You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/kviewshell/plugins/djvu/libdjvu/GContainer.h

1367 lines
47 KiB

//C- -*- C++ -*-
//C- -------------------------------------------------------------------
//C- DjVuLibre-3.5
//C- Copyright (c) 2002 Leon Bottou and Yann Le Cun.
//C- Copyright (c) 2001 AT&T
//C-
//C- This software is subject to, and may be distributed under, the
//C- GNU General Public License, Version 2. The license should have
//C- accompanied the software or you may obtain a copy of the license
//C- from the Free Software Foundation at http://www.fsf.org .
//C-
//C- This program is distributed in the hope that it will be useful,
//C- but WITHOUT ANY WARRANTY; without even the implied warranty of
//C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//C- GNU General Public License for more details.
//C-
//C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library
//C- distributed by Lizardtech Software. On July 19th 2002, Lizardtech
//C- Software authorized us to replace the original DjVu(r) Reference
//C- Library notice by the following text (see doc/lizard2002.djvu):
//C-
//C- ------------------------------------------------------------------
//C- | DjVu (r) Reference Library (v. 3.5)
//C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved.
//C- | The DjVu Reference Library is protected by U.S. Pat. No.
//C- | 6,058,214 and patents pending.
//C- |
//C- | This software is subject to, and may be distributed under, the
//C- | GNU General Public License, Version 2. The license should have
//C- | accompanied the software or you may obtain a copy of the license
//C- | from the Free Software Foundation at http://www.fsf.org .
//C- |
//C- | The computer code originally released by LizardTech under this
//C- | license and unmodified by other parties is deemed "the LIZARDTECH
//C- | ORIGINAL CODE." Subject to any third party intellectual property
//C- | claims, LizardTech grants recipient a worldwide, royalty-free,
//C- | non-exclusive license to make, use, sell, or otherwise dispose of
//C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the
//C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU
//C- | General Public License. This grant only confers the right to
//C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to
//C- | the extent such infringement is reasonably necessary to enable
//C- | recipient to make, have made, practice, sell, or otherwise dispose
//C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to
//C- | any greater extent that may be necessary to utilize further
//C- | modifications or combinations.
//C- |
//C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY
//C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF
//C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//C- +------------------------------------------------------------------
//
// $Id: GContainer.h,v 1.15 2004/05/13 15:16:34 leonb Exp $
// $Name: release_3_5_15 $
#ifndef _GCONTAINER_H_
#define _GCONTAINER_H_
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if NEED_GNUG_PRAGMAS
# pragma interface
#endif
#include "GException.h"
#include "GSmartPointer.h"
#include <string.h>
#ifdef HAVE_NAMESPACES
namespace DJVU {
# ifdef NOT_DEFINED // Just to fool emacs c++ mode
}
#endif
#endif
// Supports old iterators (first/last/next/prev) on lists and maps?
#ifndef GCONTAINER_OLD_ITERATORS
#define GCONTAINER_OLD_ITERATORS 1
#endif
// Check array bounds at runtime ?
#ifndef GCONTAINER_BOUNDS_CHECK
#define GCONTAINER_BOUNDS_CHECK 1
#endif
// Clears allocated memory prior to running constructors ?
#ifndef GCONTAINER_ZERO_FILL
#define GCONTAINER_ZERO_FILL 1
#endif
// Avoid member templates (needed by old compilers)
#ifndef GCONTAINER_NO_MEMBER_TEMPLATES
#if defined(__GNUC__) && (__GNUC__==2) && (__GNUC_MINOR__<91)
#define GCONTAINER_NO_MEMBER_TEMPLATES 1
#elif defined(_MSC_VER) && !defined(__ICL)
#define GCONTAINER_NO_MEMBER_TEMPLATES 1
#elif defined(__MWERKS__)
#define GCONTAINER_NO_MEMBER_TEMPLATES 1
#else
#define GCONTAINER_NO_MEMBER_TEMPLATES 0
#endif
#endif
// Define typename when needed
#ifndef GCONTAINER_NO_TYPENAME
#define GCONTAINER_NO_TYPENAME 0
#endif
#if GCONTAINER_NO_TYPENAME
#define typename /**/
#endif
/** @name GContainer.h
Files #"GContainer.h"# and #"GContainer.cpp"# implement three main
template class for generic containers.
Class #GArray# (see \Ref{Dynamic Arrays}) implements an array of objects
with variable bounds. Class #GList# (see \Ref{Doubly Linked Lists})
implements a doubly linked list of objects. Class #GMap# (see
\Ref{Associative Maps}) implements a hashed associative map. The
container templates are not thread-safe. Thread safety can be implemented
using the facilities provided in \Ref{GThreads.h}.
@memo
Template class for generic containers.
@author
L\'eon Bottou <leonb@research.att.com> -- initial implementation.\\
Andrei Erofeev <eaf@geocities.com> -- bug fixes.
@version
#$Id: GContainer.h,v 1.15 2004/05/13 15:16:34 leonb Exp $# */
//@{
// ------------------------------------------------------------
// HELPER CLASSES
// ------------------------------------------------------------
/* Namespace for containers support classes. This class is used as a
namespace for global identifiers related to the implementation of
containers. It is inherited by all container objects. This is disabled by
defining compilation symbol #GCONTAINER_NO_MEMBER_TEMPATES# to 1. */
#ifdef _MSC_VER
// Language lawyer say MS is wrong on that one.
// Cf section 5.4.7 in november 1997 draft.
