You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdeedu/kig/objects/object_factory.cpp

370 lines
12 KiB

// Copyright (C) 2002 Dominique Devriese <devriese@kde.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "object_factory.h"
#include "bogus_imp.h"
#include "curve_imp.h"
#include "intersection_types.h"
#include "line_imp.h"
#include "object_drawer.h"
#include "object_holder.h"
#include "other_type.h"
#include "point_imp.h"
#include "point_type.h"
#include "text_type.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include "../misc/calcpaths.h"
#include "../misc/coordinate.h"
#include "../misc/object_hierarchy.h"
#include <algorithm>
#include <functional>
ObjectHolder* ObjectFactory::fixedPoint( const Coordinate& c ) const
{
ObjectHolder* o = new ObjectHolder( fixedPointCalcer( c ) );
return o;
}
ObjectTypeCalcer* ObjectFactory::fixedPointCalcer( const Coordinate& c ) const
{
std::vector<ObjectCalcer*> args;
args.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) );
args.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) );
ObjectTypeCalcer* oc = new ObjectTypeCalcer( FixedPointType::instance(), args );
return oc;
}
ObjectTypeCalcer* ObjectFactory::cursorPointCalcer( const Coordinate& c ) const
{
std::vector<ObjectCalcer*> args;
args.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) );
args.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) );
ObjectTypeCalcer* oc = new ObjectTypeCalcer( CursorPointType::instance(), args );
return oc;
}
const ObjectFactory* ObjectFactory::instance()
{
static ObjectFactory f;
return &f;
}
ObjectTypeCalcer* ObjectFactory::sensiblePointCalcer(
const Coordinate& c, const KigDocument& d, const KigWidget& w ) const
{
std::vector<ObjectHolder*> os = d.whatAmIOn( c, w );
if ( os.size() == 2 )
{
// we can calc intersection point *olny* between two objects...
std::vector<ObjectCalcer*> args;
args.push_back( os[0]->calcer() );
args.push_back( os[1]->calcer() );
// the simpliest case: two lines...
if ( ( os[0]->imp()->inherits( AbstractLineImp::stype() ) ) &&
( os[1]->imp()->inherits( AbstractLineImp::stype() ) ) )
return new ObjectTypeCalcer( LineLineIntersectionType::instance(), args );
// other cases will follow...
}
for ( std::vector<ObjectHolder*>::iterator i = os.begin(); i != os.end(); ++i )
if ( (*i)->imp()->inherits( CurveImp::stype() ) )
return constrainedPointCalcer( (*i)->calcer(), c, d );
return fixedPointCalcer( c );
}
ObjectHolder* ObjectFactory::sensiblePoint(
const Coordinate& c, const KigDocument& d, const KigWidget& w ) const
{
return new ObjectHolder( sensiblePointCalcer( c, d, w ) );
}
ObjectTypeCalcer* ObjectFactory::relativePointCalcer(
ObjectCalcer* o, const Coordinate& loc ) const
{
Coordinate reference =
static_cast<const ObjectImp*>( o->imp() )->attachPoint();
assert( reference.valid() );
double x = 0.0;
double y = 0.0;
if ( loc.valid() )
{
x = loc.x - reference.x;
y = loc.y - reference.y;
}
std::vector<ObjectCalcer*> parents;
parents.push_back( new ObjectConstCalcer( new DoubleImp( x ) ) );
parents.push_back( new ObjectConstCalcer( new DoubleImp( y ) ) );
parents.push_back( o );
return new ObjectTypeCalcer( RelativePointType::instance(), parents );
}
ObjectTypeCalcer* ObjectFactory::constrainedPointCalcer(
ObjectCalcer* curve, double param ) const
{
assert( curve->imp()->inherits( CurveImp::stype() ) );
std::vector<ObjectCalcer*> parents;
parents.push_back( new ObjectConstCalcer( new DoubleImp( param ) ) );
parents.push_back( curve );
return new ObjectTypeCalcer( ConstrainedPointType::instance(), parents );
}
ObjectHolder* ObjectFactory::constrainedPoint(
ObjectCalcer* curve, double param ) const
