You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kig/objects/conic_imp.cc

386 lines
10 KiB

// Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "conic_imp.h"
#include "bogus_imp.h"
#include "point_imp.h"
#include "../misc/kigpainter.h"
#include "../misc/common.h"
#include "../misc/coordinate_system.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include <tdelocale.h>
ObjectImp* ConicImp::transform( const Transformation& t ) const
{
bool valid = true;
ConicCartesianData d = calcConicTransformation( cartesianData(), t, valid );
if ( ! valid ) return new InvalidImp;
else return new ConicImpCart( d );
}
void ConicImp::draw( KigPainter& p ) const
{
p.drawCurve( this );
}
bool ConicImp::valid() const
{
return true;
}
bool ConicImp::contains( const Coordinate& o, int width, const KigWidget& w ) const
{
return internalContainsPoint( o, w.screenInfo().normalMiss( width ) );
}
bool ConicImp::inRect( const Rect&, int, const KigWidget& ) const
{
// TODO
return false;
}
const uint ConicImp::numberOfProperties() const
{
return Parent::numberOfProperties() + 5;
}
const QCStringList ConicImp::propertiesInternalNames() const
{
QCStringList l = Parent::propertiesInternalNames();
l << "type";
l << "first-focus";
l << "second-focus";
l << "cartesian-equation";
l << "polar-equation";
assert( l.size() == ConicImp::numberOfProperties() );
return l;
}
const QCStringList ConicImp::properties() const
{
QCStringList l = Parent::properties();
l << I18N_NOOP( "Conic Type" );
l << I18N_NOOP( "First Focus" );
l << I18N_NOOP( "Second Focus" );
l << I18N_NOOP( "Cartesian Equation" );
l << I18N_NOOP( "Polar Equation" );
assert( l.size() == ConicImp::numberOfProperties() );
return l;
}
const ObjectImpType* ConicImp::impRequirementForProperty( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::impRequirementForProperty( which );
else return ConicImp::stype();
}
const char* ConicImp::iconForProperty( uint which ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::iconForProperty( which );
if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // conic type string
else if ( which == Parent::numberOfProperties() + pnum++ )
return ""; // focus1
else if ( which == Parent::numberOfProperties() + pnum++ )
return ""; // focus2
else if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // cartesian equation string
else if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // polar equation string
else assert( false );
return "";
}
ObjectImp* ConicImp::property( uint which, const KigDocument& w ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::property( which, w );
if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( conicTypeString() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new PointImp( focus1() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new PointImp( focus2() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( cartesianEquationString( w ) );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( polarEquationString( w ) );
else assert( false );
return new InvalidImp;
}
double ConicImp::getParam( const Coordinate& p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
Coordinate tmp = p - d.focus1;
double l = tmp.length();
double theta = atan2(tmp.y, tmp.x);
double costheta = cos(theta);
double sintheta = sin(theta);
double ecosthetamtheta0 = costheta*d.ecostheta0 + sintheta*d.esintheta0;
double esinthetamtheta0 = sintheta*d.ecostheta0 - costheta*d.esintheta0;
double oneplus = 1.0 + d.ecostheta0*d.ecostheta0 + d.esintheta0*d.esintheta0;
double fact = esinthetamtheta0*(1.0 - ecosthetamtheta0)/(oneplus - 2*ecosthetamtheta0);
// fact is sin(a)*cos(a) where a is the angle between the ray from the first
// focus and the normal to the conic. We need it in order to adjust the
// angle according to the projection onto the conic of our point
double rho1 = d.pdimen / (1 - ecosthetamtheta0);
double rho2 = - d.pdimen / (1 + ecosthetamtheta0);
if (fabs(rho1 - l) < fabs(rho2 - l))
{
theta += (rho1 - l)*fact/rho1;
return fmod(theta / ( 2 * M_PI ) + 1, 1);
} else {
theta += (rho2 - l)*fact/rho2;
return fmod(theta / ( 2 * M_PI ) + 0.5, 1);
}
}
const Coordinate ConicImp::getPoint( double p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
double costheta = cos(p * 2 * M_PI);
double sintheta = sin(p * 2 * M_PI);
double rho = d.pdimen / (1 - costheta* d.ecostheta0 - sintheta* d.esintheta0);
return d.focus1 + Coordinate (costheta, sintheta) * rho;
}
int ConicImp::conicType() const
{
const ConicPolarData d = polarData();
double ec = d.ecostheta0;
double es = d.esintheta0;
double esquare = ec*ec + es*es;
