|
|
|
/*
|
|
|
|
**************************************************************************
|
|
|
|
description
|
|
|
|
--------------------
|
|
|
|
copyright : (C) 2002 by Andreas Zehender
|
|
|
|
email : zehender@kde.org
|
|
|
|
**************************************************************************
|
|
|
|
|
|
|
|
**************************************************************************
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
#include "pmjuliafractal.h"
|
|
|
|
|
|
|
|
#include "pmxmlhelper.h"
|
|
|
|
#include "pmjuliafractaledit.h"
|
|
|
|
#include "pmmemento.h"
|
|
|
|
#include "pmviewstructure.h"
|
|
|
|
#include "pm3dcontrolpoint.h"
|
|
|
|
#include "pmenumproperty.h"
|
|
|
|
|
|
|
|
#include <tdelocale.h>
|
|
|
|
|
|
|
|
const PMVector c_defaultJuliaParameter = PMVector( -0.083, 0.0, -0.83, -0.025 );
|
|
|
|
const PMVector c_defaultSliceNormal = PMVector( 0.0, 0.0, 0.0, 1.0 );
|
|
|
|
const double c_defaultSliceDistance = 0.0;
|
|
|
|
const int c_defaultMaxIterations = 20;
|
|
|
|
const PMJuliaFractal::AlgebraType c_defaultAlgebraType = PMJuliaFractal::Quaternion;
|
|
|
|
const TQString c_defaultAlgebraString = "quaternion";
|
|
|
|
const PMJuliaFractal::FunctionType c_defaultFunctionType = PMJuliaFractal::FTsqr;
|
|
|
|
const TQString c_defaultFunctionString = "sqr";
|
|
|
|
const PMVector c_defaultExponent = PMVector( 0.0, 0.0 );
|
|
|
|
const double c_defaultPrecision = 20.0;
|
|
|
|
|
|
|
|
|
|
|
|
PMDefinePropertyClass( PMJuliaFractal, PMJuliaFractalProperty );
|
|
|
|
PMDefineEnumPropertyClass( PMJuliaFractal, PMJuliaFractal::AlgebraType,
|
|
|
|
PMAlgebraTypeProperty );
|
|
|
|
PMDefineEnumPropertyClass( PMJuliaFractal, PMJuliaFractal::FunctionType,
|
|
|
|
PMFunctionTypeProperty );
|
|
|
|
|
|
|
|
PMMetaObject* PMJuliaFractal::s_pMetaObject = 0;
|
|
|
|
PMObject* createNewJuliaFractal( PMPart* part )
|
|
|
|
{
|
|
|
|
return new PMJuliaFractal( part );
|
|
|
|
}
|
|
|
|
|
|
|
|
PMJuliaFractal::PMJuliaFractal( PMPart* part )
|
|
|
|
: Base( part )
|
|
|
|
{
|
|
|
|
m_juliaParameter = c_defaultJuliaParameter;
|
|
|
|
m_algebraType = c_defaultAlgebraType;
|
|
|
|
m_functionType = c_defaultFunctionType;
|
|
|
|
m_maxIterations = c_defaultMaxIterations;
|
|
|
|
m_precision = c_defaultPrecision;
|
|
|
|
m_sliceNormal = c_defaultSliceNormal;
|
|
|
|
m_sliceDistance = c_defaultSliceDistance;
|
|
|
|
m_exponent = c_defaultExponent;
|
|
|
|
}
|
|
|
|
|
|
|
|
PMJuliaFractal::PMJuliaFractal( const PMJuliaFractal& f )
|
|
|
|
: Base( f )
|
|
|
|
{
|
|
|
|
m_juliaParameter = f.m_juliaParameter;
|
|
|
|
m_algebraType = f.m_algebraType;
|
|
|
|
m_functionType = f.m_functionType;
|
|
|
|
m_maxIterations = f.m_maxIterations;
|
|
|
|
m_precision = f.m_precision;
|
|
|
|
m_sliceNormal = f.m_sliceNormal;
|
|
|
|
m_sliceDistance = f.m_sliceDistance;
|
|
|
|
m_exponent = f.m_exponent;
|
|
|