{
return new ObjectHolder( constrainedPointCalcer( curve, param ) );
}
ObjectTypeCalcer* ObjectFactory::constrainedPointCalcer(
ObjectCalcer* curve, const Coordinate& c, const KigDocument& d ) const
{
assert( curve->imp()->inherits( CurveImp::stype() ) );
double param = static_cast<const CurveImp*>( curve->imp() )->getParam( c, d );
return constrainedPointCalcer( curve, param );
}
ObjectHolder* ObjectFactory::constrainedPoint(
ObjectCalcer* curve, const Coordinate& c, const KigDocument& d ) const
{
return new ObjectHolder( constrainedPointCalcer( curve, c, d ) );
}
ObjectTypeCalcer* ObjectFactory::locusCalcer(
ObjectCalcer* a, ObjectCalcer* b ) const
{
assert( dynamic_cast<const ObjectTypeCalcer*>( a ) );
ObjectTypeCalcer* constrained = static_cast<ObjectTypeCalcer*>( a );
assert( constrained->type()->inherits( ObjectType::ID_ConstrainedPointType ) );
assert( constrained->parents().size() == 2 );
ObjectCalcer* curve = a->parents().back();
const ObjectCalcer* moving = b;
std::vector<ObjectCalcer*> hierparents;
hierparents.push_back( constrained );
std::vector<ObjectCalcer*> sideOfTree = sideOfTreePath( hierparents, moving );
std::copy( sideOfTree.begin(), sideOfTree.end(), std::back_inserter( hierparents ) );
ObjectHierarchy hier( hierparents, moving );
std::vector<ObjectCalcer*> realparents( 2 + sideOfTree.size(), 0 );
realparents[0] = new ObjectConstCalcer( new HierarchyImp( hier ) );
realparents[1] = curve;
copy( sideOfTree.begin(), sideOfTree.end(), realparents.begin() + 2 );
return new ObjectTypeCalcer( LocusType::instance(), realparents );
}
ObjectHolder* ObjectFactory::locus( ObjectCalcer* a, ObjectCalcer* b ) const
{
return new ObjectHolder( locusCalcer( a, b ) );
}
ObjectHolder* ObjectFactory::label(
const TQString& s, const Coordinate& loc,
bool needframe, const std::vector<ObjectCalcer*>& parents,
const KigDocument& doc ) const
{
return new ObjectHolder( labelCalcer( s, loc, needframe, parents, doc ) );
}
ObjectTypeCalcer* ObjectFactory::labelCalcer(
const TQString& s, const Coordinate& loc,
bool needframe, const std::vector<ObjectCalcer*>& parents,
const KigDocument& doc ) const
{
return attachedLabelCalcer( s, 0, loc, needframe, parents, doc );
}
ObjectTypeCalcer* ObjectFactory::attachedLabelCalcer(
const TQString& s, ObjectCalcer* p,
const Coordinate& loc, bool needframe,
const std::vector<ObjectCalcer*>& nparents,
const KigDocument& doc ) const
{
std::vector<ObjectCalcer*> parents;
parents.reserve( nparents.size() + 3 );
parents.push_back( new ObjectConstCalcer( new IntImp( needframe ? 1 : 0 ) ) );
parents.push_back( getAttachPoint( p, loc, doc ) );
parents.push_back( new ObjectConstCalcer( new StringImp( s ) ) );
std::copy( nparents.begin(), nparents.end(), std::back_inserter( parents ) );
ObjectTypeCalcer* ret = new ObjectTypeCalcer( TextType::instance(), parents );
ret->calc( doc );
return ret;
}
ObjectCalcer* ObjectFactory::getAttachPoint(
ObjectCalcer* p,
const Coordinate& loc,
const KigDocument& doc ) const
{
/*
* mp: (changes to add relative-attachment). Now an object is tested
* as follows:
* - if attachPoint() returns a valid coordinate, then we use the new method
* - if it is a point: 'old-style' treatment (we can change this shortly)
* - if it is a curve: 'old-style' treatment (we could use the new approach,
* which can be better/worse depending on personal taste, I think)
*
* the first condition that matches determines the behaviour.
* the new method works similarly to the curve case, but we generate a new
* RelativePointType instead of a ConstrainedPointType; this will in turn make use
* of the new attachPoint() method for objects.