#pragma warning( disable : 4243 )
#endif
// GPEnabled inhertenced removed again so the code works on more machines.
class GCont
#if GCONTAINER_NO_MEMBER_TEMPLATES
{
};
#else
{
public:
#endif
// --- Pointers to type management functions
struct Traits
{
int size;
void *(*lea) (void *base, int n);
void (*init) (void *dst, int n);
void (*copy) (void *dst, const void* src, int n, int zap);
void (*fini) (void *dst, int n);
};
#if !GCONTAINER_NO_MEMBER_TEMPLATES
protected:
#endif
// --- Management of simple types
template <int SZ> class TrivTraits
{
public:
// The unique object
static const Traits & traits();
// Offset in an array of T
static void * lea(void* base, int n)
{ return (void*)( ((char*)base) + SZ*n ); }
// Trivial default constructor
static void init(void* dst, int n) {}
// Trivial copy constructor
static void copy(void* dst, const void* src, int n, int )
{ memcpy(dst, src, SZ*n); }
// Trivial destructor
static void fini(void* dst, int n) {}
};
// --- Management of regular types
template <class T> class NormTraits
{
public:
// The unique object
static const Traits & traits();
// Offset in an array of T
static void * lea(void* base, int n)
{ return (void*)( ((T*)base) + n ); }
// Template based default constructor
static void init(void* dst, int n)
{ T* d = (T*)dst; while (--n>=0) { new ((void*)d) T; d++; } }
// Template based copy constructor
static void copy(void* dst, const void* src, int n, int zap)
{ T* d = (T*)dst; const T *s = (const T*)src;
while (--n>=0) { new ((void*)d) T(*s); if (zap) { s->T::~T(); }; d++; s++; } }
// Template based destructor
static void fini(void* dst, int n)
{ T* d = (T*)dst; while (--n>=0) { d->T::~T(); d++; } }
};
// --- Base class for list nodes
struct Node
{
Node *next;
Node *prev;
};
// -- Class for list nodes
template <class T> struct ListNode : public Node
{
T val;
};
// -- Class for map nodes showing the hash
struct HNode : public Node
{
HNode *hprev;
unsigned int hashcode;
};
// -- Class for map nodes showing the hash and the key
template <class K> struct SetNode : public HNode
{
K key;
};
// -- Class for map nodes with everything
template <class K, class T> struct MapNode : public SetNode<K>
{
T val;
};
#if !GCONTAINER_NO_MEMBER_TEMPLATES
};
#endif
#if !GCONTAINER_NO_MEMBER_TEMPLATES
#define GCONT GCont::
#else
#define GCONT
#endif
template <int SZ> const GCONT Traits &
GCONT TrivTraits<SZ>::traits()
{
static const Traits theTraits = {
SZ,
TrivTraits<SZ>::lea,
TrivTraits<SZ>::init,
TrivTraits<SZ>::copy,
TrivTraits<SZ>::fini
};
return theTraits;
}
template <class T> const GCONT Traits &
GCONT NormTraits<T>::traits()
{
static const Traits theTraits = {
sizeof(T),
NormTraits<T>::lea,
NormTraits<T>::init,
NormTraits<T>::copy,
NormTraits<T>::fini
};
return theTraits;
}
// ------------------------------------------------------------
// DYNAMIC ARRAYS
// ------------------------------------------------------------
/** @name Dynamic Arrays
These class implement arrays of objects of any type. Each element is
identified by an integer subscript. The valid subscripts range is defined
by dynamically adjustable lower- and upper-bounds. Besides accessing and
setting elements, member functions are provided to insert or delete
elements at specified positions.
Class \Ref{GArrayTemplate} implements all methods for manipulating arrays
of type #TYPE#. You should not however create instances of this class.
You should instead use one of the following classes:
\begin{itemize}
\item Class \Ref{GArray<TYPE>} is the most general class,
\item Class \Ref{GTArray<TYPE>} is more efficient, but only works for
types that do not require sophisticated constructors or destructors,
such as the plain old C types (e.g. #int# or #char# ...).
\item Class \Ref{GPArray<TYPE>} implements an array of smart-pointers
\Ref{GP<TYPE>} to objects of type #TYPE#. Using this class
reduces the size of the code generated by the template instanciation.
\end{itemize}
Another variant of dynamic arrays is implemented in file \Ref{Arrays.h}.
The main difference is that class \Ref{TArray}, \Ref{DArray} and
\Ref{DPArray} implement a copy-on-demand scheme.
@memo Dynamic arrays. */
//@{
class GArrayBase : public GCont
{
public:
// -- CONSTRUCTORS
GArrayBase(const GArrayBase &ref);
GArrayBase(const Traits &traits);
GArrayBase(const Traits &traits, int lobound, int hibound);
// -- DESTRUCTOR
~GArrayBase();
// -- ASSIGNMENT
GArrayBase& operator= (const GArrayBase &ga);
// -- ALTERATION
void empty();
void touch(int n);
void resize(int lobound, int hibound);
void shift(int disp);
void del(int n, int howmany=1);
void ins(int n, const void *src, int howmany=1);
void steal(GArrayBase &ga);
protected:
const Traits &traits;
void *data;
GPBufferBase gdata;
int minlo;
int maxhi;
int lobound;
int hibound;
};
/** Common base class for all dynamic arrays.
Class \Ref{GArrayTemplate} implements all methods for manipulating arrays
of type #TYPE#. You should not however create instances of this class.
You should instead use class \Ref{GArray}, \Ref{GTArray} or
\Ref{GPArray}. */
template<class TYPE>
class GArrayTemplate : protected GArrayBase
{
public:
// -- CONSTRUCTORS
GArrayTemplate(const Traits &traits) : GArrayBase(traits) {}
GArrayTemplate(const Traits &traits, int lobound, int hibound)
: GArrayBase(traits, lobound, hibound) {}
// -- ACCESS
/** Returns the number of elements in the array. */
int size() const
{ return hibound-lobound+1; }
/** Returns the lower bound of the valid subscript range. */
int lbound() const
{ return lobound; }
/** Returns the upper bound of the valid subscript range. */
int hbound() const
{ return hibound; }
/** Returns a reference to the array element for subscript #n#. This
reference can be used for both reading (as "#a[n]#") and writing (as
"#a[n]=v#") an array element. This operation will not extend the valid
subscript range: an exception \Ref{GException} is thrown if argument #n#
is not in the valid subscript range. */
inline TYPE& operator[](int const n);
/** Returns a constant reference to the array element for subscript #n#.