|
}
|
|
|
|
|
|
|
|
PMJuliaFractal::~PMJuliaFractal( )
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString PMJuliaFractal::description( ) const
|
|
|
|
{
|
|
|
|
return i18n( "julia fractal" );
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::serialize( TQDomElement& e, TQDomDocument& doc ) const
|
|
|
|
{
|
|
|
|
e.setAttribute( "julia_parameter", m_juliaParameter.serializeXML( ) );
|
|
|
|
e.setAttribute( "algebra_type", algebraTypeToString( m_algebraType ) );
|
|
|
|
e.setAttribute( "function_type", functionTypeToString( m_functionType ) );
|
|
|
|
e.setAttribute( "max_iterations", m_maxIterations );
|
|
|
|
e.setAttribute( "precision", m_precision );
|
|
|
|
e.setAttribute( "slice_normal", m_sliceNormal.serializeXML( ) );
|
|
|
|
e.setAttribute( "slice_distance", m_sliceDistance );
|
|
|
|
e.setAttribute( "exponent", m_exponent.serializeXML( ) );
|
|
|
|
Base::serialize( e, doc );
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::readAttributes( const PMXMLHelper& h )
|
|
|
|
{
|
|
|
|
m_juliaParameter = h.vectorAttribute( "julia_parameter", c_defaultJuliaParameter );
|
|
|
|
m_algebraType = stringToAlgebraType( h.stringAttribute( "algebra_type", c_defaultAlgebraString ) );
|
|
|
|
m_functionType = stringToFunctionType( h.stringAttribute( "function_type", c_defaultFunctionString ) );
|
|
|
|
m_maxIterations = h.intAttribute( "max_iterations", c_defaultMaxIterations );
|
|
|
|
m_precision = h.doubleAttribute( "precision", c_defaultPrecision );
|
|
|
|
m_sliceNormal = h.vectorAttribute( "slice_normal", c_defaultSliceNormal );
|
|
|
|
m_sliceDistance = h.doubleAttribute( "slice_distance", c_defaultSliceDistance );
|
|
|
|
m_exponent = h.vectorAttribute( "exponent", c_defaultExponent );
|
|
|
|
Base::readAttributes( h );
|
|
|
|
}
|
|
|
|
|
|
|
|
PMMetaObject* PMJuliaFractal::metaObject( ) const
|
|
|
|
{
|
|
|
|
if( !s_pMetaObject )
|
|
|
|
{
|
|
|
|
s_pMetaObject = new PMMetaObject( "JuliaFractal", Base::metaObject( ),
|
|
|
|
createNewJuliaFractal );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "juliaParameter", &PMJuliaFractal::setJuliaParameter,
|
|
|
|
&PMJuliaFractal::juliaParameter ) );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "maximumIterations", &PMJuliaFractal::setMaximumIterations,
|
|
|
|
&PMJuliaFractal::maximumIterations ) );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "precision", &PMJuliaFractal::setPrecision,
|
|
|
|
&PMJuliaFractal::precision ) );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "sliceNormal", &PMJuliaFractal::setSliceNormal,
|
|
|
|
&PMJuliaFractal::sliceNormal ) );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "sliceDistance", &PMJuliaFractal::setSliceDistance,
|
|
|
|
&PMJuliaFractal::sliceDistance ) );
|
|
|
|
s_pMetaObject->addProperty(
|
|
|
|
new PMJuliaFractalProperty( "exponent", &PMJuliaFractal::setExponent,