const double parabolamiss = 1e-3; // don't know what a good value could be
if (esquare < 1.0 - parabolamiss) return 1;
if (esquare > 1.0 + parabolamiss) return -1;
return 0;
}
TQString ConicImp::conicTypeString() const
{
switch (conicType())
{
case 1:
return i18n("Ellipse");
case -1:
return i18n("Hyperbola");
case 0:
return i18n("Parabola");
default:
assert( false );
return "";
}
}
TQString ConicImp::cartesianEquationString( const KigDocument& ) const
{
TQString ret = i18n( "%1 x² + %2 y² + %3 xy + %4 x + %5 y + %6 = 0" );
ConicCartesianData data = cartesianData();
ret = ret.arg( data.coeffs[0], 0, 'g', 3 );
ret = ret.arg( data.coeffs[1], 0, 'g', 3 );
ret = ret.arg( data.coeffs[2], 0, 'g', 3 );
ret = ret.arg( data.coeffs[3], 0, 'g', 3 );
ret = ret.arg( data.coeffs[4], 0, 'g', 3 );
ret = ret.arg( data.coeffs[5], 0, 'g', 3 );
return ret;
}
TQString ConicImp::polarEquationString( const KigDocument& w ) const
{
TQString ret = i18n( "rho = %1/(1 + %2 cos theta + %3 sin theta)\n [centered at %4]" );
const ConicPolarData data = polarData();
ret = ret.arg( data.pdimen, 0, 'g', 3 );
ret = ret.arg( -data.ecostheta0, 0, 'g', 3 );
ret = ret.arg( -data.esintheta0, 0, 'g', 3 );
ret = ret.arg( w.coordinateSystem().fromScreen( data.focus1, w ) );
return ret;
}
const ConicCartesianData ConicImp::cartesianData() const
{
return ConicCartesianData( polarData() );
}
Coordinate ConicImp::focus1() const
{
return polarData().focus1;
}
Coordinate ConicImp::focus2() const
{
const ConicPolarData d = polarData();
double ec = d.ecostheta0;
double es = d.esintheta0;
double fact = 2*d.pdimen/(1 - ec*ec - es*es);
return d.focus1 + fact*Coordinate(ec, es);
}
const ConicPolarData ConicImpCart::polarData() const
{
return mpolardata;
}
const ConicCartesianData ConicImpCart::cartesianData() const
{
return mcartdata;
}
ConicImpCart::ConicImpCart( const ConicCartesianData& data )
: ConicImp(), mcartdata( data ), mpolardata( data )
{
assert( data.valid() );
}
ConicImpPolar::ConicImpPolar( const ConicPolarData& data )
: ConicImp(), mdata( data )
{
}
ConicImpPolar::~ConicImpPolar()
{
}
const ConicPolarData ConicImpPolar::polarData() const
{
return mdata;
}
ConicImpCart* ConicImpCart::copy() const
{
return new ConicImpCart( mcartdata );
}
ConicImpPolar* ConicImpPolar::copy() const
{
return new ConicImpPolar( mdata );
}
ConicImp::ConicImp()
{
}
ConicImp::~ConicImp()
{
}
ConicImpCart::~ConicImpCart()
{
}
void ConicImp::visit( ObjectImpVisitor* vtor ) const
{
vtor->visit( this );
}
bool ConicImp::equals( const ObjectImp& rhs ) const
{
return rhs.inherits( ConicImp::stype() ) &&
static_cast<const ConicImp&>( rhs ).polarData() == polarData();
}
const ObjectImpType* ConicImp::stype()
{
static const ObjectImpType t(
Parent::stype(), "conic",
I18N_NOOP( "conic" ),
I18N_NOOP( "Select this conic" ),
I18N_NOOP( "Select conic %1" ),
I18N_NOOP( "Remove a Conic" ),
I18N_NOOP( "Add a Conic" ),
I18N_NOOP( "Move a Conic" ),
I18N_NOOP( "Attach to this conic" ),
I18N_NOOP( "Show a Conic" ),
I18N_NOOP( "Hide a Conic" )
);
return &t;
}
const ObjectImpType* ConicImp::type() const
{
return ConicImp::stype();
}
bool ConicImp::containsPoint( const Coordinate& p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
// the threshold is relative to the size of the conic (mp)
return internalContainsPoint( p, test_threshold*d.pdimen );
}
bool ConicImp::internalContainsPoint( const Coordinate& p, double threshold ) const
{
const ConicPolarData d = polarData();
Coordinate focus1 = d.focus1;
double ecostheta0 = d.ecostheta0;
double esintheta0 = d.esintheta0;
double pdimen = d.pdimen;
Coordinate pos = p - focus1;
double len = pos.length();
double costheta = pos.x / len;
double sintheta = pos.y / len;
double ecosthetamtheta0 = costheta*ecostheta0 + sintheta*esintheta0;
double rho = pdimen / (1.0 - ecosthetamtheta0);
double oneplus = 1.0 + ecostheta0*ecostheta0 + esintheta0*esintheta0;
// fact is the cosine of the angle between the ray from the first focus
// and the normal to the conic, so that we compute the real distance
double fact = (1.0 - ecosthetamtheta0)/sqrt(oneplus - 2*ecosthetamtheta0);
if ( fabs((len - rho)*fact) <= threshold ) return true;
rho = - pdimen / ( 1.0 + ecosthetamtheta0 );
fact = (1.0 + ecosthetamtheta0)/sqrt(oneplus + 2*ecosthetamtheta0);
return fabs(( len - rho )*fact) <= threshold;
}
bool ConicImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::isPropertyDefinedOnOrThroughThisImp( which );
return false;
}
Rect ConicImp::surroundingRect() const
{
// it's prolly possible to calculate this ( in the case that the
// conic is limited in size ), but for now we don't.
return Rect::invalidRect();
}