This reference can only be used for reading (as "#a[n]#") an array
element. This operation will not extend the valid subscript range: an
exception \Ref{GException} is thrown if argument #n# is not in the valid
subscript range. This variant of #operator[]# is necessary when dealing
with a #const GArray<TYPE>#. */
inline const TYPE& operator[](int n) const;
// -- CONVERSION
/** Returns a pointer for reading or writing the array elements. This
pointer can be used to access the array elements with the same
subscripts and the usual bracket syntax. This pointer remains valid as
long as the valid subscript range is unchanged. If you change the
subscript range, you must stop using the pointers returned by prior
invocation of this conversion operator. */
operator TYPE* ()
{ return ((TYPE*)data)-minlo; }
/** Returns a pointer for reading (but not modifying) the array elements.
This pointer can be used to access the array elements with the same
subscripts and the usual bracket syntax. This pointer remains valid as
long as the valid subscript range is unchanged. If you change the
subscript range, you must stop using the pointers returned by prior
invocation of this conversion operator. */
operator const TYPE* () const
{ return ((const TYPE*)data)-minlo; }
operator const TYPE* () // suppress warning with gcc-2.95
{ return ((const TYPE*)data)-minlo; }
// -- ALTERATION
/** Erases the array contents. All elements in the array are destroyed.
The valid subscript range is set to the empty range. */
void empty()
{ GArrayBase::empty(); }
/** Extends the subscript range so that it contains #n#.
This function does nothing if #n# is already int the valid subscript range.
If the valid range was empty, both the lower bound and the upper bound
are set to #n#. Otherwise the valid subscript range is extended
to encompass #n#. This function is very handy when called before setting
an array element:
\begin{verbatim}
int lineno=1;
GArray<GString> a;
while (! end_of_file()) {
a.touch(lineno);
a[lineno++] = read_a_line();
}
\end{verbatim} */
void touch(int n)
{ if (n<lobound || n>hibound) GArrayBase::touch(n); }
/** Resets the valid subscript range to #0#---#hibound#.
This function may destroy some array elements and may construct
new array elements with the null constructor. Setting #hibound# to
#-1# resets the valid subscript range to the empty range. */
void resize(int hibound)
{ GArrayBase::resize(0, hibound); }
/** Resets the valid subscript range to #lobound#---#hibound#.
This function may destroy some array elements and may construct
new array elements with the null constructor. Setting #lobound# to #0# and
#hibound# to #-1# resets the valid subscript range to the empty range. */
void resize(int lobound, int hibound)
{ GArrayBase::resize(lobound, hibound); }
/** Shifts the valid subscript range. Argument #disp# is added to both
bounds of the valid subscript range. Array elements previously
located at subscript #x# will now be located at subscript #x+disp#. */
void shift(int disp)
{ GArrayBase::shift(disp); }
/** Deletes array elements. The array elements corresponding to
subscripts #n#...#n+howmany-1# are destroyed. All array elements
previously located at subscripts greater or equal to #n+howmany#
are moved to subscripts starting with #n#. The new subscript upper
bound is reduced in order to account for this shift. */
void del(int n, int howmany=1)
{ GArrayBase::del(n, howmany); }
/** Insert new elements into an array. This function inserts
#howmany# elements at position #n# into the array. These
elements are constructed using the default constructor for type
#TYPE#. All array elements previously located at subscripts #n#
and higher are moved to subscripts #n+howmany# and higher. The
upper bound of the valid subscript range is increased in order
to account for this shift. */
void ins(int n, int howmany=1)
{ GArrayBase::ins(n, 0, howmany); }
/** Insert new elements into an array. The new elements are
constructed by copying element #val# using the copy constructor
for type #TYPE#. See \Ref{ins(int n, unsigned int howmany=1)}. */
void ins(int n, const TYPE &val, int howmany=1)
{ GArrayBase::ins(n, (const void*)&val, howmany); }
/** Steals contents from array #ga#. After this call, array #ga# is empty,
and this array contains everything previously contained in #ga#. */
void steal(GArrayTemplate &ga)
{ GArrayBase::steal(ga); }
// -- SORTING
/** Sort array elements. Sort all array elements in ascending
order according to the less-or-equal comparison
operator for type #TYPE#. */
void sort()
{ sort(lbound(), hbound()); }
/** Sort array elements in subscript range #lo# to #hi#. Sort all array
elements whose subscripts are in range #lo# to #hi# in ascending order
according to the less-or-equal comparison operator for type #TYPE#. The
other elements of the array are left untouched. An exception is thrown
if arguments #lo# and #hi# are not in the valid subscript range. */
void sort(int lo, int hi);
};
/* That one must be implemented as a regular template function. */
template <class TYPE> void
GArrayTemplate<TYPE>::sort(int lo, int hi)
{
if (hi <= lo)
return;
if (hi > hibound || lo<lobound)
G_THROW( ERR_MSG("GContainer.illegal_subscript") );
TYPE *data = (TYPE*)(*this);
// Test for insertion sort
if (hi <= lo + 50)
{
for (int i=lo+1; i<=hi; i++)
{
int j = i;
TYPE tmp = data[i];
while ((--j>=lo) && !(data[j]<=tmp))
data[j+1] = data[j];
data[j+1] = tmp;
}
return;
}
// -- determine suitable quick-sort pivot
TYPE tmp = data[lo];
TYPE pivot = data[(lo+hi)/2];
if (pivot <= tmp)
{ tmp = pivot; pivot=data[lo]; }
if (data[hi] <= tmp)
{ pivot = tmp; }
else if (data[hi] <= pivot)
{ pivot = data[hi]; }
// -- partition set
int h = hi;
int l = lo;
while (l < h)
{
while (! (pivot <= data[l])) l++;
while (! (data[h] <= pivot)) h--;
if (l < h)
{
tmp = data[l];
data[l] = data[h];
data[h] = tmp;
l = l+1;
h = h-1;
}
}
// -- recursively restart
sort(lo, h);
sort(l, hi);
}
template<class TYPE> inline TYPE&
GArrayTemplate<TYPE>::operator[](int const n)
{
#if GCONTAINER_BOUNDS_CHECK
if (n<lobound || n>hibound)
{
G_THROW( ERR_MSG("GContainer.illegal_subscript") );
}
#endif
return ((TYPE*)data)[n-minlo];
}
template<class TYPE> inline const TYPE &
GArrayTemplate<TYPE>::operator[](int const n) const
{
#if GCONTAINER_BOUNDS_CHECK
if (n<lobound || n>hibound)
{
G_THROW( ERR_MSG("GContainer.illegal_subscript") );
}
#endif
return ((const TYPE*)data)[n-minlo];
}
/** Dynamic array for general types.