|
|
|
|
&PMJuliaFractal::exponent ) );
|
|
|
|
|
|
|
|
PMAlgebraTypeProperty* ap = new PMAlgebraTypeProperty(
|
|
|
|
"algebraType", &PMJuliaFractal::setAlgebraType, &PMJuliaFractal::algebraType );
|
|
|
|
ap->addEnumValue( "Quaternion", Quaternion );
|
|
|
|
ap->addEnumValue( "Hypercomplex", Hypercomplex );
|
|
|
|
s_pMetaObject->addProperty( ap );
|
|
|
|
|
|
|
|
PMFunctionTypeProperty* fp = new PMFunctionTypeProperty(
|
|
|
|
"functionType", &PMJuliaFractal::setFunctionType, &PMJuliaFractal::functionType );
|
|
|
|
fp->addEnumValue( "sqr", FTsqr );
|
|
|
|
fp->addEnumValue( "cube", FTcube );
|
|
|
|
fp->addEnumValue( "exp", FTexp );
|
|
|
|
fp->addEnumValue( "reciprocal", FTreciprocal );
|
|
|
|
fp->addEnumValue( "sin", FTsin );
|
|
|
|
fp->addEnumValue( "asin", FTasin );
|
|
|
|
fp->addEnumValue( "sinh", FTsinh );
|
|
|
|
fp->addEnumValue( "asinh", FTasinh );
|
|
|
|
fp->addEnumValue( "cos", FTcos );
|
|
|
|
fp->addEnumValue( "acos", FTacos );
|
|
|
|
fp->addEnumValue( "cosh", FTcosh );
|
|
|
|
fp->addEnumValue( "acosh", FTacosh );
|
|
|
|
fp->addEnumValue( "tan", FTtan );
|
|
|
|
fp->addEnumValue( "atan", FTatan );
|
|
|
|
fp->addEnumValue( "tanh", FTtanh );
|
|
|
|
fp->addEnumValue( "atanh", FTatanh );
|
|
|
|
fp->addEnumValue( "log", FTlog );
|
|
|
|
fp->addEnumValue( "pwr", FTpwr );
|
|
|
|
s_pMetaObject->addProperty( fp );
|
|
|
|
}
|
|
|
|
return s_pMetaObject;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::cleanUp( ) const
|
|
|
|
{
|
|
|
|
if( s_pMetaObject )
|
|
|
|
{
|
|
|
|
delete s_pMetaObject;
|
|
|
|
s_pMetaObject = 0;
|
|
|
|
}
|
|
|
|
Base::cleanUp( );
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setJuliaParameter( const PMVector& p )
|
|
|
|
{
|
|
|
|
if( p != m_juliaParameter )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMJuliaParameterID, m_juliaParameter );
|
|
|
|
m_juliaParameter = p;
|
|
|
|
m_juliaParameter.resize( 4 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setAlgebraType( PMJuliaFractal::AlgebraType t )
|
|
|
|
{
|
|
|
|
if( m_algebraType != t )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMAlgebraTypeID, m_algebraType );
|
|
|
|
m_algebraType = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setFunctionType( PMJuliaFractal::FunctionType t )
|
|
|
|
{
|
|
|
|
if( m_functionType != t )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMFunctionTypeID, m_functionType );
|
|
|
|
m_functionType = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setMaximumIterations( int max )
|
|
|
|
{
|
|
|
|
if( max <= 0 )
|
|
|
|
{
|
|
|
|
kdError( PMArea ) << "max <= 0 in PMJuliaFractal::setMaximumIterations\n";
|
|
|
|
max = 20;
|
|
|
|
}
|
|
|
|
if( m_maxIterations != max )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMMaxIterationsID, m_maxIterations );
|
|
|
|
m_maxIterations = max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setPrecision( double p )