*
* changed the preference order 2005/01/21 (now attachPoint has preference over points)
*
* NOTE: changes in the tests performed should be matched also in
* modes/popup.cpp (addNameLabel) and in label.cpp (TextLabelModeBase::mouseMoved)
*/
if ( p && p->imp()->attachPoint().valid() )
{
ObjectCalcer* o = relativePointCalcer( p, loc );
o->calc( doc );
return o;
}
else if ( p && p->imp()->inherits( PointImp::stype() ) )
{
return p;
}
else if ( p && p->imp()->inherits( CurveImp::stype() ) )
{
double param = 0.5;
if ( loc.valid() )
param = static_cast<const CurveImp*>( p->imp() )->getParam( loc, doc );
ObjectCalcer* o = constrainedPointCalcer( p, param );
o->calc( doc );
return o;
}
else
{
if ( loc.valid() )
return new ObjectConstCalcer( new PointImp( loc ) );
else
return new ObjectConstCalcer( new PointImp( Coordinate( 0, 0 ) ) );
}
}
ObjectHolder* ObjectFactory::attachedLabel(
const TQString& s, ObjectCalcer* locationparent,
const Coordinate& loc, bool needframe,
const std::vector<ObjectCalcer*>& parents,
const KigDocument& doc ) const
{
return new ObjectHolder( attachedLabelCalcer( s, locationparent, loc, needframe, parents, doc ) );
}
ObjectPropertyCalcer* ObjectFactory::propertyObjectCalcer(
ObjectCalcer* o, const char* p ) const
{
int wp = o->imp()->propertiesInternalNames().findIndex( p );
if ( wp == -1 ) return 0;
return new ObjectPropertyCalcer( o, wp );
}
ObjectHolder* ObjectFactory::propertyObject(
ObjectCalcer* o, const char* p ) const
{
return new ObjectHolder( propertyObjectCalcer( o, p ) );
}
void ObjectFactory::redefinePoint(
ObjectTypeCalcer* point, const Coordinate& c,
KigDocument& doc, const KigWidget& w ) const
{
std::vector<ObjectHolder*> hos = doc.whatAmIOn( c, w );
std::vector<ObjectCalcer*> os;
ObjectCalcer* (ObjectHolder::*calcmeth)() = &ObjectHolder::calcer;
std::transform( hos.begin(), hos.end(), std::back_inserter( os ),
std::mem_fun( calcmeth ) );
ObjectCalcer* v = 0;
// we don't want one of our children as a parent...
std::set<ObjectCalcer*> children = getAllChildren( point );
for ( std::vector<ObjectCalcer*>::iterator i = os.begin();
i != os.end(); ++i )
if ( (*i)->imp()->inherits( CurveImp::stype() ) &&
children.find( *i ) == children.end() )
{
v = *i;
break;
};
if ( v )
{
// we want a constrained point...
const CurveImp* curveimp = static_cast<const CurveImp*>( v->imp() );
double newparam = curveimp->getParam( c, doc );
if ( point->type()->inherits( ObjectType::ID_ConstrainedPointType ) )
{
// point already was constrained -> simply update the param
// DataObject and make sure point is on the right curve...
ObjectCalcer* dataobj = 0;
std::vector<ObjectCalcer*> parents = point->parents();
assert( parents.size() == 2 );
assert ( parents[0]->imp()->inherits( DoubleImp::stype() ) );
dataobj = parents[0];
parents.clear();
parents.push_back( dataobj );
parents.push_back( v );
point->setParents( parents );
assert( dynamic_cast<ObjectConstCalcer*>( dataobj ) );
static_cast<ObjectConstCalcer*>( dataobj )->setImp(
new DoubleImp( newparam ) );
}
else
{
// point used to be fixed -> add a new DataObject etc.
std::vector<ObjectCalcer*> args;
args.push_back( new ObjectConstCalcer( new DoubleImp( newparam ) ) );
args.push_back( v );
point->setType( ConstrainedPointType::instance() );
point->setParents( args );
}
}
else
{
// a fixed point...
if ( point->type()->inherits( ObjectType::ID_ConstrainedPointType ) )
{
// point used to be constrained..
std::vector<ObjectCalcer*> a;
a.push_back( new ObjectConstCalcer( new DoubleImp( c.x ) ) );
a.push_back( new ObjectConstCalcer( new DoubleImp( c.y ) ) );
point->setType( FixedPointType::instance() );
point->setParents( a );
}
else
{
// point used to be fixed -> simply update the DataObject's
// we can use the point's move function for that..
point->move( c, doc );
};
}
}