Template class #GArray<TYPE># implements an array of elements of type
#TYPE#. This template class must be able to access the following
functions.
\begin{itemize}
\item a default constructor #TYPE::TYPE()#,
\item a copy constructor #TYPE::TYPE(const TYPE &)#,
\item and optionally a destructor #TYPE::~TYPE()#.
\end{itemize}
This class only implement constructors. See class \Ref{GArrayTemplate}
for a description of all access methods. */
template<class TYPE>
class GArray : public GArrayTemplate<TYPE>
{
public:
/** Constructs an empty array. The valid subscript range is initially
empty. Member function #touch# and #resize# provide convenient ways
to enlarge the subscript range. */
GArray()
: GArrayTemplate<TYPE>(GCONT NormTraits<TYPE>::traits() ) {}
/** Constructs an array with subscripts in range 0 to #hibound#.
The subscript range can be subsequently modified with member functions
#touch# and #resize#. */
GArray(int hi)
: GArrayTemplate<TYPE>(GCONT NormTraits<TYPE>::traits(), 0, hi ) {}
/** Constructs an array with subscripts in range #lobound# to #hibound#.
The subscript range can be subsequently modified with member functions
#touch# and #resize#. */
GArray(int lo, int hi)
: GArrayTemplate<TYPE>(GCONT NormTraits<TYPE>::traits(), lo, hi ) {}
// Copy operator
GArray& operator=(const GArray &r)
{ GArrayBase::operator=(r); return *this; }
};
/** Dynamic array for smart pointers.
Template class #GPArray<TYPE># implements an array of elements of type
#GP<TYPE># (see \Ref{GSmartPointer.h}). Significantly smaller code sizes
can be achieved by using this class instead of the more general
#GArray<GP<TYPE>>#.
This class only implement constructors. See class \Ref{GArrayTemplate}
for a description of all access methods. */
template<class TYPE>
class GPArray : public GArrayTemplate<GP<TYPE> >
{
public:
GPArray()
: GArrayTemplate<GP<TYPE> >(GCONT NormTraits<GPBase>::traits() ) {}
GPArray(int hi)
: GArrayTemplate<GP<TYPE> >(GCONT NormTraits<GPBase>::traits(), 0, hi ) {}
GPArray(int lo, int hi)
: GArrayTemplate<GP<TYPE> >(GCONT NormTraits<GPBase>::traits(), lo, hi ) {}
// Copy operator
GPArray& operator=(const GPArray &r)
{ GArrayBase::operator=(r); return *this; }
};
/** Dynamic array for simple types.
Template class #GTArray<TYPE># implements an array of elements of {\em
simple} type #TYPE#. {\em Simple} means that objects of type #TYPE# can
be created, copied, moved or destroyed without using specific constructors
or destructor functions. Class #GTArray<TYPE># will move or copy objects
using simple bitwise copies. Otherwise you must use class #GArray<TYPE>#.
This class only implement constructors. See class \Ref{GArrayTemplate}
for a description of all access methods. */
template<class TYPE>
class GTArray : public GArrayTemplate<TYPE>
{
public:
GTArray()
: GArrayTemplate<TYPE>(GCONT TrivTraits<sizeof(TYPE)>::traits() ) {}
GTArray(int hi)
: GArrayTemplate<TYPE>(GCONT TrivTraits<sizeof(TYPE)>::traits(), 0, hi ) {}
GTArray(int lo, int hi)
: GArrayTemplate<TYPE>(GCONT TrivTraits<sizeof(TYPE)>::traits(), lo, hi ) {}
// Copy operator
GTArray& operator=(const GTArray &r)
{ GArrayBase::operator=(r); return *this; }
};
//@}
// ------------------------------------------------------------
// DOUBLY LINKED LISTS
// ------------------------------------------------------------
/** @name Doubly Linked Lists
The template classes \Ref{GList} and \Ref{GPList} implement a doubly
linked list of objects of arbitrary types. Member functions are provided
to search the list for an element, to insert or delete elements at
specified positions. Theses template class must be able to access
\begin{itemize}
\item a default constructor #TYPE::TYPE()#,
\item a copy constructor #TYPE::TYPE(const TYPE &)#,
\item optionally a destructor #TYPE::~TYPE()#,
\item and optionally a comparison operator #TYPE::operator==(const TYPE &)#.
\end{itemize}
@memo Doubly linked lists.
*/
//@{
/** Generic iterator class.
This class represents a position in a list (see \Ref{GList}) or a map
(see \Ref{GMap}). As demonstrated by the following examples,
this class should be used to iterate over the objects contained
in a list or a map:
\begin{verbatim}
void print_list(GList<GString> a)
{
for (GPosition i = a ; i; ++i)
DjVuPrintMessage("%s\n", (const char*) a[i] );
}
void print_list_backwards(GList<GString> a)
{
for (GPosition i = a.lastpos() ; i; --i)
DjVuPrintMessage("%s\n", (const char*) a[i] );
}
\end{verbatim}
GPosition objects should only be used with the list or map for which they
have been created (using the member functions #firstpos# or #lastpos# of
the container). Furthermore, you should never use a GPosition object
which designates a list element which has been removed from the list
(using member function #del# or by other means.)