|
|
|
|
{
|
|
|
|
if( p < 1.0 )
|
|
|
|
{
|
|
|
|
kdError( PMArea ) << "p < 1.0 in PMJuliaFractal::setPrecision\n";
|
|
|
|
p = 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( m_precision != p )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMPrecisionID, m_precision );
|
|
|
|
m_precision = p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setSliceNormal( const PMVector& n )
|
|
|
|
{
|
|
|
|
if( m_sliceNormal != n )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMSliceNormalID, m_sliceNormal );
|
|
|
|
m_sliceNormal = n;
|
|
|
|
m_sliceNormal.resize( 4 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setSliceDistance( double d )
|
|
|
|
{
|
|
|
|
if( m_sliceDistance != d )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMSliceDistanceID, m_sliceDistance );
|
|
|
|
m_sliceDistance = d;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::setExponent( const PMVector& e )
|
|
|
|
{
|
|
|
|
if( m_exponent != e )
|
|
|
|
{
|
|
|
|
if( m_pMemento )
|
|
|
|
m_pMemento->addData( s_pMetaObject, PMExponentID, m_exponent );
|
|
|
|
m_exponent = e;
|
|
|
|
m_exponent.resize( 2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PMDialogEditBase* PMJuliaFractal::editWidget( TQWidget* parent ) const
|
|
|
|
{
|
|
|
|
return new PMJuliaFractalEdit( parent );
|
|
|
|
}
|
|
|
|
|
|
|
|
void PMJuliaFractal::restoreMemento( PMMemento* s )
|
|
|
|
{
|
|
|
|
PMMementoDataIterator it( s );
|
|
|
|
PMMementoData* data;
|
|
|
|
|
|
|
|
for( ; it.current( ); ++it )
|
|
|
|
{
|
|
|
|
data = it.current( );
|
|
|
|
if( data->objectType( ) == s_pMetaObject )
|
|
|
|
{
|
|
|
|
switch( data->valueID( ) )
|
|
|
|
{
|
|
|
|
case PMJuliaParameterID:
|
|
|
|
setJuliaParameter( data->vectorData( ) );
|
|
|
|
break;
|
|
|
|
case PMAlgebraTypeID:
|
|
|
|
setAlgebraType( ( AlgebraType ) data->intData( ) );
|
|
|
|
break;
|
|
|
|
case PMFunctionTypeID:
|
|
|
|
setFunctionType( ( FunctionType ) data->intData( ) );
|
|
|
|
break;
|
|
|
|
case PMMaxIterationsID:
|
|
|
|
setMaximumIterations( data->intData( ) );
|
|
|
|
break;
|
|
|
|
case PMPrecisionID:
|
|
|
|
setPrecision( data->doubleData( ) );
|
|
|
|
break;
|
|
|
|
case PMSliceNormalID:
|
|
|
|
setSliceNormal( data->vectorData( ) );
|
|
|
|
break;
|
|
|
|
case PMSliceDistanceID:
|
|
|
|
setSliceDistance( data->doubleData( ) );
|
|
|
|
break;
|
|
|
|
case PMExponentID:
|
|
|
|
setExponent( data->vectorData( ) );
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
kdError( PMArea ) << "Wrong ID in PMJuliaFractal::restoreMemento\n";
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Base::restoreMemento( s );
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString PMJuliaFractal::functionTypeToString( PMJuliaFractal::FunctionType t )
|
|
|
|
{
|
|
|
|
TQString result = "sqr";
|
|
|
|
switch( t )
|
|
|
|
{
|
|
|
|
case FTsqr:
