You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.2 KiB
169 lines
5.2 KiB
/***************************************************************************
|
|
kssun.cpp - Trinity Desktop Planetarium
|
|
-------------------
|
|
begin : Sun Jul 22 2001
|
|
copyright : (C) 2001 by Jason Harris
|
|
email : jharris@30doradus.org
|
|
***************************************************************************/
|
|
|
|
/***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include <tqdatetime.h>
|
|
|
|
#include "kssun.h"
|
|
#include "ksutils.h"
|
|
#include "ksnumbers.h"
|
|
#include "kstarsdatetime.h"
|
|
|
|
KSSun::KSSun( KStarsData *kd, TQString fn, double pSize ) : KSPlanet( kd, I18N_NOOP( "Sun" ), fn, pSize ) {
|
|
/*
|
|
JD0 = 2447892.5; //Jan 1, 1990
|
|
eclong0 = 279.403303; //mean ecliptic longitude at JD0
|
|
plong0 = 282.768422; //longitude of sun at perigee for JD0
|
|
e0 = 0.016713; //eccentricity of Earth's orbit at JD0
|
|
*/
|
|
setMag( -26.73 );
|
|
}
|
|
|
|
bool KSSun::loadData() {
|
|
// kdDebug() << k_funcinfo << endl;
|
|
return (odm.loadData("earth") != 0);
|
|
}
|
|
|
|
bool KSSun::findGeocentricPosition( const KSNumbers *num, const KSPlanetBase *Earth ) {
|
|
if (Earth) {
|
|
//
|
|
// For the precision we need, the earth's orbit is circular.
|
|
// So don't bother to iterate like KSPlanet does. Just subtract
|
|
// The current delay and recompute (once).
|
|
//
|
|
double delay = (.0057755183 * Earth->rsun()) / 365250.0;
|
|
|
|
//
|
|
// MHH 2002-02-04 I don't like this. But it avoids code duplication.
|
|
// Maybe we can find a better way.
|
|
//
|
|
const KSPlanet *pEarth = dynamic_cast<const KSPlanet *>(Earth);
|
|
/* FIXME: if you use pEarth at some point again, make sure you
|
|
check for 0L after the dynamic_cast! */
|
|
EclipticPosition trialpos;
|
|
pEarth->calcEcliptic(num->julianMillenia() - delay, trialpos);
|
|
|
|
setEcLong( trialpos.longitude.Degrees() + 180.0 );
|
|
setEcLong( ecLong()->reduce().Degrees() );
|
|
setEcLat( -1.0*trialpos.latitude.Degrees() );
|
|
|
|
} else {
|
|
double sum[6];
|
|
dms EarthLong, EarthLat; //heliocentric coords of Earth
|
|
OrbitDataColl * odc;
|
|
double T = num->julianMillenia(); //Julian millenia since J2000
|
|
double Tpow[6];
|
|
|
|
Tpow[0] = 1.0;
|
|
for (int i=1; i<6; ++i) {
|
|
Tpow[i] = Tpow[i-1] * T;
|
|
}
|
|
//First, find heliocentric coordinates
|
|
|
|
if (!(odc = odm.loadData("earth"))) return false;
|
|
|
|
//Ecliptic Longitude
|
|
for (int i=0; i<6; ++i) {
|
|
sum[i] = 0.0;
|
|
for (uint j = 0; j < odc->Lon[i].size(); ++j) {
|
|
sum[i] += odc->Lon[i][j]->A * cos( odc->Lon[i][j]->B + odc->Lon[i][j]->C*T );
|
|
}
|
|
sum[i] *= Tpow[i];
|
|
//kdDebug() << name() << " : sum[" << i << "] = " << sum[i] <<endl;
|
|
}
|
|
|
|
EarthLong.setRadians( sum[0] + sum[1] + sum[2] +
|
|
sum[3] + sum[4] + sum[5] );
|
|
EarthLong.setD( EarthLong.reduce().Degrees() );
|
|
|
|
//Compute Ecliptic Latitude
|
|
for (int i=0; i<6; ++i) {
|
|
sum[i] = 0.0;
|
|
for (uint j = 0; j < odc->Lat[i].size(); ++j) {
|
|
sum[i] += odc->Lat[i][j]->A * cos( odc->Lat[i][j]->B + odc->Lat[i][j]->C*T );
|
|
}
|
|
sum[i] *= Tpow[i];
|
|
}
|
|
|
|
|
|
EarthLat.setRadians( sum[0] + sum[1] + sum[2] + sum[3] +
|
|
sum[4] + sum[5] );
|
|
|
|
//Compute Heliocentric Distance
|
|
for (int i=0; i<6; ++i) {
|
|
sum[i] = 0.0;
|
|
for (uint j = 0; j < odc->Dst[i].size(); ++j) {
|
|
sum[i] += odc->Dst[i][j]->A * cos( odc->Dst[i][j]->B + odc->Dst[i][j]->C*T );
|
|
}
|
|
sum[i] *= Tpow[i];
|
|
}
|
|
|
|
ep.radius = sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5];
|
|
|
|
setEcLong( EarthLong.Degrees() + 180.0 );
|
|
setEcLong( ecLong()->reduce().Degrees() );
|
|
setEcLat( -1.0*EarthLat.Degrees() );
|
|
}
|
|
|
|
//Finally, convert Ecliptic coords to Ra, Dec. Ecliptic latitude is zero, by definition
|
|
EclipticToEquatorial( num->obliquity() );
|
|
|
|
nutate(num);
|
|
aberrate(num);
|
|
|
|
// We obtain the apparent geocentric ecliptic coordinates. That is, after
|
|
// nutation and aberration have been applied.
|
|
EquatorialToEcliptic( num->obliquity() );
|
|
|
|
//Determine the position angle
|
|
findPA( num );
|
|
|
|
return true;
|
|
}
|
|
|
|
long double KSSun::springEquinox(int year) {
|
|
return equinox(year, 18, 3, 0.);
|
|
}
|
|
|
|
long double KSSun::summerSolstice(int year) {
|
|
return equinox(year, 18, 6, 90.);
|
|
}
|
|
|
|
long double KSSun::autumnEquinox(int year) {
|
|
return equinox(year, 19, 9, 180.);
|
|
}
|
|
|
|
long double KSSun::winterSolstice(int year) {
|
|
return equinox(year, 18, 12, 270.);
|
|
}
|
|
|
|
long double KSSun::equinox(int year, int d, int m, double angle) {
|
|
long double jd0[5];
|
|
long double eclipticLongitude[5];
|
|
|
|
for(int i = 0; i<5; ++i) {
|
|
jd0[i] = KStarsDateTime( ExtDate(year,m,d+i), TQTime(0,0,0) ).djd();
|
|
KSNumbers *ksn = new KSNumbers(jd0[i]);
|
|
//FIXME this is the Earth position
|
|
findGeocentricPosition( ksn );
|
|
delete ksn;
|
|
eclipticLongitude[i] = (long double)ecLong()->Degrees();
|
|
}
|
|
|
|
return KSUtils::lagrangeInterpolation( eclipticLongitude, jd0, 5, angle );
|
|
}
|