*/
class GPosition : protected GCont
{
public:
/** Creates a null GPosition object. */
GPosition() : ptr(0), cont(0) {}
/** Creates a copy of a GPosition object. */
GPosition(const GPosition &ref) : ptr(ref.ptr), cont(ref.cont) {}
/** Tests whether this GPosition object is non null. */
operator int() const
{ return !!ptr; }
/** Tests whether this GPosition object is null. */
int operator !() const
{ return !ptr; }
/** Moves this GPosition object to the next object in the container. */
GPosition& operator ++()
{ if (ptr) ptr = ptr->next; return *this; }
/** Moves this GPosition object to the previous object in the container. */
GPosition& operator --()
{ if (ptr) ptr = ptr->prev; return *this; }
// Internal. Do not use.
GPosition(Node *p, void *c) : ptr(p), cont(c) {}
#if GCONTAINER_BOUNDS_CHECK
Node *check(void *c)
{ if (!ptr || c!=cont) throw_invalid(c); return ptr; }
const Node *check(void *c) const
{ if (!ptr || c!=cont) throw_invalid(c); return ptr; }
#else
Node *check(void *c)
{ return ptr; }
const Node *check(void *c) const
{ return ptr; }
#endif
protected:
Node *ptr;
void *cont;
friend class GListBase;
friend class GSetBase;
void throw_invalid(void *c) const no_return;
};
class GListBase : public GCont
{
protected:
GListBase(const Traits& traits);
GListBase(const GListBase &ref);
void append(Node *n);
void prepend(Node *n);
void insert_after(GPosition pos, Node *n);
void insert_before(GPosition pos, Node *n);
void insert_before(GPosition pos, GListBase &fromlist, GPosition &frompos);
void del(GPosition &pos);
protected:
const Traits &traits;
int nelem;
Node head;
public:
~GListBase();
GListBase & operator= (const GListBase & gl);
GPosition firstpos() const { return GPosition(head.next, (void*)this); }
GPosition lastpos() const { return GPosition(head.prev, (void*)this); }
int isempty() const { return nelem==0; };
GPosition nth(unsigned int n) const;
void empty();
};
template<class TI>
class GListImpl : public GListBase
{
protected:
GListImpl();
typedef GCONT ListNode<TI> LNode;
static Node * newnode(const TI &elt);
int operator==(const GListImpl<TI> &l2) const;
int search(const TI &elt, GPosition &pos) const;
};
template<class TI>
GListImpl<TI>::GListImpl()
: GListBase( GCONT NormTraits<LNode>::traits() )
{
}
template<class TI> GCONT Node *
GListImpl<TI>::newnode(const TI &elt)
{
LNode *n = (LNode *) operator new (sizeof(LNode ));
#if GCONTAINER_ZERO_FILL
memset(n, 0, sizeof(LNode ));
#endif
new ((void*)&(n->val)) TI(elt);
return (Node*) n;
}
template<class TI> int
GListImpl<TI>::operator==(const GListImpl<TI> &l2) const
{
Node *p, *q;
for (p=head.next, q=l2.head.next; p && q; p=p->next, q=q->next )
if (((LNode*)p)->val != ((LNode*)q)->val)
return 0;
return p==0 && q==0;
}
template<class TI> int
GListImpl<TI>::search(const TI &elt, GPosition &pos) const
{
Node *n = (pos ? pos.check((void*)this) : head.next);
for (; n; n=n->next)
if ( ((LNode *)n)->val == elt )
break;
if (n) pos = GPosition(n, (void*)this);
return (n != 0);
}
/** Common base class for all doubly linked lists.
Class \Ref{GListTemplate} implements all methods for manipulating lists
of of objects of type #TYPE#. You should not however create instances of
this class. You should instead use class \Ref{GList} or \Ref{GPList}. */
template <class TYPE, class TI>
class GListTemplate : protected GListImpl<TI>
{
public:
// -- ACCESS
/** Returns the number of elements in the list. */
int size() const
{ return this->nelem; }
/** Returns the first position in the list. See \Ref{GPosition}. */
GPosition firstpos() const
{ return GListImpl<TI>::firstpos(); }
/** Returns the last position in the list. See \Ref{GPosition}. */
GPosition lastpos() const
{ return GListImpl<TI>::lastpos(); }
/** Implicit notation for GList::firstpos(). */
operator GPosition() const
{ return firstpos(); }
/** Returns a reference to the list element at position #pos#. This
reference can be used for both reading (as "#a[n]#") and modifying (as
"#a[n]=v#") a list element. Using an invalid position will cause a
segmentation violation. See \Ref{GPosition} for efficient operations on
positions. */
TYPE& operator[](GPosition pos)
{ return (TYPE&) (((typename GListImpl<TI>::LNode *)pos.check((void*)this))->val); }
/** Returns a constant reference to the list element at position #pos#.
This reference only be used for reading a list element. An exception
\Ref{GException} is thrown if #pos# is not a valid position. This
variant of #operator[]# is necessary when dealing with a #const
GList<TYPE>#. See \Ref{GPosition} for efficient operations on
positions. */
const TYPE& operator[](GPosition pos) const
{ return (const TYPE&) (((const typename GListImpl<TI>::LNode *)pos.check((void*)this))->val); }
// -- TEST
/** Tests whether a list is empty.