|
|
|
|
result = "sqr";
|
|
|
|
break;
|
|
|
|
case FTcube:
|
|
|
|
result = "cube";
|
|
|
|
break;
|
|
|
|
case FTexp:
|
|
|
|
result = "exp";
|
|
|
|
break;
|
|
|
|
case FTreciprocal:
|
|
|
|
result = "reciprocal";
|
|
|
|
break;
|
|
|
|
case FTsin:
|
|
|
|
result = "sin";
|
|
|
|
break;
|
|
|
|
case FTasin:
|
|
|
|
result = "asin";
|
|
|
|
break;
|
|
|
|
case FTsinh:
|
|
|
|
result = "sinh";
|
|
|
|
break;
|
|
|
|
case FTasinh:
|
|
|
|
result = "asinh";
|
|
|
|
break;
|
|
|
|
case FTcos:
|
|
|
|
result = "cos";
|
|
|
|
break;
|
|
|
|
case FTacos:
|
|
|
|
result = "acos";
|
|
|
|
break;
|
|
|
|
case FTcosh:
|
|
|
|
result = "cosh";
|
|
|
|
break;
|
|
|
|
case FTacosh:
|
|
|
|
result = "acosh";
|
|
|
|
break;
|
|
|
|
case FTtan:
|
|
|
|
result = "tan";
|
|
|
|
break;
|
|
|
|
case FTatan:
|
|
|
|
result = "atan";
|
|
|
|
break;
|
|
|
|
case FTtanh:
|
|
|
|
result = "tanh";
|
|
|
|
break;
|
|
|
|
case FTatanh:
|
|
|
|
result = "atanh";
|
|
|
|
break;
|
|
|
|
case FTlog:
|
|
|
|
result = "log";
|
|
|
|
break;
|
|
|
|
case FTpwr:
|
|
|
|
result = "pwr";
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
PMJuliaFractal::FunctionType PMJuliaFractal::stringToFunctionType( const TQString& str )
|
|
|
|
{
|
|
|
|
FunctionType t = c_defaultFunctionType;
|
|
|
|
|
|
|
|
if( str == "sqr" )
|
|
|
|
t = FTsqr;
|
|
|
|
else if( str == "cube" )
|
|
|
|
t = FTcube;
|
|
|
|
else if( str == "exp" )
|
|
|
|
t = FTexp;
|
|
|
|
else if( str == "reciprocal" )
|
|
|
|
t = FTreciprocal;
|
|
|
|
else if( str == "sin" )
|
|
|
|
t = FTsin;
|
|
|
|
else if( str == "asin" )
|
|
|
|
t = FTasin;
|
|
|
|
else if( str == "sinh" )
|
|
|
|
t = FTsinh;
|
|
|
|
else if( str == "asinh" )
|
|
|
|
t = FTasinh;
|
|
|
|
else if( str == "cos" )
|
|
|
|
t = FTcos;
|
|
|
|
else if( str == "acos" )
|
|
|
|
t = FTacos;
|
|
|
|
else if( str == "cosh" )
|
|
|
|
t = FTcosh;
|
|
|
|
else if( str == "acosh" )
|
|
|
|
t = FTacosh;
|
|
|
|
else if( str == "tan" )
|
|
|
|
t = FTtan;
|
|
|
|
else if( str == "atan" )
|
|
|
|
t = FTatan;
|
|
|
|
else if( str == "tanh" )
|
|
|
|
t = FTtanh;
|
|
|
|
else if( str == "atanh" )
|
|
|
|
t = FTatanh;
|
|
|
|
else if( str == "log" )
|
|
|
|
t = FTlog;
|
|
|
|
else if( str == "pwr" )
|
|
|
|
t = FTpwr;
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString PMJuliaFractal::algebraTypeToString( PMJuliaFractal::AlgebraType t )
|
|
|
|
{
|
|
|
|
TQString result;
|
|
|
|
if( t == Quaternion )
|
|
|
|
result = "quaternion";
|
|
|
|
else
|
|
|
|
result = "hypercomplex";
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
PMJuliaFractal::AlgebraType PMJuliaFractal::stringToAlgebraType( const TQString& str )
|
|
|
|
{
|
|
|
|
AlgebraType t = c_defaultAlgebraType;
|
|
|
|
if( str == "quaternion" )
|
|
|
|
t = Quaternion;
|
|
|
|
else if( str == "hypercomplex" )
|
|
|
|
t = Hypercomplex;
|
|
|
|
return t;
|
|
|
|
}
|