T; // Moon
double FRad = 1.6279052+8433.4661601*T;
/** Contibutions to the velocity of the Earth referred to the barycenter of the solar system
in the J2000 equatorial system
Velocities 10^{-8} AU/day
Ron & Vondrak method
**/
double vondrak[36][7] = {
{LMars, -1719914-2*T, -25, 25-13*T,1578089+156*T, 10+32*T,684185-358*T},
{2*LMars, 6434+141*T,28007-107*T,25697-95*T, -5904-130*T,11141-48*T, -2559-55*T},
{LJupiter, 715, 0, 6, -657, -15, -282},
{LMRad, 715, 0, 0, -656, 0, -285},
{3*LMars, 486-5*T, -236-4*T, -216-4*T, -446+5*T, -94, -193},
{LSaturn, 159, 0, 2, -147, -6, -61},
{FRad, 0, 0, 0, 26, 0, -59},
{LMRad+MMRad, 39, 0, 0, -36, 0, -16},
{2*LJupiter, 33, -10, -9, -30, -5, -13},
{2*LMars-LJupiter, 31, 1, 1, -28, 0, -12},
{3*LMars-8*LEarth+3*LJupiter, 8, -28, 25, 8, 11, 3},
{5*LMars-8*LEarth+3*LJupiter, 8, -28, -25, -8, -11, -3},
{2*LVenus-LMars, 21, 0, 0, -19, 0, -8},
{LVenus, -19, 0, 0, 17, 0, 8},
{LNeptune, 17, 0, 0, -16, 0, -7},
{LMars-2*LJupiter, 16, 0, 0, 15, 1, 7},
{LUranus, 16, 0, 1, -15, -3, -6},
{LMars+LJupiter, 11, -1, -1, -10, -1, -5},
{2*LVenus-2*LMars, 0, -11, -10, 0, -4, 0},
{LMars-LJupiter, -11, -2, -2, 9, -1, 4},
{4*LMars, -7, -8, -8, 6, -3, 3},
{3*LMars-2*LJupiter, -10, 0, 0, 9, 0, 4},
{LVenus-2*LMars, -9, 0, 0, -9, 0, -4},
{2*LVenus-3*LMars, -9, 0, 0, -8, 0, -4},
{2*LSaturn, 0, -9, -8, 0, -3, 0},
{2*LVenus-4*LMars, 0, -9, 8, 0, 3, 0},
{3*LMars-2*LEarth, 8, 0, 0, -8, 0, -3},
{LMRad+2*DRad-MMRad, 8, 0, 0, -7, 0, -3},
{8*LVenus-12*LMars, -4, -7, -6, 4, -3, 2},
{8*LVenus-14*LMars, -4, -7, 6, -4, 3, -2},
{2*LEarth, -6, -5, -4, 5, -2, 2},
{3*LVenus-4*LMars, -1, -1, -2, -7, 1, -4},
{2*LMars-2*LJupiter, 4, -6, -5, -4, -2, -2},
{3*LVenus-3*LMars, 0, -7, -6, 0, -3, 0},
{2*LMars-2*LEarth, 5, -5, -4, -5, -2, -2},
{LMRad-2*DRad, 5, 0, 0, -5, 0, -2}
};
dms anglev;
double sa, ca;
// Vearth X component
vearth[0] = 0.;
// Vearth Y component
vearth[1] = 0.;
// Vearth Z component
vearth[2] = 0.;
for (unsigned int i=0; i<36; i++) {
anglev.setRadians(vondrak[i][0]);
anglev.SinCos(sa,ca);
for (unsigned int j=0; j<3; j++) {
vearth[j] += vondrak[i][2*j+1]*sa +vondrak[i][2*j+2]*ca;
}
}
const double UA2km = 1.49597870/86400.; // 10^{-8}*UA/dia -> km/s
for (unsigned int j=0; j<3; j++) {
vearth[j] = vearth[j] * UA2km;
}
}