Returns a non zero value if the list contains no elements. */
int isempty() const
{ return this->nelem==0; }
/** Compares two lists. Returns a non zero value if and only if both lists
contain the same elements (as tested by #TYPE::operator==(const TYPE&)#
in the same order. */
int operator==(const GListTemplate<TYPE,TI> &l2) const
{ return GListImpl<TI>::operator==(l2); }
// -- SEARCHING
/** Returns the position #pos# of the #n#-th list element. An invalid
position is returned if the list contains less than #n# elements. The
operation works by sequentially scanning the list until reaching the
#n#-th element. */
GPosition nth(unsigned int n) const
{ return GListImpl<TI>::nth(n); }
/* Compatibility */
int nth(unsigned int n, GPosition &pos) const
{ GPosition npos=nth(n); if (npos) pos=npos; return !!pos; }
/** Tests whether the list contains a given element. If the list contains
#elt#, the position of the the first list element equal to #elt# as
checked by #TYPE::operator==(const TYPE&)# is returned. Otherwise an
invalid position is returned. */
GPosition contains(const TYPE &elt) const
{ GPosition pos; GListImpl<TI>::search((const TI&)elt, pos); return pos; }
/** Searches the list for a given element. If position #pos# is a valid
position for this list, the search starts at the specified position. If
position #pos# is not a valid position, the search starts at the
beginning of the list. The list elements are sequentially compared with
#elt# using #TYPE::operator==(const TYPE&)#. As soon as a list element
is equal to #elt#, function #search# sets argument #pos# with the
position of this list element and returns 1. If however the search
reaches the end of the list, function #search# returns 0 and leaves
#pos# unchanged. */
int search(const TYPE &elt, GPosition &pos) const
{ return GListImpl<TI>::search((const TI&)elt, pos); }
// -- ALTERATION
/** Erases the list contents. All list elements are destroyed and
unlinked. The list is left with zero elements. */
void empty()
{ GListImpl<TI>::empty(); }
/** Inserts an element after the last element of the list.
The new element is initialized with a copy of argument #elt#. */
void append(const TYPE &elt)
{ GListImpl<TI>::append(newnode((const TI&)elt)); }
/** Inserts an element before the first element of the list.
The new element is initialized with a copy of argument #elt#. */
void prepend(const TYPE &elt)
{ GListImpl<TI>::prepend(newnode((const TI&)elt)); }
/** Inserts a new element after the list element at position #pos#. When
position #pos# is null the element is inserted at the beginning of the
list. The new element is initialized with a copy of #elt#. */
void insert_after(GPosition pos, const TYPE &elt)
{ GListImpl<TI>::insert_after(pos, newnode((const TI&)elt)); }
/** Inserts a new element before the list element at position #pos#. When
position #pos# is null the element is inserted at the end of the
list. The new element is initialized with a copy of #elt#. */
void insert_before(GPosition pos, const TYPE &elt)
{ GListImpl<TI>::insert_before(pos, newnode((const TI&)elt)); }
/** Inserts an element of another list into this list. This function
removes the element at position #frompos# in list #frompos#, inserts it
in the current list before the element at position #pos#, and advances
#frompos# to the next element in list #fromlist#. When position #pos# is
null the element is inserted at the end of the list. */
void insert_before(GPosition pos, GListTemplate<TYPE,TI> &fromlist, GPosition &frompos)
{ GListImpl<TI>::insert_before(pos, fromlist, frompos); }
/** Destroys the list element at position #pos#. This function does
nothing unless position #pos# is a valid position. */
void del(GPosition &pos)
{ GListImpl<TI>::del(pos); }
/* Old iterators. Do not use. */
#if GCONTAINER_OLD_ITERATORS
void first(GPosition &pos) const { pos = firstpos(); }
void last(GPosition &pos) const { pos = lastpos(); }
const TYPE *next(GPosition &pos) const
{ if (!pos) return 0; const TYPE *x=&((*this)[pos]); ++pos; return x; }
const TYPE *prev(GPosition &pos) const
{ if (!pos) return 0; const TYPE *x=&((*this)[pos]); --pos; return x; }
TYPE *next(GPosition &pos)
{ if (!pos) return 0; TYPE *x=&((*this)[pos]); ++pos; return x; }
TYPE *prev(GPosition &pos)
{ if (!pos) return 0; TYPE *x=&((*this)[pos]); --pos; return x; }
#endif
};
/** Doubly linked lists. Template class #GList<TYPE># implements a doubly
linked list of elements of type #TYPE#. This class only implement
constructors. See class \Ref{GListTemplate} and \Ref{GPosition} for a
description of all access methods. */
template <class TYPE>
class GList : public GListTemplate<TYPE,TYPE>
{
public:
/** Null Constructor. Constructs a list with zero elements. */
GList() : GListTemplate<TYPE,TYPE>() {}
GList& operator=(const GList &r)
{ GListBase::operator=(r); return *this; }
};
/** Doubly linked lists for smart pointers.
Template class #GList<TYPE># implements a doubly linked list of elements
of type #GP<TYPE># (see \Ref{GSmartPointer.h}). Significantly smaller
code sizes can be achieved by using this class instead of the more general
#GArray<GP<TYPE>>#.
This class only implement constructors. See class \Ref{GListTemplate} and
\Ref{GPosition} for a description of all access methods. */
template <class TYPE>
class GPList : public GListTemplate<GP<TYPE>,GPBase>
{
public:
/** Null Constructor. Constructs a list with zero elements. */
GPList() : GListTemplate<GP<TYPE>,GPBase>() {}
GPList& operator=(const GPList &r)
{ GListBase::operator=(r); return *this; }
};
//@}
// ------------------------------------------------------------
// ASSOCIATIVE MAPS
// ------------------------------------------------------------
/** @name Associative Maps
These template classes implements a associative maps. The associative map
contains an arbitrary number of entries. Each entry is a pair containing
one element of type #KTYPE# (named the "key") and one element of type
#VTYPE# (named the "value"). All entries have distinct keys.
These template class must be able to access the following functions:
\begin{itemize}
\item a #VTYPE# default constructor #VTYPE::VTYPE()#,
\item a #VTYPE# copy constructor #VTYPE::VTYPE(const VTYPE &)#,
\item optionally a #VTYPE# destructor #VTYPE::~VTYPE()#,
\item a #KTYPE# default constructor #KTYPE::KTYPE()#,
\item a #KTYPE# copy constructor #KTYPE::KTYPE(const KTYPE &)#,
\item optionally a #KTYPE# destructor #KTYPE::~KTYPE()#,
\item a #KTYPE# comparison operator #KTYPE::operator==(const KTYPE &)#,
\item and a #KTYPE# hashing function #hash(const KTYPE&)#.
\end{itemize}
The hashing function must return an #unsigned int# number. Multiple
invocations of the hashing function with equal arguments (in the sense of
#KTYPE::operator==#) must always return the same number.
Position objects (see \Ref{GPosition}) may be used to iterate over the
entries contained by an associative map.
@memo Associative maps.
*/
//@{
class GSetBase : public GCont
{
protected:
GSetBase(const Traits &traits);
GSetBase(const GSetBase &ref);
static GCONT HNode *newnode(const void *key);
HNode *hashnode(unsigned int hashcode) const;
HNode *installnode(HNode *n);
void deletenode(HNode *n);
protected:
const Traits &traits;
int nelems;
int nbuckets;
HNode **table;
GPBuffer<HNode *> gtable;
HNode *first;
private:
void insertnode(HNode *n);
void rehash(int newbuckets);
public:
~GSetBase();
GSetBase& operator=(const GSetBase &ref);
GPosition firstpos() const;
void del(GPosition &pos);
void empty();
};
template <class K>
class GSetImpl : public GSetBase
{
protected:
GSetImpl();
GSetImpl(const Traits &traits);
typedef GCONT SetNode<K> SNode;
HNode *get(const K &key) const;
HNode *get_or_throw(const K &key) const;
HNode *get_or_create(const K &key);
public:
GPosition contains(const K &key) const
{ return GPosition( get(key), (void*)this); }
void del(const K &key)
{ deletenode(get(key)); }
};
template<class K>
GSetImpl<K>::GSetImpl()
: GSetBase( GCONT NormTraits<GCONT SetNode<K> >::traits() )
{
}
template<class K>
GSetImpl<K>::GSetImpl(const Traits &traits)
: GSetBase(traits)
{
}
template<class K> GCONT HNode *
GSetImpl<K>::get(const K &key) const
{
unsigned int hashcode = hash(key);
for (SNode *s=(SNode*)hashnode(hashcode); s; s=(SNode*)(s->hprev))
if (s->hashcode == hashcode && s->key == key) return s;
return 0;
}
#if GCONTAINER_BOUNDS_CHECK
template<class K> GCONT HNode *
GSetImpl<K>::get_or_throw(const K &key) const
{
HNode *m = get(key);
if (!m)
{
G_THROW( ERR_MSG("GContainer.cannot_add") );
}
return m;
}
#else
template<class K> inline GCONT HNode *
GSetImpl<K>::get_or_throw(const K &key) const
{
return get(key);
}
#endif
template<class K> GCONT HNode *
GSetImpl<K>::get_or_create(const K &key)
{
HNode *m = get(key);
if (m) return m;
SNode *n = (SNode*) operator new (sizeof(SNode));
#if GCONTAINER_ZERO_FILL
memset(n, 0, sizeof(SNode));
#endif
new ((void*)&(n->key)) K ( key );
n->hashcode = hash((const K&)(n->key));
installnode(n);
return n;
}
template <class K, class TI>
class GMapImpl : public GSetImpl<K>
{
protected:
GMapImpl();
GMapImpl(const GCONT Traits &traits);
typedef GCONT MapNode<K,TI> MNode;
GCONT HNode* get_or_create(const K &key);
};
template<class K, class TI>
GMapImpl<K,TI>::GMapImpl()
: GSetImpl<K> ( GCONT NormTraits<GCONT MapNode<K,TI> >::traits() )
{
}
template<class K, class TI>
GMapImpl<K,TI>::GMapImpl(const GCONT Traits &traits)
: GSetImpl<K>(traits)
{
}
template<class K, class TI> GCONT HNode *
GMapImpl<K,TI>::get_or_create(const K &key)
{
GCONT HNode *m = get(key);
if (m) return m;
MNode *n = (MNode*) operator new (sizeof(MNode));
#if GCONTAINER_ZERO_FILL
memset(n, 0, sizeof(MNode));
#endif
new ((void*)&(n->key)) K (key);
new ((void*)&(n->val)) TI ();
n->hashcode = hash((const K&)(n->key));
installnode(n);
return n;
}
/** Common base class for all associative maps.
Class \Ref{GArrayTemplate} implements all methods for manipulating
associative maps with key type #KTYPE# and value type #VTYPE#.
You should not however create instances of this class.
You should instead use class \Ref{GMap} or \Ref{GPMap}. */
template <class KTYPE, class VTYPE, class TI>
class GMapTemplate : protected GMapImpl<KTYPE,TI>
{
public:
/** Returns the number of elements in the map. */
int size() const
{ return this->nelems; }
/** Returns the first position in the map. */
GPosition firstpos() const
{ return GMapImpl<KTYPE,TI>::firstpos(); }
/** Implicit notation for GMap::firstpos(). */
operator GPosition() const
{ return firstpos(); }
/** Tests whether the associative map is empty.
Returns a non zero value if and only if the map contains zero entries. */
int isempty() const
{ return this->nelems==0; }
/** Searches an entry for key #key#. If the map contains an entry whose key
is equal to #key# according to #KTYPE::operator==(const KTYPE&)#, this
function returns its position. Otherwise it returns an invalid
position. */
GPosition contains(const KTYPE &key) const
{ return GMapImpl<KTYPE,TI>::contains(key); }
/* Compatibility */
GPosition contains(const KTYPE &key, GPosition &pos) const
{ return pos = GMapImpl<KTYPE,TI>::contains(key); }
// -- ALTERATION
/** Erases the associative map contents. All entries are destroyed and
removed. The map is left with zero entries. */
void empty()
{ GMapImpl<KTYPE,TI>::empty(); }
/** Returns a constant reference to the key of the map entry at position
#pos#. An exception \Ref{GException} is thrown if position #pos# is not
valid. There is no direct way to change the key of a map entry. */
const KTYPE &key(const GPosition &pos) const
{ return (const KTYPE&)(((typename GMapImpl<KTYPE,TI>::MNode*)(pos.check((void*)this)))->key); }
/** Returns a reference to the value of the map entry at position #pos#.
This reference can be used for both reading (as "#a[n]#") and modifying
(as "#a[n]=v#"). An exception \Ref{GException} is thrown if position
#pos# is not valid. */
VTYPE& operator[](const GPosition &pos)
{ return (VTYPE&)(((typename GMapImpl<KTYPE,TI>::MNode*)(pos.check((void*)this)))->val); }
/** Returns a constant reference to the value of the map entry at position
#pos#. This reference can only be used for reading (as "#a[n]#") the
entry value. An exception \Ref{GException} is thrown if position #pos#
is not valid. */
const VTYPE& operator[](const GPosition &pos) const
{ return (const VTYPE&)(((typename GMapImpl<KTYPE,TI>::MNode*)(pos.check((void*)this)))->val); }
/** Returns a constant reference to the value of the map entry for key
#key#. This reference can only be used for reading (as "#a[n]#") the
entry value. An exception \Ref{GException} is thrown if no entry
contains key #key#. This variant of #operator[]# is necessary when
dealing with a #const GMAP<KTYPE,VTYPE>#. */
const VTYPE& operator[](const KTYPE &key) const
{ return (const VTYPE&)(((const typename GMapImpl<KTYPE,TI>::MNode*)(get_or_throw(key)))->val); }
/** Returns a reference to the value of the map entry for key #key#. This
reference can be used for both reading (as "#a[n]#") and modifying (as
"#a[n]=v#"). If there is no entry for key #key#, a new entry is created
for that key with the null constructor #VTYPE::VTYPE()#. */
VTYPE& operator[](const KTYPE &key)
{ return (VTYPE&)(((typename GMapImpl<KTYPE,TI>::MNode*)(get_or_create(key)))->val); }
/** Destroys the map entry for position #pos#.
Nothing is done if position #pos# is not a valid position. */
void del(GPosition &pos)
{ GSetBase::del(pos); }
/** Destroys the map entry for key #key#.
Nothing is done if there is no entry for key #key#. */
void del(const KTYPE &key)
{ GMapImpl<KTYPE,TI>::del(key); }
/* Old iterators. Do not use. */
#if GCONTAINER_OLD_ITERATORS
void first(GPosition &pos) const { pos = firstpos(); }
const VTYPE *next(GPosition &pos) const
{ if (!pos) return 0; const VTYPE *x=&((*this)[pos]); ++pos; return x; }
VTYPE *next(GPosition &pos)
{ if (!pos) return 0; VTYPE *x=&((*this)[pos]); ++pos; return x; }
#endif
};
/** Associative maps.
Template class #GMap<KTYPE,VTYPE># implements an associative map.
The map contains an arbitrary number of entries. Each entry is a
pair containing one element of type #KTYPE# (named the "key") and one
element of type #VTYPE# (named the "value").
The entry associated to a particular value of the key can retrieved
very efficiently.
This class only implement constructors. See class \Ref{GMapTemplate} and
\Ref{GPosition} for a description of all access methods.*/
template <class KTYPE, class VTYPE>
class GMap : public GMapTemplate<KTYPE,VTYPE,VTYPE>
{
public:
// -- ACCESS
GMap() : GMapTemplate<KTYPE,VTYPE,VTYPE>() {}
GMap& operator=(const GMap &r)
{ GSetBase::operator=(r); return *this; }
};
/** Associative maps for smart-pointers.
Template class #GMap<KTYPE,VTYPE># implements an associative map for key
type #KTYPE# and value type #GP<VTYPE># (see \Ref{GSmartPointer.h}). The
map contains an arbitrary number of entries. Each entry is a pair
containing one element of type #KTYPE# (named the "key") and one aelement
of type #VTYPE# (named the "value"). The entry associated to a particular
value of the key can retrieved very efficiently.
Significantly smaller code sizes can be achieved by using this class
instead of the more general #GMap<KTYPE,GP<VTYPE>># (see \Ref{GMap}).
This class only implement constructors. See class \Ref{GMapTemplate} and
\Ref{GPosition} for a description of all access methods.*/
template <class KTYPE, class VTYPE>
class GPMap : public GMapTemplate<KTYPE,GP<VTYPE>,GPBase>
{
public:
GPMap() : GMapTemplate<KTYPE,GP<VTYPE>,GPBase>() {}
GPMap& operator=(const GPMap &r)
{ GSetBase::operator=(r); return *this; }
};
// ------------------------------------------------------------
// HASH FUNCTIONS
// ------------------------------------------------------------
/** @name Hash functions
These functions let you use template class \Ref{GMap} with the
corresponding elementary types. The returned hash code may be reduced to
an arbitrary range by computing its remainder modulo the upper bound of
the range.
@memo Hash functions for elementary types. */
//@{
/** Hashing function (unsigned int). */
static inline unsigned int
hash(const unsigned int & x)
{
return x;
}
/** Hashing function (int). */
static inline unsigned int
hash(const int & x)
{
return (unsigned int)x;
}
/** Hashing function (long). */
static inline unsigned int
hash(const long & x)
{
return (unsigned int)x;
}
/** Hashing function (unsigned long). */
static inline unsigned int
hash(const unsigned long & x)
{
return (unsigned int)x;
}
/** Hashing function (void *). */
static inline unsigned int
hash(void * const & x)
{
return (unsigned long) x;
}
/** Hashing function (const void *). */
static inline unsigned int
hash(const void * const & x)
{
return (unsigned long) x;
}
/** Hashing function (float). */
static inline unsigned int
hash(const float & x)
{
// optimizer will get rid of unnecessary code
unsigned int *addr = (unsigned int*)&x;
if (sizeof(float)<2*sizeof(unsigned int))
return addr[0];
else
return addr[0]^addr[1];
}
/** Hashing function (double). */
static inline unsigned int
hash(const double & x)
{
// optimizer will get rid of unnecessary code
unsigned int *addr = (unsigned int*)&x;
if (sizeof(double)<2*sizeof(unsigned int))
return addr[0];
else if (sizeof(double)<4*sizeof(unsigned int))
return addr[0]^addr[1];
else
return addr[0]^addr[1]^addr[2]^addr[3];
}
//@}
//@}
//@}
// ------------ THE END
#ifdef HAVE_NAMESPACES
}
# ifndef NOT_USING_DJVU_NAMESPACE
using namespace DJVU;
# endif
#endif
#endif